Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Roles and rules of kainate receptors in synaptic transmission

Key Points

  • Kainate receptors are a class of ionotropic glutamate receptors with remarkable structural diversity. There are five different subunits, some of which are susceptible to alternative splicing and mRNA editing. Pharmacologically, they are difficult to distinguish from other glutamate receptors, such as the AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) type, but important progress has been made in identifying several relatively selective agonists and antagonists.

  • Kainate receptors have pre- and postsynaptic distributions. Postsynaptic kainate receptors contribute to synaptic transmission, and the slow time-course of their response endows synapses with longer integration times. Presynaptically, kainate receptors modulate transmitter release from excitatory and inhibitory synapses in different brain regions. The presynaptic mechanisms whereby kainate receptors modulate excitation and inhibition are quite complex and remain a matter of debate.

  • Kainate receptors are also involved in synaptic plasticity during development and in the adult, but their mechanism of action remains to be elucidated. Similarly, the long-held view that kainate receptors are relevant to the generation of epilepsy is a matter of debate, as there is contradictory evidence on their role as pro- or anticonvulsant molecules.

  • In addition to these debates in the field, two additional observations make kainate receptors one of the most intriguing receptor family in the nervous system. First, although there are several kainate receptor-knockout animals, they have not been particularly informative about the function of these receptors. Second, some actions of kainate seem to involve the unusual interaction of an ionotropic receptor with a G protein.

Abstract

Functional kainate receptors are ubiquitous in the central nervous system. After a search for their functional significance, a considerable amount of data indicates that this class of glutamate receptors is present at both sides of the synapse. Pre- and postsynaptic kainate receptors can regulate transmission at many synapses in a specific manner, and seem to be involved in short- and long-term plastic phenomena, highlighting their significance for synaptic signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pre- and postsynaptic kainate receptors in mossy fibre synapses.
Figure 2: Differential bidirectional modulation of glutamate release by presynaptic kainate receptors in the cerebellar cortex.
Figure 3: Kainate receptor-mediated modulation of GABA (γ-aminobutyric acid) release in the hippocampus.
Figure 4: Involvement of kainate receptors in long-term synaptic plasticity.

Similar content being viewed by others

References

  1. Ramón y Cajal, S. Significación fisiológica de las expansiones protoplásmicas y nerviosas de las células de la sustancia gris. Rev. Ciencias Med. Barcelona 22, 1–15 (1881).

    Google Scholar 

  2. Cowan, M., Sudhof, T. C. & Stevens, C. (eds) Synapses. (The Johns Hopkins Univ. Press Baltimore, Massachusetts, 2001).

    Google Scholar 

  3. Hollmann, M. & Heinemann, S. Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108 (1994).

    CAS  PubMed  Google Scholar 

  4. Nakanishi, S. Molecular diversity of glutamate receptors and implications for brain function. Science 258, 597–603 (1992).

    CAS  PubMed  Google Scholar 

  5. Seeburg, P. H. The molecular biology of mammalian glutamate receptor channels. Trends Neurosci. 16, 359–365 (1993).

    CAS  PubMed  Google Scholar 

  6. Paternain, A. V., Morales, M. & Lerma, J. Selective antagonism of AMPA receptors unmasks kainate receptor-mediated responses in hippocampal neurons. Neuron 14, 185–189 (1995). The first description that 2,3-benzodiazepine, GYKI 53655, is a specific antagonist of AMPA receptors that unmasks the presence of kainate receptors in hippocampal neurons and can therefore be used to isolate one kainate receptor from the other.

    CAS  PubMed  Google Scholar 

  7. Wilding, T. J. & Huettner, J. E. Differential antagonism of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-preferring and kainate-preferring receptors by 2,3-benzodiazepines. Mol. Pharmacol. 47, 582–587 (1995). Describes the specificity of GYKI 53655 to antagonize AMPA over kainate receptors.

    CAS  PubMed  Google Scholar 

  8. Ben-Ari, Y. & Cossart, R. Kainate, a double agent that generates seizures: two decades of progress. Trends Neurosci. 23, 580–587 (2000).

    CAS  PubMed  Google Scholar 

  9. Bleakman, D. Kainate receptor pharmacology and physiology. Cell. Mol. Life Sci. 56, 558–566 (1999).

    CAS  PubMed  Google Scholar 

  10. Chittajallu, R., Braithwaite, S. P., Clarke, V. R. & Henley, J. M. Kainate receptors: subunits, synaptic localization and function. Trends Pharmacol. Sci. 20, 26–35 (1999).

    CAS  PubMed  Google Scholar 

  11. Frerking, M. & Nicoll, R. A. Synaptic kainate receptors. Curr. Opin. Neurobiol. 10, 342–351 (2000).

    CAS  PubMed  Google Scholar 

  12. Huettner, J. E. Kainate receptors: knocking out plasticity. Trends Neurosci. 24, 365–366 (2001).

    CAS  PubMed  Google Scholar 

  13. Kamiya, H. Kainate receptor-dependent presynaptic modulation and plasticity. Neurosci. Res. 42, 1–6 (2002).

    CAS  PubMed  Google Scholar 

  14. Lerma, J., Paternain, A. V., Rodriguez-Moreno, A. & López-García, J. C. Molecular physiology of kainate receptors. Physiol. Rev. 81, 971–998 (2001).

    CAS  PubMed  Google Scholar 

  15. Madden, D. R. The structure and function of glutamate receptor ion channels. Nature Rev. Neurosci. 3, 91–101 (2002).

    CAS  Google Scholar 

  16. Stern-Bach, Y. et al. Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins. Neuron 13, 1345–1357 (1994).

    CAS  PubMed  Google Scholar 

  17. Swanson, G. T., Gereau, R. W., Green, T. & Heinemann, S. F. Identification of amino acid residues that control functional behavior in GluR5 and GluR6 kainate receptors. Neuron 19, 913–926 (1997).

    CAS  PubMed  Google Scholar 

  18. Fleck, M. W., Cornell, E. & Mah, S. J. Amino-acid residues involved in glutamate receptor 6 kainate receptor gating and desensitization. J. Neurosci. 23, 1219–1227 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bowie, D. External anions and cations distinguish between AMPA and kainate receptor gating mechanisms. J. Physiol. (Lond.) 539, 725–733 (2002).

    CAS  Google Scholar 

  20. Sommer, B. et al. A glutamate receptor channel with high affinity for domoate and kainate. EMBO J. 11, 1651–1656 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Paternain, A. V., Herrera, M. T., Nieto, M. A. & Lerma, J. GluR5 and GluR6 kainate receptor subunits coexist in hippocampal neurons and coassemble to form functional receptors. J. Neurosci. 20, 196–205 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Schiffer, H. H., Swanson, G. T. & Heinemann, S. F. Rat GluR7 and a carboxy-terminal splice variant, GluR7b, are functional kainate receptor subunits with a low sensitivity to glutamate. Neuron 19, 1141–1146 (1997).

    CAS  PubMed  Google Scholar 

  23. Cui, C. & Mayer, M. L. Heteromeric kainate receptors formed by the coassembly of GluR5, GluR6, and GluR7. J. Neurosci. 19, 8281–8291 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bettler, B. et al. Cloning of a novel glutamate receptor subunit, GluR5: expression in the nervous system during development. Neuron 5, 583–595 (1990). Cloning of the first kainate receptor subunit.

    CAS  PubMed  Google Scholar 

  25. Gregor, P., O'Hara, B. F., Yang, X. & Uhl, G. R. Expression and novel subunit isoforms of glutamate receptor genes GluR5 and GluR6. Neuroreport 4, 1343–1346 (1993).

    CAS  PubMed  Google Scholar 

  26. Seeburg, P. H. The role of RNA editing in controlling glutamate receptor channel properties. J. Neurochem. 66, 1–5 (1996).

    CAS  PubMed  Google Scholar 

  27. Sommer, B., Kohler, M., Sprengel, R. & Seeburg, P. H. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67, 11–19 (1991).

    CAS  PubMed  Google Scholar 

  28. Swanson, G. T., Feldmeyer, D., Kaneda, M. & Cull-Candy, S. G. Effect of RNA editing and subunit co-assembly single-channel properties of recombinant kainate receptors. J. Physiol. (Lond). 492, 129–142 (1996).

    CAS  Google Scholar 

  29. Kohler, M., Burnashev, N., Sakmann, B. & Seeburg, P. H. Determinants of Ca2+ permeability in both TM1 and TM2 of high affinity kainate receptor channels: diversity by RNA editing. Neuron 10, 491–500 (1993).

    CAS  PubMed  Google Scholar 

  30. Bischoff, S., Barhanin, J., Bettler, B., Mulle, C. & Heinemann, S. Spatial distribution of kainate receptor subunit mRNA in the mouse basal ganglia and ventral mesencephalon. J. Comp. Neurol. 379, 541–562 (1997).

    CAS  PubMed  Google Scholar 

  31. Wisden, W. & Seeburg, P. H. A complex mosaic of high-affinity kainate receptors in rat brain. J. Neurosci. 13, 3582–3598 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bahn, S., Volk, B. & Wisden, W. Kainate receptor gene expression in the developing rat brain. J. Neurosci. 14, 5525–5547 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Brandstatter, J. H., Koulen, P. & Wassle, H. Selective synaptic distribution of kainate receptor subunits in the two plexiform layers of the rat retina. J. Neurosci. 17, 9298–9307 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Grunert, U., Haverkamp, S., Fletcher, E. L. & Wassle, H. Synaptic distribution of ionotropic glutamate receptors in the inner plexiform layer of the primate retina. J. Comp. Neurol. 447, 138–151 (2002).

    CAS  PubMed  Google Scholar 

  35. Haverkamp, S., Ghosh, K. K., Hirano, A. A. & Wassle, H. Immunocytochemical description of five bipolar cell types of the mouse retina. J. Comp. Neurol. 455, 463–476 (2003).

    PubMed  PubMed Central  Google Scholar 

  36. Haverkamp, S., Grunert, U. & Wassle, H. Localization of kainate receptors at the cone pedicles of the primate retina. J. Comp. Neurol. 436, 471–486 (2001).

    CAS  PubMed  Google Scholar 

  37. Petralia, R. S., Wang, Y. X. & Wenthold, R. J. Histological and ultrastructural localization of the kainate receptor subunits, KA2 and GluR6/7, in the rat nervous system using selective antipeptide antibodies. J. Comp. Neurol. 349, 85–110 (1994).

    CAS  PubMed  Google Scholar 

  38. Charara, A., Blankstein, E. & Smith, Y. Presynaptic kainate receptors in the monkey striatum. Neuroscience 91, 1195–1200 (1999).

    CAS  PubMed  Google Scholar 

  39. Kieval, J. Z., Hubert, G. W., Charara, A., Pare, J. F. & Smith, Y. Subcellular and subsynaptic localization of presynaptic and postsynaptic kainate receptor subunits in the monkey striatum. J. Neurosci. 21, 8746–8757 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bureau, I., Dieudonne, S., Coussen, F. & Mulle, C. Kainate receptor-mediated synaptic currents in cerebellar Golgi cells are not shaped by diffusion of glutamate. Proc. Natl Acad. Sci. USA 97, 6838–6843 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Castillo, P. E., Malenka, R. C. & Nicoll, R. A. Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. Nature 388, 182–186 (1997). Together with reference 48, this is the first description of synaptic activation of kainate receptors.

    CAS  PubMed  Google Scholar 

  42. Cossart, R., Esclapez, M., Hirsch, J. C., Bernard, C. & Ben-Ari, Y. GluR5 kainate receptor activation in interneurons increases tonic inhibition of pyramidal cells. Nature Neurosci. 1, 470–478 (1998).

    CAS  PubMed  Google Scholar 

  43. DeVries, S. H. & Schwartz, E. A. Kainate receptors mediate synaptic transmission between cones and 'Off' bipolar cells in a mammalian retina. Nature 397, 157–160 (1999).

    CAS  PubMed  Google Scholar 

  44. Frerking, M., Malenka, R. C. & Nicoll, R. A. Synaptic activation of kainate receptors on hippocampal interneurons. Nature Neurosci. 1, 479–486 (1998).

    CAS  PubMed  Google Scholar 

  45. Kidd, F. L. & Isaac, J. T. Developmental and activity-dependent regulation of kainate receptors at thalamocortical synapses. Nature 400, 569–573 (1999). Describes the presence of kainate receptors at thalamocortical synapses, showing a developmental conversion of transmission from being predominantly mediated by kainate receptors to depend primarily on AMPA receptors.

    CAS  PubMed  Google Scholar 

  46. Li, H. & Rogawski, M. A. GluR5 kainate receptor mediated synaptic transmission in rat basolateral amygdala in vitro. Neuropharmacology 37, 1279–1286 (1998).

    CAS  PubMed  Google Scholar 

  47. Li, P. et al. Kainate-receptor-mediated sensory synaptic transmission in mammalian spinal cord. Nature 397, 161–164 (1999).

    CAS  PubMed  Google Scholar 

  48. Vignes, M. & Collingridge, G. L. The synaptic activation of kainate receptors. Nature 388, 179–182 (1997).

    CAS  PubMed  Google Scholar 

  49. Lerma, J. Kainate reveals its targets. Neuron 19, 1155–1158 (1997).

    CAS  PubMed  Google Scholar 

  50. Kidd, F. L. & Isaac, J. T. Kinetics and activation of postsynaptic kainate receptors at thalamocortical synapses: role of glutamate clearance. J. Neurophysiol. 86, 1139–1148 (2001).

    CAS  PubMed  Google Scholar 

  51. Cossart, R. et al. Quantal release of glutamate generates pure kainate and mixed AMPA/kainate EPSCs in hippocampal neurons. Neuron 35, 147–159 (2002). Reports that, in hippocampal neurons, the quantal release of glutamate generates kainate receptor-mediated EPSCs that provide half of the total synaptic current.

    CAS  PubMed  Google Scholar 

  52. Nadal, M. S. et al. The CD26-related dipeptidyl aminopeptidase-like protein DPPX is a critical component of neuronal A-type K+ channels. Neuron 37, 449–461 (2003).

    CAS  PubMed  Google Scholar 

  53. Garcia, E. P. et al. SAP90 binds and clusters kainate receptors causing incomplete desensitization. Neuron 21, 727–739 (1998).

    CAS  PubMed  Google Scholar 

  54. Coussen, F. et al. Recruitment of the kainate receptor subunit glutamate receptor 6 by cadherin/catenin complexes. J. Neurosci. 22, 6426–6436 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hirbec, H. et al. Rapid and differential regulation of AMPA and kainate receptors at hippocampal mossy fibre synapses by PICK1 and GRIP. Neuron 37, 625–638 (2003). Describes rapid regulation of postsynaptic kainate receptors by association with GRIP and PICK1.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Raymond, L. A., Blackstone, C. D. & Huganir, R. L. Phosphorylation and modulation of recombinant GluR6 glutamate receptors by cAMP-dependent protein kinase. Nature 361, 637–641 (1993).

    CAS  PubMed  Google Scholar 

  57. Traynelis, S. F. & Wahl, P. Control of rat GluR6 glutamate receptor open probability by protein kinase A and calcineurin. J. Physiol. (Lond.) 503, 513–531 (1997).

    CAS  Google Scholar 

  58. Frerking, M. & Ohliger-Frerking, P. AMPA receptors and kainate receptors encode different features of afferent activity. J. Neurosci. 22, 7434–7443 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. DeVries, S. H. Bipolar cells use kainate and AMPA receptors to filter visual information into separate channels. Neuron 28, 847–856 (2000).

    CAS  PubMed  Google Scholar 

  60. Paternain, A. V., Rodriguez-Moreno, A., Villarroel, A. & Lerma, J. Activation and desensitization properties of native and recombinant kainate receptors. Neuropharmacology 37, 1249–1259 (1998).

    CAS  PubMed  Google Scholar 

  61. Agrawal, S. G. & Evans, R. H. The primary afferent depolarizing action of kainate in the rat. Br. J. Pharmacol. 87, 345–355 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Represa, A., Tremblay, E. & Ben-Ari, Y. Kainate binding sites in the hippocampal mossy fibers: localization and plasticity. Neuroscience 20, 739–748 (1987).

    CAS  PubMed  Google Scholar 

  63. Monaghan, D. T. & Cotman, C. W. The distribution of [3H]kainic acid binding sites in rat CNS as determined by autoradiography. Brain Res. 252, 91–100 (1982).

    CAS  PubMed  Google Scholar 

  64. Contractor, A., Swanson, G. T., Sailer, A., O'Gorman, S. & Heinemann, S. F. Identification of the kainate receptor subunits underlying modulation of excitatory synaptic transmission in the CA3 region of the hippocampus. J. Neurosci. 20, 8269–8278 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lauri, S. E. et al. A critical role of a facilitatory presynaptic kainate receptor in mossy fiber LTP. Neuron 32, 697–709 (2001). Together with reference 66, this paper illustrates the role for kainate autoreceptors in the bidirectional modulation of glutamate release at mossy fibre synapses and in the generation of LTP.

    CAS  PubMed  Google Scholar 

  66. Schmitz, D., Mellor, J. & Nicoll, R. A. Presynaptic kainate receptor mediation of frequency facilitation at hippocampal mossy fiber synapses. Science 291, 1972–1976 (2001).

    CAS  PubMed  Google Scholar 

  67. Schmitz, D., Frerking, M. & Nicoll, R. A. Synaptic activation of presynaptic kainate receptors on hippocampal mossy fiber synapses. Neuron 27, 327–338 (2000).

    CAS  PubMed  Google Scholar 

  68. Schmitz, D., Mellor, J., Frerking, M. & Nicoll, R. A. Presynaptic kainate receptors at hippocampal mossy fiber synapses. Proc. Natl Acad. Sci. USA 98, 11003–11008 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kamiya, H. & Ozawa, S. Kainate receptor-mediated presynaptic inhibition at the mouse hippocampal mossy fibre synapse. J. Physiol. (Lond.) 523, 653–665 (2000).

    CAS  Google Scholar 

  70. Kamiya, H., Ozawa, S. & Manabe, T. Kainate receptor-dependent short-term plasticity of presynaptic Ca2+ influx at the hippocampal mossy fiber synapses. J. Neurosci. 22, 9237–9243 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Andersen, P., Silfvenius, H., Sundberg, S. H., Sveen, O. & Wigstrom, H. Functional characteristics of unmyelinated fibres in the hippocampal cortex. Brain Res. 144, 11–18 (1978).

    CAS  PubMed  Google Scholar 

  72. Henze, D. A., Urban, N. N. & Barrionuevo, G. Origin of the apparent asynchronous activity of hippocampal mossy fibers. J. Neurophysiol. 78, 24–30 (1997).

    CAS  PubMed  Google Scholar 

  73. Semyanov, A. & Kullmann, D. M. Kainate receptor-dependent axonal depolarization and action potential initiation in interneurons. Nature Neurosci. 4, 718–723 (2001).

    CAS  PubMed  Google Scholar 

  74. Henze, D. A., Urban, N. N. & Barrionuevo, G. The multifarious hippocampal mossy fiber pathway: a review. Neuroscience 98, 407–427 (2000).

    CAS  PubMed  Google Scholar 

  75. Perkinton, M. S. & Sihra, T. S. A high-affinity presynaptic kainate-type glutamate receptor facilitates glutamate exocytosis from cerebral cortex nerve terminals (synaptosomes). Neuroscience 90, 1281–1292 (1999).

    CAS  PubMed  Google Scholar 

  76. Geiger, J. R. & Jonas, P. Dynamic control of presynaptic Ca2+ inflow by fast-inactivating K+ channels in hippocampal mossy fiber boutons. Neuron 28, 927–39 (2000).

    CAS  PubMed  Google Scholar 

  77. Delaney, A. J. & Jahr, C. E. Kainate receptors differentially regulate release at two parallel fiber synapses. Neuron 36, 475–482 (2002). Reports a differential frequency-dependent sensitivity of two synapses: low-frequency stimulation of parallel fibres facilitates glutamate release onto both stellate and Purkinje cells, whereas high-frequency stimulation depresses release onto stellate cell but still facilitates Purkinje cell synapses.

    CAS  PubMed  Google Scholar 

  78. Chittajallu, R. et al. Regulation of glutamate release by presynaptic kainate receptors in the hippocampus. Nature 379, 78–81 (1996). First paper describing an action of kainate receptors on glutamate release in the hippocampus.

    CAS  PubMed  Google Scholar 

  79. Vignes, M. et al. The GluR5 subtype of kainate receptor regulates excitatory synaptic transmission in areas CA1 and CA3 of the rat hippocampus. Neuropharmacology 37, 1269–1277 (1998).

    CAS  PubMed  Google Scholar 

  80. Kamiya, H. & Ozawa, S. Kainate receptor-mediated inhibition of presynaptic Ca2+ influx and EPSP in area CA1 of the rat hippocampus. J. Physiol. (Lond.) 509, 833–845 (1998).

    CAS  Google Scholar 

  81. Frerking, M., Schmitz, D., Zhou, Q., Johansen, J. & Nicoll, R. A. Kainate receptors depress excitatory synaptic transmission at CA3-CA1 synapses in the hippocampus via a direct presynaptic action. J. Neurosci. 21, 2958–2966 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Cunha, R., Malva, J. O. & Ribeiro, J. A. Pertussis toxin prevents presynaptic inhibition by kainate receptors of rat hippocampal [3H]GABA release. FEBS Lett. 469, 159–162 (2000).

    CAS  PubMed  Google Scholar 

  83. Rodriguez-Moreno, A. & Lerma, J. Kainate receptor modulation of GABA release involves a metabotropic function. Neuron 20, 1211–1218 (1998). Describes that modulation of GABA release by kainate receptors is sensitive to Pertussis toxin and inhibitors of PKC, pointing, for the first time, to a metabotropic role in kainate receptor-mediated signalling.

    CAS  PubMed  Google Scholar 

  84. Rodriguez-Moreno, A., López-García, J. C. & Lerma, J. Two populations of kainate receptors with separate signaling mechanisms in hippocampal interneurons. Proc. Natl Acad. Sci. USA 97, 1293–1298 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Contractor, A., Swanson, G. & Heinemann, S. F. Kainate receptors are involved in short- and long-term plasticity at mossy fiber synapses in the hippocampus. Neuron 29, 209–216 (2001).

    CAS  PubMed  Google Scholar 

  86. Bortolotto, Z. A. et al. Kainate receptors are involved in synaptic plasticity. Nature 402, 297–301 (1999). First indication that kainate receptors are required for induction of LTP at CA3 synapses.

    CAS  PubMed  Google Scholar 

  87. Contractor, A. et al. Loss of kainate receptor-mediated heterosynaptic facilitation of mossy-fiber synapses in KA2−/− mice. J. Neurosci. 23, 422–429 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Sloviter, R. S. & Damiano, B. P. On the relationship between kainic acid-induced epileptiform activity and hippocampal neuronal damage. Neuropharmacology 20, 1003–1011 (1981).

    CAS  PubMed  Google Scholar 

  89. Westbrook, G. L. & Lothman, E. W. Cellular and synaptic basis of kainic acid-induced hippocampal epileptiform activity. Brain Res. 273, 97–109 (1983).

    CAS  PubMed  Google Scholar 

  90. Fisher, R. S. & Alger, B. E. Electrophysiological mechanisms of kainic acid-induced epileptiform activity in the rat hippocampal slice. J. Neurosci. 4, 1312–1323 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kehl, S. J. & McLennan, H. An electrophysiological characterization of inhibitions and postsynaptic potentials in rat hippocampal CA3 neurones in vitro. Exp. Brain Res. 60, 299–308 (1985).

    CAS  PubMed  Google Scholar 

  92. Clarke, V. R. et al. A hippocampal GluR5 kainate receptor regulating inhibitory synaptic transmission. Nature 389, 599–603 (1997).

    CAS  PubMed  Google Scholar 

  93. Rodriguez-Moreno, A., Herreras, O. & Lerma, J. Kainate receptors presynaptically downregulate GABAergic inhibition in the rat hippocampus. Neuron 19, 893–901 (1997). This paper and reference 93 describe that kainate receptor activation depresses GABA-mediated transmission through a presynaptic mechanism.

    CAS  PubMed  Google Scholar 

  94. Frerking, M., Petersen, C. C. & Nicoll, R. A. Mechanisms underlying kainate receptor-mediated disinhibition in the hippocampus. Proc. Natl Acad. Sci. USA 96, 12917–12922 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Mulle, C. et al. Subunit composition of kainate receptors in hippocampal interneurons. Neuron 28, 475–484 (2000).

    CAS  PubMed  Google Scholar 

  96. Ali, A. B., Rossier, J., Staiger, J. F. & Audinat, E. Kainate receptors regulate unitary IPSCs elicited in pyramidal cells by fast-spiking interneurons in the neocortex. J. Neurosci. 21, 2992–2999 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Cossart, R. et al. Presynaptic kainate receptors that enhance the release of GABA on CA1 hippocampal interneurons. Neuron 29, 497–508 (2001).

    CAS  PubMed  Google Scholar 

  98. Freund, T. F. & Buzsaki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).

    CAS  PubMed  Google Scholar 

  99. Jiang, L., Xu, J., Nedergaard, M. & Kang, J. A kainate receptor increases the efficacy of GABAergic synapses. Neuron 30, 503–513 (2001).

    CAS  PubMed  Google Scholar 

  100. Braga, M. F., Aroniadou-Anderjaska, V., Xie, J. & Li, H. Bidirectional modulation of GABA release by presynaptic glutamate receptor 5 kainate receptors in the basolateral amygdala. J. Neurosci. 23, 442–452 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Liu, Q. S., Patrylo, P. R., Gao, X. B. & van den Pol, A. N. Kainate acts at presynaptic receptors to increase GABA release from hypothalamic neurons. J. Neurophysiol. 82, 1059–62 (1999).

    CAS  PubMed  Google Scholar 

  102. Kerchner, G. A., Wang, G. D., Qiu, C. S., Huettner, J. E. & Zhuo, M. Direct presynaptic regulation of GABA/glycine release by kainate receptors in the dorsal horn. An ionotropic mechanism. Neuron 32, 477–488 (2001).

    CAS  PubMed  Google Scholar 

  103. Kullmann, D. M., Erdemli, G. & Asztely, F. LTP of AMPA and NMDA receptor-mediated signals: evidence for presynaptic expression and extrasynaptic glutamate spill-over. Neuron 17, 461–474 (1996).

    CAS  PubMed  Google Scholar 

  104. Min, M. Y., Melyan, Z. & Kullmann, D. M. Synaptically released glutamate reduces γ-aminobutyric acid (GABA)ergic inhibition in the hippocampus via kainate receptors. Proc. Natl Acad. Sci. USA 96, 9932–9937 (1999). Examines the effect of synaptically released glutamate on monosynaptic inhibitory signalling. Describes that brief bursts of activity in glutamatergic afferent fibres reduce GABA-mediated transmission. Concludes that the net kainate receptor-mediated effect of synaptically released glutamate is to reduce monosynaptic inhibition.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Weisskopf, M. G. & Nicoll, R. A. Presynaptic changes during mossy fibre LTP revealed by NMDA receptor-mediated synaptic responses. Nature 376, 256–259 (1995).

    CAS  PubMed  Google Scholar 

  106. Yeckel, M. F., Kapur, A. & Johnston, D. Multiple forms of LTP in hippocampal CA3 neurons use a common postsynaptic mechanism. Nature Neurosci. 2, 625–633 (1999).

    CAS  PubMed  Google Scholar 

  107. Bureau, I., Bischoff, S., Heinemann, S. F. & Mulle, C. Kainate receptor-mediated responses in the CA1 field of wild-type and GluR6-deficient mice. J. Neurosci. 19, 653–663 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Isaac, J. T., Nicoll, R. A. & Malenka, R. C. Evidence for silent synapses: implications for the expression of LTP. Neuron 15, 427–434 (1995).

    CAS  PubMed  Google Scholar 

  109. Daw, M. I. et al. PDZ proteins interacting with C-terminal GluR2/3 are involved in a PKC-dependent regulation of AMPA receptors at hippocampal synapses. Neuron 28, 873–886 (2000).

    CAS  PubMed  Google Scholar 

  110. Li, H., Chen, A., Xing, G., Wei, M. L. & Rogawski, M. A. Kainate receptor-mediated heterosynaptic facilitation in the amygdala. Nature Neurosci. 4, 612–620 (2001).

    CAS  PubMed  Google Scholar 

  111. Ben-Ari, Y. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14, 375–403 (1985).

    CAS  PubMed  Google Scholar 

  112. Cossart, R. et al. Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy. Nature Neurosci. 4, 52–62 (2001).

    CAS  PubMed  Google Scholar 

  113. Khalilov, I., Hirsch, J., Cossart, R. & Ben-Ari, Y. Paradoxical anti-epileptic effects of a GluR5 agonist of kainate receptors. J. Neurophysiol. 88, 523–527 (2002).

    CAS  PubMed  Google Scholar 

  114. Smolders, I. et al. Antagonists of GLU(K5)-containing kainate receptors prevent pilocarpine-induced limbic seizures. Nature Neurosci. 5, 796–804 (2002). Reports that selective antagonists of GluR5-containing kainate receptors prevent the development of epileptiform activity induced by pilocarpine and inhibited pre-established epileptic activity.

    CAS  PubMed  Google Scholar 

  115. Huettner, J. E. Glutamate receptor channels in rat DRG neurons: activation by kainate and quisqualate and blockade of desensitization by Con A. Neuron 5, 255–266 (1990). First description of a class of glutamate receptors with differential sensitivity to kainate and domoate, the activation of which generated a transient response.

    CAS  PubMed  Google Scholar 

  116. Lerma, J., Paternain, A. V., Naranjo, J. R. & Mellstrom, B. Functional kainate-selective glutamate receptors in cultured hippocampal neurons. Proc. Natl Acad. Sci. USA 90, 11688–11692 (1993). Provided the first functional evidence that there are pure kainate receptors in central neurons.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Jones, K. A., Wilding, T. J., Huettner, J. E. & Costa, A. M. Desensitization of kainate receptors by kainate, glutamate and diastereomers of 4-methylglutamate. Neuropharmacology 36, 853–863 (1997).

    CAS  PubMed  Google Scholar 

  118. Verdoorn, T. A., Johansen, T. H., Drejer, J. & Nielsen, E. O. Selective block of recombinant glur6 receptors by NS-102, a novel non-NMDA receptor antagonist. Eur. J. Pharmacol. 269, 43–49 (1994).

    CAS  PubMed  Google Scholar 

  119. Simmons, R. M. et al. Kainate GluR5 receptor subtype mediates the nociceptive response to formalin in the rat. Neuropharmacology 37, 25–36 (1998).

    CAS  PubMed  Google Scholar 

  120. Bleakman, D. et al. Activity of 2,3-benzodiazepines at native rat and recombinant human glutamate receptors in vitro: stereospecificity and selectivity profiles. Neuropharmacology 35, 1689–1702 (1996).

    CAS  PubMed  Google Scholar 

  121. O'Neill, M. J. et al. LY377770, a novel iGluR5 kainate receptor antagonist with neuroprotective effects in global and focal cerebral ischaemia. Neuropharmacology 39, 1575–88 (2000).

    CAS  PubMed  Google Scholar 

  122. Huettner, J. E., Stack, E. & Wilding, T. J. Antagonism of neuronal kainate receptors by lanthanum and gadolinium. Neuropharmacology 37, 1239–1247 (1998).

    CAS  PubMed  Google Scholar 

  123. Melyan, Z., Wheal, H. V. & Lancaster, B. Metabotropic-mediated kainate receptor regulation of IsAHP and excitability in pyramidal cells. Neuron 34, 107–114 (2002).

    CAS  PubMed  Google Scholar 

  124. Wang, Y., Small, D. L., Stanimirovic, D. B., Morley, P. & Durkin, J. P. AMPA receptor-mediated regulation of a Gi-protein in cortical neurons. Nature 389, 502–504 (1997).

    CAS  PubMed  Google Scholar 

  125. Kawai, F. & Sterling, P. AMPA receptor activates a G-protein that suppresses a cGMP-gated current. J. Neurosci. 19, 2954–2959 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Mulle, C. et al. Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice. Nature 392, 601–605 (1998). Describes that CA3 hippocampal neurons of GluR6 mutant mice are less sensitive to kainate. Shows that the slow postsynaptic kainate receptor-mediated current in CA3 neurons evoked by stimulation of the mossy fibre is absent in the mutant and that these mice are less susceptible to develop seizures upon systemic administration of kainate.

    CAS  PubMed  Google Scholar 

  127. Kerchner, G. A., Wilding, T. J., Huettner, J. E. & Zhuo, M. Kainate receptor subunits underlying presynaptic regulation of transmitter release in the dorsal horn. J. Neurosci. 22, 8010–8017 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Sailer, A. et al. Generation and analysis of GluR5(Q636R) kainate receptor mutant mice. J. Neurosci. 19, 8757–8764 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Vissel, B. et al. The role of RNA editing of kainate receptors in synaptic plasticity and seizures. Neuron 29, 217–227 (2001). Indicates that editing of the GluR6 Q/R site modulates synaptic plasticity and seizure vulnerability.

    CAS  PubMed  Google Scholar 

  130. Egebjerg, J., Bettler, B., Hermans-Borgmeyer, I. & Heinemann, S. Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not AMPA. Nature 351, 745–748 (1991). Cloning of the GluR6 subunit.

    CAS  PubMed  Google Scholar 

  131. Bettler, B. et al. Cloning of a putative glutamate receptor: a low affinity kainate-binding subunit. Neuron 8, 257–65 (1992).

    CAS  PubMed  Google Scholar 

  132. Werner, P., Voigt, M., Keinänen, K., Wisden, W. & Seeburg, P. H. Cloning of a putative high-affinity kainate receptor expressed predominantly in hippocampal CA3 cells. Nature 351, 742–744 (1991).

    CAS  PubMed  Google Scholar 

  133. Herb, A. et al. The KA-2 subunit of excitatory amino acid receptors shows widespread expression in brain and forms ion channels with distantly related subunits. Neuron 8, 775–785 (1992).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank my present (O. Herreras, K. Jones, A. V. Paternain, J. L. Rozas) and former (J. C. López, A. Rodriguez-Moreno) collaborators for discussion, as well as D. Guinea for technical assistance. I thank R. Gallego (Universidad Miguel Hernández) for critical reading of the manuscript. Work in my laboratory has been supported by grants from the Spanish Ministry of Science and Technology, the Community of Madrid and the European Commission.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

GluR5

GlurR6

GluR7

GRIP

KA1

KA2

PICK

PSD95

Glossary

EC50/IC50

The concentration of an agonist or antagonist that evokes a half-maximal activation (EC50) or inhibition (IC50).

ALTERNATIVE SPLICING

During splicing, introns are excised from RNA after transcription and the cut ends are rejoined to form a continuous message. Alternative splicing gives rise to different messages from the same DNA molecule.

mRNA EDITING

Site-specific change in an RNA sequence that results in RNA anticodons, which differ from that designated by their DNA templates. In glutamate receptors, the most common change is the conversion of adenosine to inosine.

RECTIFICATION

The property whereby current through a channel does not flow with the same ease from the inside as from the outside. In inward rectification, for instance, current into the cell flows more easily than out of the cell through the same population of channels.

IN SITU HYBRIDIZATION

Method used to label cells or chromosomes having specific sequences of nucleic acids. Particularly used to identify mRNA expression in cytohistological preparations, this technique detects the formation of nucleic acid hybrid molecules between the target nucleic acid and the labelled probe containing a complementary sequence.

PARALLEL FIBRES

Axons of cerebellar granule cells. Parallel fibres emerge from the molecular layer of the cerebellar cortex towards the periphery, where they extend branches perpendicular to the main axis of the Purkinje neurons and form the so-called en passant synapses with this cell type.

MOSSY FIBRES

Axons of granule cells, which form synapses with CA3 pyramidal neurons. Mossy fibre boutons are among the largest in the central nervous system.

SCHAFFER COLLATERALS

Axons of the CA3 pyramidal cells of the hippocampus that form synapses with the apical dendrites of CA1 neurons.

QUANTAL RELEASE

The release of transmitter from a single synaptic vesicle.

CHARGE TRANSFER

A measure of the magnitude of ion flow through a channel.

SPIKE THRESHOLD

The critical value of membrane potential at which a neurone or an axon will fire an action potential (spike).

STRATUM LUCIDUM

The site of termination of the mossy fibres from the dentate gyrus onto CA3 neurons of the hippocampus.

AFFERENT VOLLEY

The wave of a synaptic field potential with the shortest latency, which is proportional to the number of active presynaptic fibres. Its amplitude serves to estimate the strength of afferent input.

ELECTRICAL SHUNTING

A phenomenon by which membrane depolarization that is induced by a given current is attenuated because of an enhanced membrane conductance.

ANTIDROMIC

An action potential travelling from the axon terminal towards the cell body is said to be antidromic.

HILUS

A subdivision of the hippocampus that is rich in interneurons. It is located between the CA3 region and the dentate gyrus.

SYNAPTOSOMES

Vesicles formed by a synaptic terminal generated after homogenization of nerve tissue. They preserve neurotransmitter-containing vesicles, the main machinery of release, and presynaptic receptors and channels.

PERTUSSIS TOXIN

The causative agent of whooping cough, pertussis toxin causes the persistent activation of Gi proteins by catalysing the ADP-ribosylation of the α-subunit.

MINIATURE INIHIBITORY POSTSYNAPTIC CURRENTS

Synaptic currents observed in the absence of presynaptic action potentials; they are thought to correspond to the response elicited by a single vesicle of transmitter.

STRATUM ORIENS

Hippocampal layer that harbours the basal dendrites of the principal cells.

ASSOCIATIONAL/COMMISSURAL PATHWAY

The projections from CA3 neurons to other CA3 cells on the same (associational) or the opposite (commissural) side of the brain.

PHASE-LOCKED

Neurons that fire preferentially at a certain phase of an amplitude-modulated stimulus.

LONG-TERM POTENTIATION

A long-lasting increase in the efficacy of neurotransmission, which can be elicited by diverse patterns of synaptic activation.

SILENT SYNAPSE

A synapse that contains NMDA receptors but no AMPA receptors and is therefore functionally silent during low-frequency, basal synaptic transmission.

YEAST TWO-HYBRID SCREENS

System used to determine the existence of direct interactions between proteins. It involves the use of plasmids that encode two hybrid proteins; one of them is fused to the GAL4 DNA-binding domain and the other one is fused to the GAL4 activation domain. The two proteins are expressed together in yeast and, if they interact, then the resulting complex will drive the expression of a reporter gene, commonly β-galactosidase.

PDZ DOMAIN

A peptide-binding domain that is important for the organization of membrane proteins, particularly at cell–cell junctions, including synapses. It can bind to the carboxyl termini of proteins or can form dimers with other PDZ domains. PDZ domains are named after the proteins in which these sequence motifs were originally identified (PSD95, Discs large, zona occludens 1).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lerma, J. Roles and rules of kainate receptors in synaptic transmission. Nat Rev Neurosci 4, 481–495 (2003). https://doi.org/10.1038/nrn1118

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1118

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing