Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cyclic nucleotide-gated channels: shedding light on the opening of a channel pore

Key Points

  • The term 'gating' refers to the allosteric transition that opens and closes the pore of an ion channel. Channel gating has been the focus of intense investigation, but its structural basis remains elusive. The crystal structure of KcsA, a bacterial potassium channel, has provided a framework for new studies of gating in many channel proteins, including cyclic nucleotide-gated (CNG) channels, the focus of this review.

  • The sequence of CNG channels is similar to that of KcsA in the region around the pore domain, having a pore helix, a selectivity filter and an inner helix. Site-directed cysteine substitutions at the presumptive pore helix of CNG1 have provided evidence for the rotation of this helix during gating. Similarly, kinetic analysis and studies with channel blockers have provided indirect evidence for movement of the selectivity filter during gating.

  • In the case of the inner helix, a conformational change in this region also seems to occur during channel gating, as illustrated by the spontaneous formation of disulphide bridges between the inner helices of different CNG subunits when the channel is closed, but not when it is open.

  • The linker between the inner helix and the intracellular cyclic nucleotide-binding domain is crucial for the allosteric coupling between ligand binding and channel opening. It has been found that histidine residues that are present in part of the linker region are capable of coordinating Ni2+ ions between subunits, indicating their spatial proximity. Histidine-substitution experiments show that this region of the linker rotates during gating.

  • On the basis of these and other observations, a new structural model for CNG channel gating is emerging. Opening of the channel involves a clockwise rotation of the distal portion of the linker segment. This rigid body movement unwinds the helical bundle at the bottom of the inner helix, leading to a significant increase in the diameter of the pore. The movement of the inner helix then initiates rearrangements in a gate that is presumably located in the selectivity filter.

Abstract

Few proteins have been described functionally in such detail as ion channels. All ion channels open and close their ion-conducting pores, a process referred to as gating. The recent crystallization of the P-loop-containing channel KcsA has cast channel function in a new light. Results relating to a variety of P-loop-containing channels are converging on a common mechanism in which separation of the inner helices that line the pore results in channel opening. At the same time, differences — some subtle and some perhaps more profound — have emerged between channel types. Here we highlight the evidence for a specific conformational change during the gating of cyclic nucleotide-gated channels, and compare and contrast this evidence to that obtained for other channels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Membrane topology for subunits of the two main groups of the P-loop-containing family of ion channels.
Figure 2: Structure of the KcsA channel.
Figure 3: Sequence alignment of the pore helix, selectivity filter and inner helix for several channels of the P-loop-containing family.
Figure 4: State-dependence of modification of amino acids in the pore helix of CNG channels.
Figure 5: Conformational changes in the helix bundle reported by disulphide bond formation at S399C in CNG1.
Figure 6: Ni2+ effects on histidine-substituted channels indicate a rotation of the post-TM segment during gating.
Figure 7: Model of the conformational changes in the helix bundle and post-TM segment of CNG1 channels during gating.

Similar content being viewed by others

References

  1. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100 (1981).

    Article  CAS  PubMed  Google Scholar 

  2. Armstrong, C. M. & Bezanilla, F. Inactivation of the sodium channel. II. Gating current experiments. J. Gen. Physiol. 70, 567–590 (1977).

    Article  CAS  PubMed  Google Scholar 

  3. Hoshi, T., Zagotta, W. N. & Aldrich, R. W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250, 533–538 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Zagotta, W. N., Hoshi, T. & Aldrich, R. W. Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science 250, 568–571 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Zhou, M., Morais-Cabral, J. H., Mann, S. & MacKinnon, R. Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature 411, 657–661 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Hille, B. Ion Channels of Excitable Membranes (Sinauer Associates, Sunderland, Massachusetts, 2001).

    Google Scholar 

  7. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).This landmark paper presents the first crystal structure of a P-loop-containing channel, KcsA.

    Article  CAS  PubMed  Google Scholar 

  8. Heginbotham, L., Lu, Z., Abramson, T. & MacKinnon, R. Mutations in the K+ channel signature sequence. Biophys. J. 66, 1061–1067 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jiang, Y. & MacKinnon, R. The barium site in a potassium channel by X-ray crystallography. J. Gen. Physiol. 115, 269–272 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roux, B. & MacKinnon, R. The cavity and pore helices in the KcsA K+ channel: electrostatic stabilization of monovalent cations. Science 285, 100–102 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Yellen, G. The moving parts of voltage-gated ion channels. Q. Rev. Biophys. 31, 239–295 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Fesenko, E. E., Kolesnikov, S. S. & Lyubarsky, A. L. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature 313, 310–313 (1985).The first paper to describe a channel that is activated by the direct binding of cyclic nucleotides and to establish that cGMP is the second message involved in phototransduction.

    Article  CAS  PubMed  Google Scholar 

  13. Nakamura, T. & Gold, G. H. A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature 325, 442–444 (1987).

    Article  CAS  PubMed  Google Scholar 

  14. Zagotta, W. N. & Siegelbaum, S. A. Structure and function of cyclic nucleotide-gated channels. Annu. Rev. Neurosci. 19, 235–263 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Kaupp, U. B. et al. Primary structure and functional expression from complementary DNA of the rod photoreceptor cyclic GMP-gated channel. Nature 342, 762–766 (1989).A paper that presents the first cloning and functional expression of a CNG channel from bovine rod photoreceptors.

    Article  CAS  PubMed  Google Scholar 

  16. Dhallan, R. S., Yau, K. W., Schrader, K. A. & Reed, R. R. Primary structure and functional expression of a cyclic nucleotide-activated channel from olfactory neurons. Nature 347, 184–187 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Ludwig, J., Margalit, T., Eismann, E., Lancet, D. & Kaupp, U. B. Primary structure of cAMP-gated channel from bovine olfactory epithelium. FEBS Lett. 270, 24–29 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Goulding, E. H. et al. Molecular cloning and single-channel properties of the cyclic nucleotide-gated channel from catfish olfactory neurons. Neuron 8, 45–58 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Bonigk, W. et al. Rod and cone photoreceptor cells express distinct genes for cGMP-gated channels. Neuron 10, 865–877 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Chen, T. Y. et al. A new subunit of the cyclic nucleotide-gated cation channel in retinal rods. Nature 362, 764–767 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Bradley, J., Li, J., Davidson, N., Lester, H. A. & Zinn, K. Heteromeric olfactory cyclic nucleotide-gated channels: a subunit that confers increased sensitivity to cAMP. Proc. Natl Acad. Sci. USA 91, 8890–8894 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liman, E. R. & Buck, L. B. A second subunit of the olfactory cyclic nucleotide-gated channel confers high sensitivity to cAMP. Neuron 13, 611–621 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Korschen, H. G. et al. A 240 kDa protein represents the complete β subunit of the cyclic nucleotide-gated channel from rod photoreceptor. Neuron 15, 627–636 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Gerstner, A., Zong, X., Hofmann, F. & Biel, M. Molecular cloning and functional characterization of a new modulatory cyclic nucleotide-gated channel subunit from mouse retina. J. Neurosci. 20, 1324–1332 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ahmad, I., Redmond, L. J. & Barnstable, C. J. Developmental and tissue-specific expression of the rod photoreceptor cGMP-gated ion channel gene. Biochem. Biophys. Res. Commun. 173, 463–470 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Marunaka, Y., Ohara, A., Matsumoto, P. & Eaton, D. C. Cyclic GMP-activated channel activity in renal epithelial cells (A6). Biochim. Biophys. Acta 1070, 152–156 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Biel, M. et al. Primary structure and functional expression of a cyclic nucleotide-gated channel from rabbit aorta. FEBS Lett. 329, 134–138 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Biel, M. et al. Another member of the cyclic nucleotide-gated channel family, expressed in testis, kidney, and heart. Proc. Natl Acad. Sci. USA 91, 3505–3509 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Distler, M., Biel, M., Flockerzi, V. & Hofmann, F. Expression of cyclic nucleotide-gated cation channels in non-sensory tissues and cells. Neuropharmacology 33, 1275–1282 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Weyand, I. et al. Cloning and functional expression of a cyclic-nucleotide-gated channel from mammalian sperm. Nature 368, 859–863 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Bonigk, W., Muller, F., Middendorff, R., Weyand, I. & Kaupp, U. B. Two alternatively spliced forms of the cGMP-gated channel α-subunit from cone photoreceptor are expressed in the chick pineal organ. J. Neurosci. 16, 7458–7468 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun, Z. P., Akabas, M. H., Goulding, E. H., Karlin, A. & Siegelbaum, S. A. Exposure of residues in the cyclic nucleotide-gated channel pore: P region structure and function in gating. Neuron 16, 141–149 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Becchetti, A., Gamel, K. & Torre, V. Cyclic nucleotide-gated channels. Pore topology studied through the accessibility of reporter cysteines. J. Gen. Physiol. 114, 377–392 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Becchetti, A. & Roncaglia, P. Cyclic nucleotide-gated channels: intra- and extracellular accessibility to Cd2+ of substituted cysteine residues within the P-loop. Pflugers Arch. 440, 556–565 (2000).References 32–34 establish the accessibility of residues in the P region of CNG1.

    CAS  PubMed  Google Scholar 

  35. Liu, J. & Siegelbaum, S. A. Change of pore helix conformational state upon opening of cyclic nucleotide-gated channels. Neuron 28, 899–909 (2000).This paper presents evidence that the pore helix of CNG1 moves during gating, perhaps by rotating.

    Article  CAS  PubMed  Google Scholar 

  36. Flynn, G. E. & Zagotta, W. N. Conformational changes in S6 coupled to the opening of cyclic nucleotide-gated channels. Neuron 30, 689–698 (2001).A paper presenting evidence that the S6 of CNG1 moves during gating, but that the smokehole is not the gate.

    Article  CAS  PubMed  Google Scholar 

  37. Johnson, J. P. Jr & Zagotta, W. N. Rotational movement during cyclic nucleotide-gated channel opening. Nature 412 , 917 –921 (2001 ).This paper presents evidence that the post-TM segments of CNG1 form a helix bundle and rotate during gating.

    Article  CAS  PubMed  Google Scholar 

  38. Yang, Y., Yan, Y. & Sigworth, F. J. How does the W434F mutation block current in Shaker potassium channels? J. Gen. Physiol. 109, 779–789 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Starkus, J. G., Kuschel, L., Rayner, M. D. & Heinemann, S. H. Macroscopic Na+ currents in the 'nonconducting' Shaker potassium channel mutant W434F. J. Gen. Physiol. 112, 85–93 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Goulding, E. H., Tibbs, G. R., Liu, D. & Siegelbaum, S. A. Role of H5 domain in determining pore diameter and ion permeation through cyclic nucleotide-gated channels. Nature 364, 61–64 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Heginbotham, L., Abramson, T. & MacKinnon, R. A functional connection between the pores of distantly related ion channels as revealed by mutant K+ channels. Science 258, 1152–1155 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. Root, M. J. & MacKinnon, R. Identification of an external divalent cation-binding site in the pore of a cGMP-activated channel. Neuron 11, 459–466 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Eismann, E., Muller, F., Heinemann, S. H. & Kaupp, U. B. A single negative charge within the pore region of a cGMP-gated channel controls rectification, Ca2+ blockage, and ionic selectivity. Proc. Natl Acad. Sci. USA 91, 1109–1113 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Root, M. J. & MacKinnon, R. Two identical noninteracting sites in an ion channel revealed by proton transfer. Science 265, 1852–1856 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Park, C. S. & MacKinnon, R. Divalent cation selectivity in a cyclic nucleotide-gated ion channel. Biochemistry 34, 13328–13333 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Sesti, F., Eismann, E., Kaupp, U. B., Nizzari, M. & Torre, V. The multi-ion nature of the cGMP-gated channel from vertebrate rods. J. Physiol. (Lond.) 487, 17–36 (1995).

    Article  CAS  Google Scholar 

  47. Morrill, J. A. & MacKinnon, R. Isolation of a single carboxyl-carboxylate proton binding site in the pore of a cyclic nucleotide-gated channel. J. Gen. Physiol. 114, 71–83 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Seifert, R., Eismann, E., Ludwig, J., Baumann, A. & Kaupp, U. B. Molecular determinants of a Ca2+-binding site in the pore of cyclic nucleotide-gated channels: S5/S6 segments control affinity of intrapore glutamates. EMBO J. 18, 119–130 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gavazzo, P., Picco, C., Eismann, E., Kaupp, U. B. & Menini, A. A point mutation in the pore region alters gating, Ca2+ blockage, and permeation of olfactory cyclic nucleotide-gated channels. J. Gen. Physiol. 116, 311–326 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Taylor, W. R. & Baylor, D. A. Conductance and kinetics of single cGMP-activated channels in salamander rod outer segments. J. Physiol. (Lond.) 483, 567–582 (1995).

    Article  CAS  Google Scholar 

  51. Ruiz, M. L. & Karpen, J. W. Single cyclic nucleotide-gated channels locked in different ligand-bound states. Nature 389, 389–392 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Hackos, D. H. & Korenbrot, J. I. Divalent cation selectivity is a function of gating in native and recombinant cyclic nucleotide-gated ion channels from retinal photoreceptors. J. Gen. Physiol. 113, 799–818 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schnetkamp, P. P. Sodium ions selectively eliminate the fast component of guanosine cyclic 3′,5′-phosphate induced Ca2+ release from bovine rod outer segment disks. Biochemistry 26, 3249–3253 (1987).

    Article  CAS  PubMed  Google Scholar 

  54. Ildefonse, M. & Bennett, N. Single-channel study of the cGMP-dependent conductance of retinal rods from incorporation of native vesicles into planar lipid bilayers. J. Membr. Biol. 123, 133–147 (1991).

    Article  CAS  PubMed  Google Scholar 

  55. Fodor, A. A., Black, K. D. & Zagotta, W. N. Tetracaine reports a conformational change in the pore of cyclic nucleotide-gated channels. J. Gen. Physiol. 110, 591–600 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fodor, A. A., Gordon, S. E. & Zagotta, W. N. Mechanism of tetracaine block of cyclic nucleotide-gated channels. J. Gen. Physiol. 109, 3–14 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bucossi, G. et al. Time-dependent current decline in cyclic GMP-gated bovine channels caused by point mutations in the pore region expressed in Xenopus oocytes. J. Physiol. (Lond.) 493, 409–418 (1996).

    Article  CAS  Google Scholar 

  58. Armstrong, C. M. Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J. Gen. Physiol. 58, 413–437 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yeh, J. Z. & Armstrong, C. M. Immobilisation of gating charge by a substance that simulates inactivation. Nature 273, 387–389 (1978).

    Article  CAS  PubMed  Google Scholar 

  60. Demo, S. D. & Yellen, G. Ion effects on gating of the Ca2+-activated K+ channel correlate with occupancy of the pore. Biophys. J. 61, 639–648 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Perozo, E., Cortes, D. M. & Cuello, L. G. Structural rearrangements underlying K+-channel activation gating. Science 285, 73–78 (1999).Electron paramagnetic resonance spectroscopy experiments indicate that the opening of KcsA involves a translation and rotation of the TM1 and TM2 segments.

    Article  CAS  PubMed  Google Scholar 

  62. Zheng, J. & Sigworth, F. J. Selectivity changes during activation of mutant Shaker potassium channels. J. Gen. Physiol. 110, 101–117 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chapman, M. L., VanDongen, H. M. & VanDongen, A. M. Activation-dependent subconductance levels in the drk1 K channel suggest a subunit basis for ion permeation and gating. Biophys. J. 72, 708–719 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zheng, J. & Sigworth, F. J. Intermediate conductances during deactivation of heteromultimeric Shaker potassium channels. J. Gen. Physiol. 112, 457–474 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lu, T. et al. Probing ion permeation and gating in a K+ channel with backbone mutations in the selectivity filter. Nature Neurosci. 4, 239–246 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Loussouarn, G., Phillips, L. R., Masia, R., Rose, T. & Nichols, C. G. Flexibility of the Kir6.2 inward rectifier K+ channel pore. Proc. Natl Acad. Sci. USA 98, 4227–4232 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lu, T., Nguyen, B., Zhang, X. & Yang, J. Architecture of a K+ channel inner pore revealed by stoichiometric covalent modification. Neuron 22, 571–580 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Sadja, R., Smadja, K., Alagem, N. & Reuveny, E. Coupling Gβγ-dependent activation to channel opening via pore elements in inwardly rectifying potassium channels. Neuron 29, 669–680 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Yi, B. A., Lin, Y. F., Jan, Y. N. & Jan, L. Y. Yeast screen for constitutively active mutant G protein-activated potassium channels. Neuron 29, 657–667 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Stotz, S. C. & Haynes, L. W. Block of the cGMP-gated cation channel of catfish rod and cone photoreceptors by organic cations. Biophys. J. 71, 3136–3147 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kramer, R. H., Goulding, E. & Siegelbaum, S. A. Potassium channel inactivation peptide blocks cyclic nucleotide-gated channels by binding to the conserved pore domain. Neuron 12, 655–662 (1994).

    Article  CAS  PubMed  Google Scholar 

  72. Gordon, S. E. & Zagotta, W. N. Localization of regions affecting an allosteric transition in cyclic nucleotide-activated channels. Neuron 14, 857–864 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Gordon, S. E. & Zagotta, W. N. A histidine residue associated with the gate of the cyclic nucleotide-activated channels in rod photoreceptors. Neuron 14, 177–183 (1995).This paper was the first to identify the C-linker as an important region for CNG channel gating by localizing a Ni2+-binding site to the post-TM segment.

    Article  CAS  PubMed  Google Scholar 

  74. Broillet, M. C. & Firestein, S. Direct activation of the olfactory cyclic nucleotide-gated channel through modification of sulfhydryl groups by NO compounds. Neuron 16, 377–385 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Gordon, S. E., Oakley, J. C., Varnum, M. D. & Zagotta, W. N. Altered ligand specificity by protonation in the ligand binding domain of cyclic nucleotide-gated channels. Biochemistry 35, 3994–4001 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Gordon, S. E., Varnum, M. D. & Zagotta, W. N. Direct interaction between amino- and carboxyl-terminal domains of cyclic nucleotide-gated channels. Neuron 19, 431–441 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Brown, R. L., Snow, S. D. & Haley, T. L. Movement of gating machinery during the activation of rod cyclic nucleotide-gated channels. Biophys. J. 75, 825–833 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zong, X., Zucker, H., Hofmann, F. & Biel, M. Three amino acids in the C-linker are major determinants of gating in cyclic nucleotide-gated channels. EMBO J. 17, 353–362 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Paoletti, P., Young, E. C. & Siegelbaum, S. A. C-Linker of cyclic nucleotide-gated channels controls coupling of ligand binding to channel gating. J. Gen. Physiol. 113, 17–34 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zheng, J. & Zagotta, W. N. Gating rearrangements in cyclic nucleotide-gated channels revealed by patch-clamp fluorometry. Neuron 28, 369–374 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Gordon, S. E. & Zagotta, W. N. Subunit interactions in coordination of Ni2+ in cyclic nucleotide-gated channels. Proc. Natl Acad. Sci. USA 92, 10222–10226 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kneller, D. G., Cohen, F. E. & Langridge, R. Improvements in protein secondary structure prediction by an enhanced neural network. J. Mol. Biol. 214, 171–182 (1990).

    Article  CAS  PubMed  Google Scholar 

  83. Cortes, D. M., Cuello, L. G. & Perozo, E. Molecular architecture of full-length KcsA: role of cytoplasmic domains in ion permeation and activation gating. J. Gen. Physiol. 117, 165–180 (2001).Electron paramagnetic resonance spectroscopy experiments show that the post-TM region of KcsA forms a helical bundle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schumacher, M. A., Rivard, A. F., Bachinger, H. P. & Adelman, J. P. Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin. Nature 410, 1120–1124 (2001).This paper presents the crystal structure of the post-TM region of SK channels while bound to calmodulin.

    Article  CAS  PubMed  Google Scholar 

  85. Chang, G., Spencer, R. H., Lee, A. T., Barclay, M. T. & Rees, D. C. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282, 2220–2226 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Liu, D. T., Tibbs, G. R., Paoletti, P. & Siegelbaum, S. A. Constraining ligand-binding site stoichiometry suggests that a cyclic-nucleotide-gated channel is composed of two functional dimers. Neuron 21, 235–248 (1998).A paper that presents intriguing results, indicating that CNG channels gate as if formed as a dimer-of-dimers.

    Article  CAS  PubMed  Google Scholar 

  87. Shammat, I. M. & Gordon, S. E. Stoichiometry and arrangement of subunits in rod cyclic nucleotide-gated channels. Neuron 23, 809–819 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Scott, S. P., Weber, I. T., Harrison, R. W., Carey, J. & Tanaka, J. C. A functioning chimera of the cyclic nucleotide-binding domain from the bovine retinal rod ion channel and the DNA-binding domain from catabolite gene-activating protein. Biochemistry 40, 7464–7473 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Jiang, Y., Pico, A., Cadene, M., Chait, B. T. & MacKinnon, R. Structure of the RCK domain from the E. coli K+ channel and demonstration of its presence in the human BK channel. Neuron 29, 593–601 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Ildefonse, M., Crouzy, S. & Bennett, N. Gating of retinal rod cation channel by different nucleotides: comparative study of unitary currents. J. Membr. Biol. 130, 91–104 (1992).

    Article  CAS  PubMed  Google Scholar 

  91. Karpen, J. W., Brown, R. L., Stryer, L. & Baylor, D. A. Interactions between divalent cations and the gating machinery of cyclic GMP-activated channels in salamander retinal rods. J. Gen. Physiol. 101, 1–25 (1993).

    Article  CAS  PubMed  Google Scholar 

  92. Sompornpisut, P., Liu, Y.-S. & Perozo, E. Calculation of rigid body conformational changes using restraint-driven cartesian transformations. Biophys. J. (in the press).

  93. Weber, I. T. & Steitz, T. A. Structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2.5 Å resolution. J. Mol. Biol. 198, 311–326 (1987).This paper presents the crystal structure of CAP, showing the CNBD bound to cAMP.

    Article  CAS  PubMed  Google Scholar 

  94. Ackers, G. K., Doyle, M. L., Myers, D. & Daugherty, M. A. Molecular code for cooperativity in hemoglobin. Science 255, 54–63 (1992).

    Article  CAS  PubMed  Google Scholar 

  95. Altenhofen, W. et al. Control of ligand specificity in cyclic nucleotide-gated channels from rod photoreceptors and olfactory epithelium. Proc. Natl Acad. Sci. USA 88, 9868–9872 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Varnum, M. D., Black, K. D. & Zagotta, W. N. Molecular mechanism for ligand discrimination of cyclic nucleotide-gated channels. Neuron 15, 619–625 (1995).The authors propose a mechanism for cyclic nucleotide selectivity and conformational change in the CNBD of CNG channels.

    Article  CAS  PubMed  Google Scholar 

  97. Scott, S. P., Harrison, R. W., Weber, I. T. & Tanaka, J. C. Predicted ligand interactions of 3′,5′-cyclic nucleotide-gated channel binding sites: comparison of retina and olfactory binding site models. Protein Eng. 9, 333–344 (1996).

    Article  CAS  PubMed  Google Scholar 

  98. Tibbs, G. R., Goulding, E. H. & Siegelbaum, S. A. Allosteric activation and tuning of ligand efficacy in cyclic-nucleotide-gated channels. Nature 386, 612–615 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Scott, S. P. & Tanaka, J. C. Three residues predicted by molecular modeling to interact with the purine moiety alter ligand binding and channel gating in cyclic nucleotide-gated channels. Biochemistry 37, 17239–17252 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Matulef, K., Flynn, G. E. & Zagotta, W. N. Molecular rearrangements in the ligand-binding domain of cyclic nucleotide-gated channels. Neuron 24, 443–452 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Sunderman, E. R. & Zagotta, W. N. Sequence of events underlying the allosteric transition of rod cyclic nucleotide-gated channels. J. Gen. Physiol. 113, 621–640 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sunderman, E. R. & Zagotta, W. N. Mechanism of allosteric modulation of rod cyclic nucleotide-gated channels. J. Gen. Physiol. 113, 601–620 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Liu, Y., Holmgren, M., Jurman, M. E. & Yellen, G. Gated access to the pore of a voltage-dependent K+ channel. Neuron 19, 175–184 (1997).This paper presents evidence that the gate of Shaker K+ channels is located at the bottom of the S6, near the smokehole.

    Article  PubMed  Google Scholar 

  104. Del Camino, D., Holmgren, M., Liu, Y. & Yellen, G. Blocker protection in the pore of a voltage-gated K+ channel and its structural implications. Nature 403, 321–325 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Guex, N. & Peitsch, M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Supplementary information

Model of the conformational changes in the helix bundle and post-TM segment of CNG1 channels during gating.

The movie shows bottom and side views of the model of cyclic nucleotide-gated channel 1 (CNG1) during opening and closing. Histidine substitution at the red positions produced channels that were inhibited by nickel. Histidine substitution at the green positions produced channels that were potentiated by nickel. Position 399 is shown in yellow.

Related links

Related links

DATABASE LINKS

BK

IRK

GIRK

KATP

CNG

X-ray crystal structure of KcsA

KcsA

Shaker

SK

MscL

Herg

KV

FURTHER INFORMATION

SWISS-MODEL server

The ion channel web page

The ligand-gated ion channel database

Families of transport proteins

Glossary

ALLOSTERISM (ALLOSTERY)

The property of a macromolecule by which its function is modified by the binding of an effector to a site other than the binding site of the principal reactant, inducing a conformational shift in the macromolecule.

P LOOP

A conserved structural motif found in many different ion channels, which constitutes part of the channel pore.

2P CHANNELS

Channel proteins that contain two pore-forming domains in each subunit. They constitute the so-called 'KCNK' channel family, and function largely as regulated K+-selective leak channels.

SITE-DIRECTED MUTAGENESIS

The generation of a mutation at a predetermined position in a DNA sequence. The most common method involves the use of a chemically synthesized mutant DNA strand that can hybridize with the target molecule.

SHAKER

A voltage-gated channel, the activation of which leads to the appearance of a transient K+ current. It takes its name from Drosophila with mutations in the gene that encodes this protein. These flies display a violent shaking phenotype when under anaesthesia.

C-TYPE INACTIVATION

Two distinct molecular mechanisms for K+ channel inactivation have been described: N-type, which involves occlusion of the pore by an intracellular domain of the channel, and C-type, which involves a conformational change in the outer pore.

ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY

When an atom with an unpaired electron is placed in a magnetic field, the spin of the unpaired electron can align, either in the same direction as the field, or in the opposite direction. EPR is used to measure the absorption of microwave radiation that accompanies the transition between those two states.

PROBE MOBILITY

In an EPR experiment, changes in the mobility of spin-labelled residues are indicative of rearrangements in tertiary or quaternary contacts; positive values indicate increased steric contacts (reduced mobility) and negative values point to increased motional freedom.

PROBE-TO-PROBE DISTANCE

In an EPR experiment, this parameter provides an indication of changes in inter-subunit proximity. In the case of P-loop-containing channels, values lower than 1 indicate that the spin-labelled residues move closer to the axis of symmetry of the channel, whereas larger values point to motion away from the symmetry axis.

CPK MODEL

A space-filling atomic model in which the atoms are represented as spheres, the radii of which are proportional to the van der Waals radius of the atom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flynn, G., Johnson, J. & Zagotta, W. Cyclic nucleotide-gated channels: shedding light on the opening of a channel pore. Nat Rev Neurosci 2, 643–651 (2001). https://doi.org/10.1038/35090015

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35090015

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing