Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular mechanisms of taste-recognition memory

Key Points

  • Taste-recognition memory — the ability to identify a taste and relate it to past consequences of its ingestion — is extremely important from an evolutionary point of view.

  • There are two forms of taste-recognition memory: safe and aversive taste memory. They might be regulated by different neural pathways and seem to have different molecular mechanisms.

  • The neuroanatomy of gustatory and visceral information is well established. There are different points of convergence in which the association between taste and its visceral consequences can be integrated. The best studied of these structures is the insular cortex.

  • Safe taste memory seems to involve cholinergic neurotransmission and its downstream signalling pathways, and its mechanisms might be related to those described for the processing of novelty in the nervous system.

  • Aversive taste memory also involves glutamatergic neurotransmission and its downstream signalling pathways, and other transmitters, such as the noradrenergic system, might have modulatory roles. For long-term taste memory, protein synthesis is necessary.

  • The extinction of aversive taste memory seems to be independent of the cholinergic system, and its mechanisms seem to be related to those involved in the formation of aversive taste memory.

Abstract

From an evolutionary point of view, one of the most important forms of memory is taste-recognition memory. When an animal eats, food-related cues are associated with the consequences of its ingestion. So, if a new taste is associated with malaise, animals will reject it on the next presentation, developing a long-lasting taste aversion. Conversely, when taste is not accompanied by digestive malaise, it becomes recognized as a safe signal, and the animal increases its consumption. In this review, the putative molecular signals and biochemical events that mediate the formation of safe and aversive taste-recognition memory traces are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two taste memory traces.
Figure 2: Anatomical localization of the structures involved in processing taste and visceral information.
Figure 3: Schematic drawing of the principal taste and visceral brain pathways.
Figure 4: Integration of taste-recognition memory in the insular cortex (IC).

Similar content being viewed by others

References

  1. Garcia, J. The evolution of eating safely. Bribulletin 6, 3–5 (1982).

    Google Scholar 

  2. Garcia, J. Learning without memory. J. Cogn. Neurosci. 2, 287–305 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Aggleton, J. P. & Brown, M. W. Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav. Brain Sci. 22, 425–444; discussion 444–489 (1999).

    CAS  PubMed  Google Scholar 

  4. Garcia, J., Kimmelfrof, D. J. & Koelling, R. A. Conditioned taste aversion to saccharin resulting from exposure to gamma radiation. Science 122, 157–158 (1955).

    CAS  PubMed  Google Scholar 

  5. Kiefer, S. W. Neural mediation of conditioned food aversions. Ann. NY Acad. Sci. 443, 100–109 (1985).

    Article  CAS  PubMed  Google Scholar 

  6. Yamamoto, T. in Conditioned Taste Aversion: Memory of a Special Kind (eds Bures, J., Bermúdez-Rattoni, F. & Yamamoto, T.) 76–91 (Oxford Univ. Press, New York, 1998).

    Book  Google Scholar 

  7. Schafe, G. E., Sollars, S. I. & Bernstein, I. L. The CS–US interval and taste aversion learning: a brief look. Behav. Neurosci. 109, 799–802 (1995). A comparison of the effectiveness of a brief CS–US interval and two longer intervals on CTA acquisition. The long delays led to significant aversions, whereas the brief delay did not.

    Article  CAS  PubMed  Google Scholar 

  8. Bures, J. in Conditioned Taste Aversion: Memory of a Special Kind (eds Bures, J., Bermúdez-Rattoni, F. & Yamamoto, T.) 1–10 (Oxford Univ. Press, New York, 1998).

    Book  Google Scholar 

  9. Grill, H. J. Introduction: physiological mechanisms in conditioned taste aversions. Ann. NY Acad. Sci. 443, 67–88 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. Rozin, P. & Kalat, J. W. Specific hungers and poison avoidance as adaptive specializations of learning. Psychol. Rev. 78, 459–486 (1971).

    Article  CAS  PubMed  Google Scholar 

  11. Domjan, M. Determinants of the enhancement of flavored-water intake by prior exposure. J. Exp. Psychol. Anim. Behav. Process 2, 17–27 (1976).

    Article  CAS  PubMed  Google Scholar 

  12. Nachman, M. & Jones, D. R. Learned taste aversions over long delays in rats: the role of learned safety. J. Comp. Physiol. Psychol. 86, 949–956 (1974).

    Article  Google Scholar 

  13. Green, K. F. & Parker, L. A. Gustatory memory: incubation and interference. Behav. Biol. 13, 359–367 (1975).

    Article  CAS  PubMed  Google Scholar 

  14. Gutierrez, R., Rodriguez-Ortiz, C., de la Cruz, V., Nuñez-Jaramillo, L. & Bermúdez-Rattoni, F. Cholinergic dependence of taste memory formation: evidence of two distinct processes. Neurobiol. Learn. Mem. 80, 323–331 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Gutierrez, R., Tellez, L. A. & Bermúdez-Rattoni, F. Blockade of cortical muscarinic but not NMDA receptors prevents a novel taste from becoming familiar. Eur. J. Neurosci. 17, 1556–1562 (2003). Shows that, although cortical muscarinic receptors are important in the formation and consolidation of safe memory trace, NMDA-receptor activity seems to be less relevant.

    Article  PubMed  Google Scholar 

  16. Welzl, H., Alessandri, B. & Baettig, K. The formation of a new gustatory memory trace in rats is prevented by the noncompetitive NMDA antagonist ketamine. Psychobiology 18, 43–47 (1990).

    Google Scholar 

  17. Buresova, O. & Bures, J. Post-ingestion interference with brain function prevents attenuation of neophobia in rats. Behav. Brain Res. 1, 299–312 (1980).

    Article  CAS  PubMed  Google Scholar 

  18. Buresova, O. & Bures, J. The effect of anesthesia on acquisition and extinction of conditioned taste aversion. Behav. Biol. 20, 41–50 (1977).

    Article  CAS  PubMed  Google Scholar 

  19. Bermúdez-Rattoni, F., Forthman, D. L., Sanchez, M. A., Perez, J. L. & Garcia, J. Odor and taste aversions conditioned in anesthetized rats. Behav. Neurosci. 102, 726–732 (1988).

    Article  PubMed  Google Scholar 

  20. Rozin, P. & Ree, P. Long extension of effective CS–US interval by anesthesia between CS and US. J. Comp. Physiol. Psychol. 80, 43–48 (1972).

    Article  CAS  PubMed  Google Scholar 

  21. Ferreira, G., Gutierrez, R., De La Cruz, V. & Bermúdez-Rattoni, F. Differential involvement of cortical muscarinic and NMDA receptors in short- and long-term taste aversion memory. Eur. J. Neurosci. 16, 1139–1145 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Norgren, R. in The Rat Nervous System (ed. Paxinos, G.) 751–771 (Academic Press Inc., San Diego, California, 1995).

    Google Scholar 

  23. Katz, D. B., Simon, S. A. & Nicolelis, M. A. Dynamic and multimodal responses of gustatory cortical neurons in awake rats. J. Neurosci. 21, 4478–4489 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Harrer, M. I. & Travers, S. P. Topographic organization of Fos-like immunoreactivity in the rostral nucleus of the solitary tract evoked by gustatory stimulation with sucrose and quinine. Brain Res. 711, 125–137 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Yamamoto, T. in Conditioned Taste Aversion: Memory of a Special Kind (eds Bures, J., Bermúdez-Rattoni, F. & Ymamoto, T.) 92–107 (Oxford Univ. Press, New York, 1998).

    Book  Google Scholar 

  26. Pritchard, T. C., Hamilton, R. B. & Norgren, R. Projections of the parabrachial nucleus in the old world monkey. Exp. Neurol. 165, 101–117 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Yamamoto, T., Matsuo, R., Kiyomitsu, Y. & Kitamura, R. Taste responses of cortical neurons in freely ingesting rats. J. Neurophysiol. 61, 1244–1258 (1989).

    Article  CAS  PubMed  Google Scholar 

  28. Kobayakawa, T. et al. Spatio-temporal analysis of cortical activity evoked by gustatory stimulation in humans. Chem. Senses 24, 201–209 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Tsukamoto, G. & Adachi, A. Neural responses of rat area postrema to stimuli producing nausea. J. Auton. Nerv. Syst. 49, 55–60 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Hermann, G. E., Kohlerman, N. J. & Rogers, R. C. Hepatic-vagal and gustatory afferent interactions in the brainstem of the rat. J. Auton. Nerv. Syst. 9, 477–495 (1983).

    Article  CAS  PubMed  Google Scholar 

  31. Cechetto, D. F. & Saper, C. B. Evidence for a viscerotopic sensory representation in the cortex and thalamus in the rat. J. Comp. Neurol. 262, 27–45 (1987).

    Article  CAS  PubMed  Google Scholar 

  32. Bermúdez-Rattoni, F. & Yamamoto, T. in Conditioned Taste Aversion: Memory of a Special Kind (eds Bures, J., Bemúdez-Rattoni, F. & Yamamoto, T.) 28–44 (Oxford Univ. Press, New York, 1998).

    Google Scholar 

  33. Katz, D. B., Nicolelis, M. A. & Simon, S. A. Gustatory processing is dynamic and distributed. Curr. Opin. Neurobiol. 12, 448–454 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Lundy, R. F. & Norgren R. Activity in the hypothalamus, amygdala, and cortex generates bilateral and convergent modulation of pontine gustatory neurons. J. Neurophysiol. (in the press).

  35. Smith, D. V. & Li, C. S. GABA-mediated corticofugal inhibition of taste-responsive neurons in the nucleus of the solitary tract. Brain Res. 858, 408–415 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Reilly, S. The parabrachial nucleus and conditioned taste aversion. Brain Res. Bull. 48, 239–254 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Houpt, T. A., Philopena, J. M., Wessel, T. C., Joh, T. H. & Smith, G. P. Increased c-fos expression in nucleus of the solitary tract correlated with conditioned taste aversion to sucrose in rats. Neurosci. Lett. 172, 1–5 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Swank, M. W. & Bernstein, I. L. c-Fos induction in response to a conditioned stimulus after single trial taste aversion learning. Brain Res. 636, 202–208 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Kesner, R. P., Berman, R. F. & Tardif, R. Place and taste aversion learning: role of basal forebrain, parietal cortex, and amygdala. Brain Res. Bull. 29, 345–353 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Lasiter, P. S. Thalamocortical relations in taste aversion learning: II. Involvement of the medial ventrobasal thalamic complex in taste aversion learning. Behav. Neurosci. 99, 477–495 (1985).

    Article  CAS  PubMed  Google Scholar 

  41. Touzani, K. & Sclafani, A. Lateral hypothalamic lesions impair flavour-nutrient and flavour-toxin trace learning in rats. Eur. J. Neurosci. 16, 2425–2433 (2002).

    Article  PubMed  Google Scholar 

  42. O'Doherty, J., Rolls, E. T., Francis, S., Bowtell, R. & McGlone, F. Representation of pleasant and aversive taste in the human brain. J. Neurophysiol. 85, 1315–1321 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Tassoni, G., Lorenzini, C. A., Baldi, E., Sacchetti, B. & Bucherelli, C. Role of the perirhinal cortex in rats' conditioned taste aversion response memorization. Behav. Neurosci. 114, 875–881 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Grill, H. J. & Norgren, R. Chronically decerebrate rats demonstrate satiation but not bait shyness. Science 201, 267–269 (1978).

    Article  CAS  PubMed  Google Scholar 

  45. Kiefer, S. W. & Braun, J. J. Absence of differential associative responses to novel and familiar taste stimuli in rats lacking gustatory neocortex. J. Comp. Physiol. Psychol. 91, 498–507 (1977).

    Article  CAS  PubMed  Google Scholar 

  46. Nerad, L., Ramirez-Amaya, V., Ormsby, C. E. & Bermúdez-Rattoni, F. Differential effects of anterior and posterior insular cortex lesions on the acquisition of conditioned taste aversion and spatial learning. Neurobiol. Learn. Mem. 66, 44–50 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Bermúdez-Rattoni, F. & McGaugh, J. L. Insular cortex and amygdala lesions differentially affect acquisition on inhibitory avoidance and conditioned taste aversion. Brain Res. 549, 165–170 (1991).

    Article  PubMed  Google Scholar 

  48. Weinberger, N. M. & Bakin, J. S. Learning-induced physiological memory in adult primary auditory cortex: receptive fields plasticity, model, and mechanisms. Audiol. Neurootol. 3, 145–167 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Fibiger, H. C., Damsma, G. & Day, J. C. Behavioral pharmacology and biochemistry of central cholinergic neurotransmission. Adv. Exp. Med. Biol. 295, 399–414 (1991).

    Article  CAS  PubMed  Google Scholar 

  50. Inglis, F. M., Day, J. C. & Fibiger, H. C. Enhanced acetylcholine release in hippocampus and cortex during the anticipation and consumption of a palatable meal. Neuroscience 62, 1049–1056 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Giovannini, M. G. et al. Effects of novelty and habituation on acetylcholine, GABA, and glutamate release from the frontal cortex and hippocampus of freely moving rats. Neuroscience 106, 43–53 (2001). Shows that when an animal is exposed to a new environment, cortical and hippocampal ACh release increases.

    Article  CAS  PubMed  Google Scholar 

  52. Acquas, E., Wilson, C. & Fibiger, H. C. Conditioned and unconditioned stimuli increase frontal cortical and hippocampal acetylcholine release: effects of novelty, habituation, and fear. J. Neurosci. 16, 3089–3096 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Wilson, F. A. & Rolls, E. T. Learning and memory is reflected in the responses of reinforcement-related neurons in the primate basal forebrain. J. Neurosci. 10, 1254–1267 (1990).

    Article  CAS  PubMed  Google Scholar 

  54. Miranda, M. I., Ramirez-Lugo, L. & Bermúdez-Rattoni, F. Cortical cholinergic activity is related to the novelty of the stimulus. Brain Res. 882, 230–235 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Shimura, T., Suzuki, M. & Yamamoto, T. Aversive taste stimuli facilitate extracellular acetylcholine release in the insular gustatory cortex of the rat: a microdialysis study. Brain Res. 679, 221–226 (1995).

    Article  CAS  PubMed  Google Scholar 

  56. Pepeu, G. & Blandina, P. The acetylcholine, GABA, glutamate triangle in the rat forebrain. J. Physiol. (Paris) 92, 351–355 (1998).

    Article  CAS  Google Scholar 

  57. Aloisi, A. M., Casamenti, F., Scali, C., Pepeu, G. & Carli, G. Effects of novelty, pain and stress on hippocampal extracellular acetylcholine levels in male rats. Brain Res. 748, 219–226 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Miranda, M. I., Ferreira, G., Ramirez-Lugo, L. & Bermúdez-Rattoni, F. Role of cholinergic system on the construction of memories: taste memory encoding. Neurobiol. Learn. Mem. 80, 211–222 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Ranganath, C. & Rainer, G. Neural mechanisms for detecting and remembering novel events. Nature Rev. Neurosci. 4, 193–202 (2003). Reviews the neural mechanisms by which the brain detects and responds to novelty — at the cellular, synaptic and network levels — highlighting the role of ACh.

    Article  CAS  Google Scholar 

  60. Naor, C. & Dudai, Y. Transient impairment of cholinergic function in the rat insular cortex disrupts the encoding of taste in conditioned taste aversion. Behav. Brain Res. 79, 61–67 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Berman, D. E. Modulation of taste-induced Elk-1 activation by identified neurotransmitter systems in the insular cortex of the behaving rat. Neurobiol. Learn. Mem. 79, 122–126 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Roberson, E. D. et al. The mitogen-activated protein kinase cascade couples PKA and PKC to cAMP response element binding protein phosphorylation in area CA1 of hippocampus. J. Neurosci. 19, 4337–4348 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Orban, P. C., Chapman, P. F. & Brambilla, R. Is the Ras-MAPK signalling pathway necessary for long-term memory formation? Trends Neurosci 22, 38–44 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Berman, D. E., Hazvi, S., Neduva, V. & Dudai, Y. The role of identified neurotransmitter systems in the response of insular cortex to unfamiliar taste: activation of ERK1-2 and formation of a memory trace. J. Neurosci. 20, 7017–7023 (2000). Describes how the consumption of new, but not familiar tastes activate ERK1/2 in the insular cortex; the activation is mediated by NMDA and muscarinic receptors.

    Article  CAS  PubMed  Google Scholar 

  65. Swank, M. W. & Sweatt, J. D. Increased histone acetyltransferase and lysine acetyltransferase activity and biphasic activation of the ERK/RSK cascade in insular cortex during novel taste learning. J. Neurosci. 21, 3383–3391 (2001). Describes that new tastes elicit biphasic (acute and long-lasting) activation of two distinct lysine acetyltransferase activities, along with the ERK/MAPK cascade, in the IC.

    Article  CAS  PubMed  Google Scholar 

  66. Berman, D. E., Hazvi, S., Rosenblum, K. & Dudai, Y. Specific and differential activation of mitogen-activated protein kinase cascade by unfamiliar taste in the insular cortex of the behaving rat. J. Neurosci. 18, 10037–10044 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Everitt, B. J. & Robbins, T. W. Central cholinergic systems and cognition. Annu. Rev. Psychol. 48, 649–684 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Wenk, G. L. The nucleus basalis magnocellularis cholinergic system: one hundred years of progress. Neurobiol. Learn. Mem. 67, 85–95 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Gonzalez, C. L., Miranda, M. I., Gutierrez, H., Ormsby, C. & Bermúdez-Rattoni, F. Differential participation of the NBM in the acquisition and retrieval of conditioned taste aversion and Morris water maze. Behav. Brain Res. 116, 89–98 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Gutierrez, H., Miranda, M. I. & Bermúdez-Rattoni, F. Learning impairment and cholinergic deafferentation after cortical nerve growth factor deprivation. J. Neurosci. 17, 3796–3803 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Gutierrez, H. et al. Differential effects of 192IgG-saporin and NMDA-induced lesions into the basal forebrain on cholinergic activity and taste aversion memory formation. Brain Res. 834, 136–141 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Gutierrez, H. et al. Redundant basal forebrain modulation in taste aversion memory formation. J. Neurosci. 19, 7661–7669 (1999). A proposed model that accounts for the redundant modulation of CTA learning exerted by the basal forebrain by both the baso-cortical and baso-amygdaloid pathways.

    Article  CAS  PubMed  Google Scholar 

  73. Miranda, M. I. & Bermúdez-Rattoni, F. Reversible inactivation of the nucleus basalis magnocellularis induces disruption of cortical acetylcholine release and acquisition, but not retrieval, of aversive memories. Proc. Natl Acad. Sci. USA 96, 6478–6482 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Ramirez-Lugo, L., Miranda, M. I., Escobar, M. L., Espinosa, E. & Bermúdez-Rattoni, F. The role of cortical cholinergic pre- and post-synaptic receptors in taste memory formation. Neurobiol. Learn. Mem. 79, 184–193 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Gutierrez, R., Rodriguez-Ortiz, C. J., de La Cruz, V., Nuñez-Jaramillo, L. & Bermúdez-Rattoni, F. Cholinergic dependence of taste memory formation: evidence of two distinct processes. Neurobiol. Learn. Mem. 80, 323–331 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Morris, R. G. Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5. J. Neurosci. 9, 3040–3057 (1989).

    Article  CAS  PubMed  Google Scholar 

  77. Davis, S., Butcher, S. P. & Morris, R. G. The NMDA receptor antagonist D-2-amino-5-phosphonopentanoate (D-AP5) impairs spatial learning and LTP in vivo at intracerebral concentrations comparable to those that block LTP in vitro. J. Neurosci. 12, 21–34 (1992).

    Article  CAS  PubMed  Google Scholar 

  78. Aigner, T. G. Pharmacology of memory: cholinergic-glutamatergic interactions. Curr. Opin. Neurobiol. 5, 155–160 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. Farr, S. A., Flood, J. F. & Morley, J. E. The effect of cholinergic, GABAergic, serotonergic, and glutamatergic receptor modulation on posttrial memory processing in the hippocampus. Neurobiol. Learn. Mem. 73, 150–167 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Woolf, N. J. The critical role of cholinergic basal forebrain neurons in morphological change and memory encoding: a hypothesis. Neurobiol. Learn. Mem. 66, 258–266 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Kim, M. & McGaugh, J. L. Effects of intra-amygdala injections of NMDA receptor antagonists on acquisition and retention of inhibitory avoidance. Brain Res. 585, 35–48 (1992).

    Article  CAS  PubMed  Google Scholar 

  82. Schafe, G. E. & Bernstein, I. L. Forebrain contribution to the induction of a brainstem correlate of conditioned taste aversion: I. The amygdala. Brain Res. 741, 109–116 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Reddy, M. M. & Bures, J. Unit activity changes elicited in amygdala and neocortex of anaesthetized rats by intraperitoneal injection of lithium chloride. Neurosci. Lett. 22, 169–172 (1981).

    Article  CAS  PubMed  Google Scholar 

  84. Yasoshima, Y., Shimura, T. & Yamamoto, T. Single unit responses of the amygdala after conditioned taste aversion in conscious rats. Neuroreport 6, 2424–2428 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Gallo, M., Roldan, G. & Bures, J. Differential involvement of gustatory insular cortex and amygdala in the acquisition and retrieval of conditioned taste aversion in rats. Behav. Brain Res. 52, 91–97 (1992). Shows that the IC is indispensable for the initial processing of the taste stimulus and that the amygdala is necessary for the association of the gustatory trace with malaise. The authors suggest that IC and amygdala implement processing of gustatory and visceral signals, respectively.

    Article  CAS  PubMed  Google Scholar 

  86. Buresova, O. & Bures, J. Cortical and subcortical components of the conditioned saccharin aversion. Physiol. Behav. 11, 435–439 (1973).

    Article  CAS  PubMed  Google Scholar 

  87. Miranda, M. I., Ferreira, G., Ramirez-Lugo, L. & Bermúdez-Rattoni, F. Glutamatergic activity in the amygdala signals visceral input during taste memory formation. Proc. Natl Acad. Sci. USA 99, 11417–11422 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Tucci, S., Rada, P. & Hernandez, L. Role of glutamate in the amygdala and lateral hypothalamus in conditioned taste aversion. Brain Res. 813, 44–49 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Yasoshima, Y., Morimoto, T. & Yamamoto, T. Different disruptive effects on the acquisition and expression of conditioned taste aversion by blockades of amygdalar ionotropic and metabotropic glutamatergic receptor subtypes in rats. Brain Res. 869, 15–24 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Gutierrez, H., Hernandez-Echeagaray, E., Ramirez-Amaya, V. & Berm´dez-Rattoni, F. Blockade of N-methyl-D-aspartate receptors in the insular cortex disrupts taste aversion and spatial memory formation. Neuroscience 89, 751–758 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Jones, M. W., French, P. J., Bliss, T. V. & Rosenblum, K. Molecular mechanisms of long-term potentiation in the insular cortex in vivo. J. Neurosci. 19, RC36 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Woolf, N. J. A structural basis for memory storage in mammals. Prog. Neurobiol. 55, 59–77 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Rosenblum, K., Berman, D. E., Hazvi, S. & Dudai, Y. Carbachol mimics effects of sensory input on tyrosine phosphorylation in cortex. Neuroreport 7, 1401–1404 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Rosenblum, K., Berman, D. E., Hazvi, S., Lamprecht, R. & Dudai, Y. NMDA receptor and the tyrosine phosphorylation of its 2B subunit in taste learning in the rat insular cortex. J. Neurosci. 17, 5129–5135 (1997). Important demonstration that the levels of tyrosine phosphorylation on NR2B are related to the novelty of the taste stimulus.

    Article  CAS  PubMed  Google Scholar 

  95. Houpt, T. A. & Berlin, R. Rapid, labile, and protein synthesis-independent short-term memory in conditioned taste aversion. Learn Mem. 6, 37–46 (1999). Shows that central administration of a protein-synthesis inhibitor before injection of lithium chloride blocked long-term, but not short-term, CTA expression.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Yasoshima, Y. & Yamamoto, T. Rat gustatory memory requires protein kinase C activity in the amygdala and cortical gustatory area. Neuroreport 8, 1363–1367 (1997). Assessed the role of PKC in the IC and amygdala at different times during CTA acquisition. The IC seems to be involved in information processing of the CS, whereas the amygdala seems to be involved in the CS–US association.

    Article  CAS  PubMed  Google Scholar 

  97. Nuñez-Jaramillo, L. et al. Serine phosphorylation of the NMDA receptor subunits NR2A and NR2B in the insular cortex is related with taste recognition memory. Soc. Neurosci. Abstr. 721.7 (2003).

  98. Rosenblum, K. et al. Modulation of protein tyrosine phosphorylation in rat insular cortex after conditioned taste aversion training. Proc. Natl Acad. Sci. USA 92, 1157–1161 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Berman, D. E. & Dudai, Y. Memory extinction, learning anew, and learning the new: dissociations in the molecular machinery of learning in cortex. Science 291, 2417–2419 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Miranda, M. I., LaLumiere, R. T., Buen, T. V., Bermúdez-Rattoni, F. & McGaugh, J. L. Blockade of noradrenergic receptors in the basolateral amygdala impairs taste memory. Eur. J. Neurosci. 18, 2605–2610 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Miyashita, T. & Williams, C. L. Glutamatergic transmission in the nucleus of the solitary tract modulates memory through influences on amygdala noradrenergic systems. Behav. Neurosci. 116, 13–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Bahar, A., Samuel, A., Hazvi, S. & Dudai, Y. The amygdalar circuit that acquires taste aversion memory differs from the circuit that extinguishes it. Eur. J. Neurosci. 17, 1527–1530 (2003).

    Article  PubMed  Google Scholar 

  103. Tucker, A. R. & Oei, T. P. Protein synthesis inhibition and amnesia for saccharin aversion memory in rats after intra-cisternal administration of cycloheximide. Physiol. Behav. 28, 1025–1028 (1982).

    Article  CAS  PubMed  Google Scholar 

  104. Tucker, A. & Gibbs, M. Cycloheximide-induced amnesia for taste aversion memory in rats. Pharmacol. Biochem. Behav. 4, 181–184 (1976).

    Article  CAS  PubMed  Google Scholar 

  105. Young, E., Cesena, T., Meiri, K. F. & Perrone-Bizzozero, N. I. Changes in protein kinase C (PKC) activity, isozyme translocation, and GAP-43 phosphorylation in the rat hippocampal formation after a single-trial contextual fear conditioning paradigm. Hippocampus 12, 457–464 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Lamprecht, R., Hazvi, S. & Dudai, Y. cAMP response element-binding protein in the amygdala is required for long- but not short-term conditioned taste aversion memory. J. Neurosci. 17, 8443–8450 (1997).

    Article  CAS  PubMed  Google Scholar 

  107. Swank, M. W. Phosphorylation of MAP kinase and CREB in mouse cortex and amygdala during taste aversion learning. Neuroreport 11, 1625–1630 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Koh, M. T., Thiele, T. E. & Bernstein, I. L. Inhibition of protein kinase A activity interferes with long-term, but not short-term, memory of conditioned taste aversions. Behav. Neurosci. 116, 1070–1074 (2002). Elegant study showing that inhibition of PKA in the amygdala of mutant mice disrupts long-term, but not short-term, CTA.

    Article  CAS  PubMed  Google Scholar 

  109. Koh, M. T., Clarke, S. N., Spray, K. J., Thiele, T. E. & Bernstein, I. L. Conditioned taste aversion memory and c-Fos induction are disrupted in RIIbeta-protein kinase A mutant mice. Behav. Brain Res. 143, 57–63 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Pavlov, I. P. Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex (Oxford Univ. Press, London, 1927).

    Google Scholar 

  111. Rescorla, R. A. Preservation of Pavlovian association through extinction. Q. J. Exp. Psychol 49B, 245–258 (1996).

    Google Scholar 

  112. Vianna, M. R., Igaz, L. M., Coitinho, A. S., Medina, J. H. & Izquierdo, I. Memory extinction requires gene expression in rat hippocampus. Neurobiol. Learn. Mem. 79, 199–203 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Berman, D. E., Hazvi, S., Stehberg, J., Bahar, A. & Dudai, Y. Conflicting processes in the extinction of conditioned taste aversion: behavioral and molecular aspects of latency, apparent stagnation, and spontaneous recovery. Learn Mem. 10, 16–25 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Eisenberg, M., Kobilo, T., Berman, D. E. & Dudai, Y. Stability of retrieved memory: inverse correlation with trace dominance. Science 301, 1102–1104 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Schwaerzel, M. et al. Dopamine and octopamine differentiate bteween aversive and appetitive olfactory memories in Drosophila. J. Neurosci 23, 10495–10502 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Troncoso, J. & Maldonado, H. Two related forms of memory in the crab Chasmagnathus are differentially affected by NMDA receptor antagonists. Pharmacol. Biochem. Behav. 72, 251–265 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Majak, K. & Pitkanen, A. Activation of the amygdalo-entorhinal pathway in fear-conditioning in rat. Eur. J. Neurosci. 18, 1652–1659 (2003).

    Article  PubMed  Google Scholar 

  118. Jerusalinsky, D. et al. Amnesia by post-training infusion of glutamate receptor antagonist into amygdala, hippocampus, and entorhinal cortex. Behav. Neural Biol. 58, 76–80 (1992).

    Article  CAS  PubMed  Google Scholar 

  119. Miserendino, M. S. C., Melia, K. & Davis, M. Blocking of acquisition but not expression of conditioned fear-potentiated startle by NMDA antagonists in the amygdala. Nature 345, 716–718 (1990).

    Article  CAS  PubMed  Google Scholar 

  120. McGaugh, J. L. Memory consolidation and the amygdala: a systems perspective. Trends Neurosci 25, 456–461 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Warburton, E. C. et al. Cholinergic neurotransmission is essential for perirhinal cortical plasticity and recognition memory. Neuron 38, 987–996 (2003). Shows that applications of scopolamine in the perirhinal cortex impair object-recognition memory. Similar treatment blocked the production of long-term depression but not long-term potentiation in perirhinal slices.

    Article  CAS  PubMed  Google Scholar 

  122. Aigner, T. G. & Mishkin, M. The effects of physostigmine and scopolamine on recognition memory in monkeys. Behav. Neural Biol. 45, 81–87 (1986).

    Article  CAS  PubMed  Google Scholar 

  123. Tang, Y., Mishkin, M. & Aigner, T. G. Effects of muscarinic blockade in perirhinal cortex during visual recognition. Proc. Natl Acad. Sci. USA 94, 12667–12669 (1997).

    Article  CAS  PubMed  Google Scholar 

  124. Massey, P. V., Bhabra, G., Cho, K., Brown, M. W. & Bashir, Z. I. Activation of muscarinic receptors induces protein synthesis-dependent long-lasting depression in the perirhinal cortex. Eur. J. Neurosci. 14, 145–152 (2001). Describes that perirhinal cortex activation of ACh receptors in vitro produces long-lasting depression of synaptic transmission that is dependent on muscarinic M1, but not on NMDA receptor activation.

    Article  CAS  PubMed  Google Scholar 

  125. Gutierrez, R., de la Cruz, V., Rodriguez-Ortiz, C. J. & Bermúdez–Rattoni, F. Perirhinal cortex muscarinic receptor blockade impairs taste recognition memory formation. Learn. Mem. 11, 95–101 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Martin, J. H. (ed.) Neuroanatomy: Text and Atlas 2nd edn (Appleton & Lange, Connecticut, 1996).

    Google Scholar 

  127. Rosenblum, K., Meiri, N. & Dudai, Y. Taste memory: the role of protein synthesis in gustatory cortex. Behav. Neural Biol. 59, 49–56 (1993).

    Article  CAS  PubMed  Google Scholar 

  128. Desmedt, A., Hazvi, S. & Dudai, Y. Differential pattern of cAMP response element-binding protein activation in the rat brain after conditioned aversion as a function of the associative process engaged: taste versus context association. J. Neurosci. 23, 6102–6110 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Consejo Nacional de Ciencia y Tecnología, Mexico, and by the Dirección General de Asuntos del Personal Académico (UNAM). I dedicate this work to my dear mentor J. Garcia for introducing me to C.T.A. I thank R. Tapia, E. Espinosa, my students L. Ramírez-Lugo, V. de la Cruz, C. Ortiz and I. Balderas, and all of my collaborators who make valuable comments to this review.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares that he has no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Bermúdez-Rattoni's homepage

Glossary

SPREADING DEPRESSION

A slowly-moving depression of electrical activity in the cerebral cortex. It consists of a wave of depolarization that can last for up to 2 minutes and travels at a speed of 3–12 millimeters per minute. Wave passage is accompanied by increased blood flow and is followed by a prolonged period of vasodilation. Spreading depression seems to be related to migraine, and has been observed to accompany cerebral ischaemia.

MICRODIALYSIS

A technique that allows the sampling of neurochemicals in the brain of live animals. It commonly uses a small U-shaped cannula that serves a dual function: it allows the injection of molecules of interest to test their effect, and it provides a pathway for the flow and subsequent collection of perfusate from a small brain area.

MORRIS WATER MAZE

A learning task in which an animal is placed in a pool filled with opaque water and has to learn to escape to a hidden platform that is placed at a constant position. The animal must learn to use distal cues, and the spatial relationship between them and the platform. Learning in this task involves the hippocampus.

MUSHROOM BODIES

The prominent bilaterally symmetrical structures in the insect brain that are crucial for olfactory learning and memory. Olfactory information is relayed to the mushroom bodies by projection neurons from the antennal lobes.

OCTOPAMINE

Catecholamine that functions as neurotransmitter in many invertebrates.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bermúdez-Rattoni, F. Molecular mechanisms of taste-recognition memory. Nat Rev Neurosci 5, 209–217 (2004). https://doi.org/10.1038/nrn1344

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1344

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing