Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Constructing inhibitory synapses

Key Points

  • Synaptic targeting and clustering of GABA (γ-aminobutyric acid)and glycine receptors is mediated by the interaction of these receptor subunits with the cytoskeleton. The intracellular domains of individual receptor subunits can interact with several proteins, including cytoskeletal elements, microtubule-binding proteins, neurotransmitter transporters, protein kinases, kinase-anchoring proteins and other signalling molecules. The roles of these protein–protein interactions in the synaptic accumulation and functional modulation of GABAA and glycine receptors have begun to be unravelled and constitute the focus of this review.

  • The large number of GABA and glycine receptor subunits is responsible for the extensive heterogeneity of glycine and GABAA receptor structure. In the case of GABA receptors, the presence of specific subunits in a given receptor subtype can determine receptor trafficking and subcellular localization.

  • Several accessory proteins that facilitate the accumulation of GABAA and glycine receptors at synaptic sites have been identified. In the case of glycine receptors, gephyrin is crucial for their clustering at synapses. Gephyrin can interact with several signalling proteins such as collybistin (a GDP–GTP exchange factor) and Raft1 (a protein involved in the control of translation). This raises the possibility that the action of gephyrin could also involve signal transduction and/or structural remodelling. However, the presence of these proteins at glycine synapses has yet to be definitively proven.

  • There are at least two mechanisms for the synaptic clustering of these GABAA receptors, one dependent and one independent on gephyrin. The components of the gephyrin-independent mechanism have remained elusive but dystrophin has been identified as one possible candidate. A protein known as GABARAP (GABAA receptor-associated protein)can also interact with GABAA receptor γ2 subunits. However, GABARAP is unlikely to have a role in synaptic clustering and might instead be relevant for intracellular transport.

  • GABAC receptors interact both with MAP1B, a molecule capable of binding actin and tubulin, and Glyt1E/F, a novel variant of the glycine transporter. The selective binding of MAP1B to GABAC but not to GABAA receptors could help to explain the differential localization of these receptors in the retina.

  • The dynamic regulation of inhibitory transmitter receptors has begun to be elucidated. GABAA receptors undergo constitutive endocytosis and travel between synaptic sites and endosomal structures but the relevance of this process for synaptic inhibition remains unknown. GABAA receptors are also phosphorylated by several protein kinases and can directly bind both protein kinase C (PKC) and PKC-anchoring proteins. PKC can phosphorylate individual β subunits and thereby modulate GABAA receptor function.

Abstract

Control of nerve-cell excitability is crucial for normal brain function. Two main groups of inhibitory neurotransmitter receptors — GABAA and glycine receptors — fulfil a significant part of this role. To mediate fast synaptic inhibition effectively, these receptors need to be localized and affixed opposite nerve terminals that release the appropriate neurotransmitter at multiple sites on postsynaptic neurons. But for this to occur, neurons require intracellular anchoring molecules, as well as mechanisms that ensure the efficient turnover and transport of mature, functional inhibitory synaptic receptor proteins. This review describes the dynamic regulation of synaptic GABAA and glycine receptors and discusses recent advances in this rapidly evolving field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and diversity of inhibitory ligand-gated ion channels.
Figure 2: The synaptic localization of glycine receptors is controlled by gephyrin.
Figure 3: The subcellular localization and function of GABAC receptors are controlled by MAP1B.
Figure 4: Dynamic control of GABAA receptor expression at the cell surface.

Similar content being viewed by others

References

  1. Schofield, P. R. et al. Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family. Nature 328, 221–227 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Grenningloh, G. et al. The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Nature 328, 215–220 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Maricq, A. V., Peterson, A. S., Brake, A. J., Myers, R. M. & Julius, D. Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science 254, 432–437 ( 1991).

    Article  CAS  PubMed  Google Scholar 

  4. Julius, D. Molecular biology of serotonin receptors. Annu. Rev. Neurosci. 14, 335–360 ( 1991).

    Article  CAS  PubMed  Google Scholar 

  5. Unwin, N. The nicotinic acetylcholine receptor of the Torpedo electric ray. J. Struct. Biol. 121, 181–190 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Grenningloh, G. et al. Alpha subunit variants of the human glycine receptor: primary structures, functional expression and chromosomal localization of the corresponding genes. EMBO J. 9, 771–776 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Betz, H. et al. Structure and functions of inhibitory and excitatory glycine receptors . Ann. NY Acad. Sci. 868, 667– 676 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Harvey, R. J. & Betz, H. in Pharmacology of Ionic Channel Function: Activators and Inhibitors (eds Endo, M., Kurachi, Y. & Mishina, M.) 479–497 (Springer–Verlag, Berlin, 2000).

    Book  Google Scholar 

  9. Kuhse, J. et al. Alternative splicing generates two isoforms of the α2 subunit of the inhibitory glycine receptor. FEBS Lett. 283, 73–77 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Langosch, D., Thomas, L. & Betz, H. Conserved quaternary structure of ligand-gated ion channels: the postsynaptic glycine receptor is a pentamer. Proc. Natl Acad. Sci. USA 85, 7394–7398 ( 1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Becker, C. M., Hoch, W. & Betz, H. Glycine receptor heterogeneity in rat spinal cord during postnatal development . EMBO J. 7, 3717–3726 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bormann, J. & Feigenspan, A. GABAC receptors. Trends Neurosci. 18, 515–519 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Bormann, J. The 'ABC' of GABA receptors. Trends Pharmacol. Sci. 21, 16–19 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Sieghart, W. Unraveling the function of GABAA receptor subtypes. Trends Pharmacol. Sci. 21, 411–413 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Rabow, L. E., Russek, S. J. & Farb, D. H. From ion currents to genomic analysis: Recent advances in GABAA receptor research. Synapse 21, 189–274 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Davies, P. A., Hanna, M. C., Hales, T. G. & Kirkness, E. F. Insensitivity to anaesthetic agents conferred by a class of GABAA receptor subunit. Nature 385, 820– 823 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Hedblom, E. & Kirkness, E. F. A novel class of GABAA receptor subunit in tissues of the reproductive system. J. Biol. Chem. 272, 15346–15350 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Bonnert, T. P. et al. θ, a novel γ-aminobutyric acid type A receptor subunit. Proc. Natl Acad. Sci. USA 96, 9891 –9896 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Laurie, D. J., Wisden, W. & Seeburg, P. H. The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J. Neurosci. 12, 4151–4172 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fritschy, J.-M. & Mohler, H. GABAA receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J. Comp. Neurol. 359, 154–194 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Connolly, C. N., Krishek, B. J., McDonald, B. J., Smart, T. G. & Moss, S. J. Assembly and cell surface expression of heteromeric and homomeric γ-aminobutyric acid type A receptors. J. Biol. Chem. 271, 89–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Gorrie, G. H. et al. Assembly of GABAA receptors composed of α1 and β2 subunits in both cultured neurons and fibroblasts. J. Neurosci. 17, 6587–6596 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Taylor, P. M. et al. Identification of amino acid residues within GABAA receptor β subunits that mediate both homomeric and heteromeric receptor expression. J. Neurosci. 19, 6360– 6371 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Taylor, P. M. et al. Identification of residues within GABA(A) receptor α subunits that mediate specific assembly with receptor β subunits. J. Neurosci. 20, 1297–1306 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sigel, E., Baur, R., Malherbe, P. & Mohler, H. The rat β 1-subunit of the GABAA receptor forms a picrotoxin- sensitive anion channel open in the absence of GABA. FEBS Lett. 257, 377–379 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Krishek, B. J., Moss, S. J. & Smart, T. G. Homomeric β1 γ-aminobutyric acid A receptor-ion channels: evaluation of pharmacological and physiological properties. Mol. Pharmacol. 49, 494– 504 (1996).

    CAS  PubMed  Google Scholar 

  27. Wooltorton, J. R., Moss, S. J. & Smart, T. G. Pharmacological and physiological characterization of murine homomeric β3 GABAA receptors. Eur. J. Neurosci. 9, 2225–2235 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  28. Connolly, C. N. et al. Subcellular localization and endocytosis of homomeric γ2 subunit splice variants of γ-aminobutyric acid type A receptors. Mol. Cell. Neurosci. 13, 259–271 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Sanna, E., Garau, F. & Harris, R. A. Novel properties of homomeric β1 γ-aminobutyric acid type A receptors: actions of the anesthetics propofol and pentobarbital . Mol. Pharmacol. 47, 213– 217 (1995).

    CAS  PubMed  Google Scholar 

  30. Pritchett, D. B. et al. Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 338, 582–585 (1989).

    Article  CAS  PubMed  Google Scholar 

  31. Angelotti, T. P. & MacDonald, R. L. Assembly of GABAA receptor subunits: α1 β1 and α1 β1 γ2S subunits produce unique ion channels with dissimilar single- channel properties. J. Neurosci. 13, 1429–1440 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chang, Y., Wang, R., Barot, S. & Weiss, D. S. Stoichiometry of a recombinant GABAA receptor. J. Neurosci. 16, 5415–5424 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tretter, V., Ehya, N., Fuchs, K. & Sieghart, W. Stoichiometry and assembly of a recombinant GABAA receptor subtype. J. Neurosci. 17, 2728–2737 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Farrar, S. J., Whiting, P. J., Bonnert, T. P. & McKernan, R. M. Stoichiometry of a ligand-gated ion channel determined by fluorescence energy transfer. J. Biol. Chem. 274, 10100– 10104 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Shivers, B. D. et al. Two novel GABAA receptor subunits exist in distinct neuronal subpopulations. Neuron 3, 327– 337 (1989).

    Article  CAS  PubMed  Google Scholar 

  36. Saxena, N. C. & MacDonald, R. L. Assembly of GABAA receptor subunits: role of the δ subunit. J. Neurosci. 14, 7077–7086 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Whiting, P. J. et al. Neuronally restricted RNA splicing regulates the expression of a novel GABAA receptor subunit conferring atypical functional properties. J. Neurosci. 17, 5027– 6037 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rudolph, U. et al. Benzodiazepine actions mediated by specific γ-aminobutyric acidA receptor subtypes. Nature 401, 796–800 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Low, K. et al. Molecular and neuronal substrate for the selective attenuation of anxiety. Science 290, 131– 134 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. McKernan, R. M. et al. Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABAA receptor α1 subtype. Nature Neurosci. 3, 587–592 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Nusser, Z., Sieghart, W., Benke, D., Fritschy, J.-M. & Somogyi, P. Differential synaptic localization of two major γ-aminobutyric acid type A receptor α subunits on hippocampal pyramidal cells. Proc. Natl Acad. Sci. USA 93, 11939– 11944 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fritschy, J. M., Johnson, D. K., Mohler, H. & Rudolph, U. Independent assembly and subcellular targeting of GABAA-receptor subtypes demonstrated in mouse hippocampal and olfactory neurons in vivo . Neurosci. Lett. 249, 99– 102 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Jones, A. et al. Ligand-gated ion channel subunit partnerships: GABAA receptor α6 subunit gene inactivation inhibits δ subunit expression. J. Neurosci. 17, 1350– 1362 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nusser, Z., Sieghart, W. & Somogyi, P. Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J. Neurosci. 18, 1693–1703 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sassoe-Pognetto, M., Panzanelli, P., Sieghart, W. & Fritschy, J. M. Co-localization of multiple GABAA receptor subtypes with gephyrin at postsynaptic sites. J. Comp Neurol. 420, 481–498 (2000).The colocalization of gephyrin and GABA A -receptor immunoreactivity was examined at both the light and electron microscopic levels with antibodies selective for α1–3 and γ2 subunits. The authors showed a consistent colocalization for these receptor subunits and gephyrin in several brain regions, including cerebellum, hippocampus, thalamus and olfactory bulb.

    Article  CAS  PubMed  Google Scholar 

  46. Brickley, S. G., Cull-Candy, S. G. & Farrant, M. Single-channel properties of synaptic and extrasynaptic GABAA receptors suggest differential targeting of receptor subtypes . J. Neurosci. 19, 2960– 2973 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dotti, C. G., Parton, R. G. & Simons, K. Polarized sorting of glypiated proteins in hippocampal neurons. Nature 349, 158– 161 (1991).

    Article  CAS  PubMed  Google Scholar 

  48. Jareb, M. & Banker, G. The polarized sorting of membrane proteins expressed in cultured hippocampal neurons using viral vectors. Neuron 20, 855–867 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  49. Connolly, C. N., Wooltorton, J. R., Smart, T. G. & Moss, S. J. Subcellular localization of γ-aminobutyric acid type A receptors is determined by receptor β-subunits. Proc. Natl Acad. Sci. USA 93, 9899–9904 ( 1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cutting, G. R. et al. Cloning of the γ-aminobutyric acid (GABA) rho 1 cDNA: a GABA receptor subunit highly expressed in the retina. Proc. Natl Acad. Sci. USA 88, 2673–2677 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lukasiewicz, P. D. GABAC receptors in the vertebrate retina. Mol. Neurobiol. 12, 181–194 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  52. Hackam, A. S., Wang, T.-L., Guggino, W. B. & Cutting, G. R. Sequences in the amino termini of GABAρ and GABAA subunits specify their selective interaction in vitro. J. Neurochem. 70, 40–46 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  53. Hackam, A. S., Guggino, W. B. & Cutting, G. R. The N-terminal domain of human GABA receptor p1 subunits contains signals for homooligomeric and heterooligomeric interaction . J. Biol. Chem. 272, 13750– 13757 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Qian, H. & Ripps, H. Response kinetics and pharmacological properties of heteromeric receptors formed by coassembly of GABA ρ- and γ 2-subunits. Proc. R. Soc. Lond. B 266, 2419–2425 (1999).

    Article  CAS  Google Scholar 

  55. Pan, Z. H., Zhang, D., Zhang, X. & Lipton, S. A. Evidence for coassembly of mutant GABAC ρ1 with GABAA γ2S, glycine α1 and glycine α2 receptor subunits in vitro. Eur. J. Neurosci. 12, 3137–3145 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Koulen, P., Brandstatter, J. H., Enz, R., Bormann, J. & Wassle, H. Synaptic clustering of GABA(C) receptor rho-subunits in the rat retina. Eur. J. Neurosci. 10 , 115–127 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Koulen, P. et al. Immunocytochemical localization of the GABAC receptor rho subunits in the cat, goldfish, and chicken retina. J. Comp. Neurol. 380, 520–532 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  58. Schmitt, B., Knaus, P., Becker, C. M. & Betz, H. The M r 93,000 polypeptide of the postsynaptic glycine receptor complex is a peripheral membrane protein. Biochemistry 26, 805–811 (1987).

    Article  CAS  PubMed  Google Scholar 

  59. Johnson, J. L. & Wadman, S. K. in The Metabolic Basis of Inherited Diseases (eds Scrivner, C. R., Beaudef, A. L., Sly, W. S. & Valle, D.) 2271–2283 (McGraw–Hill, New York, 2001).

    Google Scholar 

  60. Prior, P. et al. Primary structure and alternative splice variants of gephyrin, a putative glycine receptor-tubulin linker protein. Neuron 8, 1161–1170 (1992).

    Article  CAS  PubMed  Google Scholar 

  61. Ramming, M. et al. Diversity and phylogeny of gephyrin: tissue-specific splice variants, gene structure, and sequence similarities to molybdenum cofactor-synthesizing and cytoskeleton-associated proteins. Proc. Natl Acad. Sci. USA 97, 10266–10271 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kirsch, J. & Betz, H. Widespread expression of gephyrin, a putative glycine receptor-tubulin linker protein, in rat brain. Brain Res. 621, 301–310 (1993).

    Article  CAS  PubMed  Google Scholar 

  63. Meyer, G., Kirsch, J., Betz, H. & Langosch, D. Identification of a gephyrin binding motif on the glycine receptor β subunit. Neuron 15, 563–572 ( 1995).Using a mutagenic approach, a specific 20-amino-acid motif unique to the glycine receptor β-subunit was identified to mediate binding to gephyrin. This motif is absent from all glycine receptor α-subunits and also GABA A receptor subunits.

    Article  CAS  PubMed  Google Scholar 

  64. Kins, S., Kuhse, J., Laube, B., Betz, H. & Kirsch, J. Incorporation of a gephyrin-binding motif targets NMDA receptors to gephyrin-rich domains in HEK 293 cells. Eur. J. Neurosci. 11, 740–744 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  65. Kneussel, M., Hermann, A., Kirsch, J. & Betz, H. Hydrophobic interactions mediate binding of the glycine receptor β-subunit to gephyrin. J. Neurochem. 72, 1323–1326 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Kirsch, J., Kuhse, J. & Betz, H. Targeting of glycine receptor subunits to gephryin-rich domains in transfected human embryonic kidney cells. Mol. Cell. Neurosci. 6, 450–461 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Kirsch, J. et al. The 93-kDa glycine receptor-associated protein binds to tubulin . J. Biol. Chem. 266, 22242– 22245 (1991).

    Article  CAS  PubMed  Google Scholar 

  68. Kirsch, J., Wolters, I., Triller, A. & Betz, H. Gephyrin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons. Nature 366, 745–748 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  69. Feng, G. et al. Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science 282, 1321–1324 (1998). Production of a gephryin knockout mouse. The phenotype is lethal and the mouse shows an exaggerated startle response and loss of glycine receptor clustering. In addition, there are gross metabolic deficits in agreement with a role for gephyrin in the production of the Moco cofactor essential for the function of molybdenum-containing enzymes.

    Article  CAS  PubMed  Google Scholar 

  70. Sabatini, D. M. et al. Interaction of RAFT1 with gephyrin required for rapamycin-sensitive signaling. Science 284, 1161– 1164 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Kins, S., Betz, H. & Kirsch, J. Collybistin, a newly identified brain-specific GEF, induces submembrane clustering of gephyrin. Nature Neurosci. 3, 22–29 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Reid, T., Bathoorn, A., Ahmadian, M. R. & Collard, J. G. Identification and characterization of hPEM-2, a guanine nucleotide exchange factor specific for Cdc42. J. Biol. Chem. 274, 33587–33593 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Nobes, C. D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. Bishop, A. L. & Hall, A. Rho GTPases and their effector proteins . Biochem. J. 348, 241– 255 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Van Aelst, L. & D'Souza-Schorey, C. Rho GTPases and signaling networks. Genes Dev. 11, 2295– 2322 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Mammoto, A. et al. Interactions of drebrin and gephyrin with profilin. Biochem. Biophys. Res. Commun. 243, 86– 89 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Schluter, K., Jockusch, B. M. & Rothkegel, M. Profilins as regulators of actin dynamics. Biochim. Biophys. Acta 1359, 97–109 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Witke, W. et al. In mouse brain profilin I and profilin II associate with regulators of the endocytic pathway and actin assembly. EMBO J. 17, 967–976 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Snyder, S. H. et al. Neural actions of immunophilin ligands. Trends Pharmacol. Sci. 19, 21–26 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Steward, O. mRNA localization in neurons: a multipurpose mechanism? Neuron 18, 9–12 (1997 ).

    Article  CAS  PubMed  Google Scholar 

  81. Racca, C., Gardiol, A. & Triller, A. Dendritic and postsynaptic localizations of glycine receptor α subunit mRNAs. J. Neurosci. 17, 1691–1700 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kirsch, J. & Betz, H. Glycine-receptor activation is required for receptor clustering in spinal neurons. Nature 392 , 717–720 (1998). These authors proposed the activation model for glycine synaptogenesis. The model that glycine release from nerve terminals causes postsynaptic depolarization, voltage-dependent calcium channel activation and gephyrin accumulation.

    Article  CAS  PubMed  Google Scholar 

  83. Levi, S., Vannier, C. & Triller, A. Strychnine-sensitive stabilization of postsynaptic glycine receptor clusters. J. Cell Sci. 111, 335 –345 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Levi, S., Chesnoy-Marchais, D., Sieghart, W. & Triller, A. Synaptic control of glycine and GABAA receptors and gephyrin expression in cultured motoneurons. J. Neurosci. 19, 7434–7449 (1999). Using mixed cultures of motoneurons and spinal interneurons, the authors suggest that the identity of the presynaptic element determines the postsynaptic accumulation of glycine and GABA A receptors but not of gephyrin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Taleb, O. & Betz, H. Expression of the human glycine receptor α1 subunit in Xenopus oocytes: apparent affinities of agonists increase at high receptor density. EMBO J. 13, 1318 –1324 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Maammar, M., Rodeau, J. L. & Taleb, O. Permeation and gating of α1 glycine-gated channels expressed at low and high density in Xenopus oocyte. FEBS Lett. 414, 99–104 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  87. Lim, R., Alvarez, F. J. & Walmsley, B. Quantal size is correlated with receptor cluster area at glycinergic synapses in the rat brainstem. J. Physiol. 516, 505–512 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Item, C. & Sieghart, W. Binding of γ-aminobutyric acidA receptors to tubulin. J. Neurochem. 63, 1119–1125 (1994).

    Article  CAS  PubMed  Google Scholar 

  89. Kannenberg, K., Baur, R. & Sigel, E. Proteins associated with α1 subunit-containing GABAA receptors from bovine brain. J. Neurochem. 68, 1352 –1360 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. Triller, A., Cluzeaud, F. & Korn, H. Gamma-aminobutyric acid-containing terminals can be apposed to glycine receptors at central synapses. J. Cell Biol. 104, 947–956 ( 1987).

    Article  CAS  PubMed  Google Scholar 

  91. Cabot, J. B., Bushnell, A., Alessi, V. & Mendell, N. R. Postsynaptic gephyrin immunoreactivity exhibits a nearly one-to-one correspondence with γ-aminobutyric acid-like immunogold-labeled synaptic inputs to sympathetic preganglionic neurons. J. Comp. Neurol. 356, 418– 432 (1995).

    Article  CAS  PubMed  Google Scholar 

  92. Todd, A. J., Spike, R. C., Chong, D. & Neilson, M. The relationship between glycine and gephyrin in synapses of the rat spinal cord. Eur. J. Neurosci. 7, 1–11 (1995).

    Article  CAS  PubMed  Google Scholar 

  93. Sassoe-Pognetto, M. et al. Co-localization of gephyrin and GABAA-receptor subunits in the rat retina. J. Comp. Neurol. 357, 1–14 (1995).

    Article  CAS  PubMed  Google Scholar 

  94. Sassoe-Pognetto, M. & Fritschy, J. M. Mini-review: gephyrin, a major postsynaptic protein of GABAergic synapses. Eur. J. Neurosci. 12, 2205–2210 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Essrich, C., Lorez, M., Benson, J. A., Fritschy, J. M. & Luscher, B. Postsynaptic clustering of major GABAA receptor subtypes requires the γ2 subunit and gephyrin. Nature Neurosci. 1, 563–571 ( 1998).Mice that lack GABA A receptor γ2 subunits showed significant reductions of synaptic GABA A receptors clustering in cultured cortical neurons. Blocking the expression of gephyrin isoforms using antisense oligonucleotides had similar effects.

    Article  CAS  PubMed  Google Scholar 

  96. Craig, A. M., Banker, G., Chang, W., McGrath, M. E. & Serpinskaya, A. S. Clustering of gephyrin at GABAergic but not glutamatergic synapses in cultured rat hippocampal neurons. J. Neurosci. 16, 3166–3177 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kneussel, M. et al. Loss of postsynaptic GABAA receptor clustering in gephyrin-deficient mice. J. Neurosci. 19, 9289–9297 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Baer, K. et al. Postsynaptic clustering of γ-aminobutyric acid type A receptors by the γ3 subunit in vivo. Proc. Natl Acad. Sci. USA 96, 12860–12865 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fischer, F. et al. Reduced synaptic clustering of GABA and glycine receptors in the retina of the gephyrin null mutant mouse. J. Comp. Neurol. 427, 634–648 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  100. Kirsch, J. & Betz, H. The postsynaptic localization of the glycine receptor-associated protein gephyrin is regulated by the cytoskeleton . J. Neurosci. 15, 4148– 4156 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Allison, D. W., Chervin, A. S., Gelfand, V. I. & Craig, A. M. Postsynaptic scaffolds of excitatory and inhibitory synapses in hippocampal neurons: maintenance of core components independent of actin filaments and microtubules. J. Neurosci. 20, 4545– 4554 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Meier, J., De Chaldee, M., Triller, A. & Vannier, C. Functional heterogeneity of gephyrins. Mol. Cell Neurosci. 16, 566–577 (2000). The authors provide evidence that some of the spliced variants of gephyrin have distinct functions. Specifically, not all of the spliced variants of gephyrin can bind the glycine receptor β-subunit. Furthermore, spliced variants can also have distinct subcellular localization in neurons.

    Article  CAS  PubMed  Google Scholar 

  103. Knuesel, I. et al. Short communication: altered synaptic clustering of GABA A receptors in mice lacking dystrophin (mdx mice). Eur. J. Neurosci. 11, 4457–4462 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Wang, H. B., Bedford, F. K., Brandon, N. J., Moss, S. J. & Olsen, R. W. GABAA-receptor-associated protein links GABAA receptors and the cytoskeleton. Nature 397, 69–72 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  105. Wang, H. & Olsen, R. W. Binding of the GABAA receptor-associated protein (GABARAP) to microtubules and microfilaments suggests involvement of the cytoskeleton in GABARAP–GABAA receptor interaction. J. Neurochem. 75, 644– 655 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Mei, X., Sweatt, A. J. & Hammarback, J. A. Regulation of microtubule-associated protein 1B (MAP1B) subunit composition. J. Neurosci. Res. 62, 56–64 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Mann, S. S. & Hammarback, J. A. Molecular characterization of light chain 3. A microtubule binding subunit of MAP1A and MAP1B. J. Biol. Chem. 269, 11492–11497 (1994).

    Article  CAS  PubMed  Google Scholar 

  108. Sagiv, Y., Legesse-Miller, A., Porat, A. & Elazar, Z. GATE-16, a membrane transport modulator, interacts with NSF and the Golgi v-SNARE GOS-28. EMBO J. 19, 1494– 1504 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Legesse-Miller, A., Sagiv, Y., Glozman, R. & Elazar, Z. Aut7p, a soluble autophagic factor, participates in multiple membrane trafficking processes. J. Biol. Chem. 275, 32966– 32973 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Kneussel, M. et al. The γ-aminobutyric acid type A receptor (GABAA R)-associated protein GABARAP interacts with gephyrin but is not involved in receptor anchoring at the synapse. Proc. Natl Acad. Sci. USA 97, 8594–8599 ( 2000).The distribution and interaction of GABA A -receptor-associated protein (GABARAP) and gephyrin were compared in cultured neurons. GABARAP was found almost exclusively in intracellular compartments compared with synaptic sites where a much greater abundance of gephyrin was demonstrated. This distribution is consistent with a role for GABARAP in GABA A receptor transport rather than synaptic anchoring.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chen, L., Wang, H., Vicini, S. & Olsen, R. W. The γ-aminobutyric acid type A (GABAA) receptor-associated protein (GABARAP) promotes GABAA receptor clustering and modulates the channel kinetics. Proc. Natl Acad. Sci. USA 97, 11557– 11562 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hanley, J. G., Koulen, P., Bedford, F., Gordon Weeks, P. R. & Moss, S. J. The protein MAP-1B links GABA C receptors to the cytoskeleton at retinal synapses. Nature 397, 66–69 ( 1999).This study showed a specific interaction between the GABA C receptor ρ1 and ρ2 subunits with the microtubule-associated protein MAP1B. Complexes of MAP1B and GABA C receptors were found in retinal bipolar neurons and facilitated the interaction of these receptors with the cytoskeleton.

    Article  CAS  PubMed  Google Scholar 

  113. Hammarback, J. A. in Brain Microtubule Associated Proteins: Modifications in Disease (eds Avila, J., Kosik, K. & Brandt, R.) 1–17 (Harwood, Amsterdam, 2001).

    Google Scholar 

  114. Billups, D., Hanley, J. G., Orme, M., Attwell, D. & Moss, S. J. GABAC receptor sensitivity is modulated by interaction with MAP1B. J. Neurosci. 20, 8643–8650 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hanley, J. G., Jones, E. M. & Moss, S. J. GABA receptor rho1 subunit interacts with a novel splice variant of the glycine transporter, GLYT-1. J. Biol. Chem. 275, 840–846 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  116. Connolly, C. N. et al. Cell surface stability of γ-aminobutyric acid type A receptors. Dependence on protein kinase C activity and subunit composition . J. Biol. Chem. 274, 36565– 36572 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. Chapell, R., Bueno, O. F., Alvarez-Hernandez, X., Robinson, L. C. & Leidenheimer, N. J. Activation of protein kinase C induces γ-aminobutyric acid type A receptor internalization in Xenopus oocytes. J. Biol. Chem. 273, 32595–32601 (1998).

    Article  CAS  PubMed  Google Scholar 

  118. Ghansah, E. & Weiss, D. S. Modulation of GABAA receptors by benzodiazepines and barbiturates is autonomous of PKC activation . Neuropharmacology 40, 327– 333 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Filippova, N., Sedelnikova, A., Zong, Y., Fortinberry, H. & Weiss, D. S. Regulation of recombinant γ-aminobutyric acid (GABAA and GABAC) receptors by protein kinase C . Mol. Pharmacol. 57, 847– 856 (2000).

    CAS  PubMed  Google Scholar 

  120. Kittler, J. T. et al. Analysis of GABAA receptor assembly in mammalian cell lines and hippocampal neurons using γ2 subunit green fluorescent protein chimeras. Mol. Cell. Neurosci. 16, 440–452 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. Kittler, J. T. et al. Constitutive endocytosis of GABAA receptors by an association with the adaptin AP2 complex modulates inhibitory synaptic currents in hippocampal neurons. J. Neurosci. 20, 7972–7977 (2000). Interactions between β1–3 and γ2 GABA A receptor subunits and the adaptin AP2 complex were found in hippocampal neurons. Blocking this interaction caused a large time-dependent increase in the amplitude of miniature inhibitory postsynaptic current, suggesting that synaptic GABA A receptors undergo constitutive endocytosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Marsh, M. & McMahon, H. T. The structural era of endocytosis . Science 285, 215–220 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Meyer, T. & Shen, K. In and out of the postsynaptic region: signalling proteins on the move. Trends Cell Biol. 10, 238–244 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Wan, Q. et al. Recruitment of functional GABAA receptors to postsynaptic domains by insulin. Nature 388, 686– 690 (1997).The effect of insulin treatment of recombinant and native GABA A receptors was evaluated. Insulin promoted increased cell-surface expression of GABA A receptors in both HEK cells and in cultured hippocampal neurons. The amplitudes of miniature inhibitory postsynaptic currents were also increased by insulin without affecting their kinetics.

    Article  CAS  PubMed  Google Scholar 

  125. Moss, S. J. & Smart, T. G. Modulation of amino acid-gated ion channels by protein phosphorylation. Int. Rev. Neurobiol. 39, 1–52 (1996).

    Article  CAS  PubMed  Google Scholar 

  126. Smart, T. G. Regulation of excitatory and inhibitory neurotransmitter-gated ion channels by protein phosphorylation. Curr. Opin. Neurobiol. 7, 358–367 (1997).

    Article  CAS  PubMed  Google Scholar 

  127. McDonald, B. J. et al. Adjacent phosphorylation sites on GABAA receptor β subunits determine regulation by cAMP-dependent protein kinase. Nature Neurosci. 1, 23–28 (1998).

    Article  CAS  PubMed  Google Scholar 

  128. Moss, S. J., Doherty, C. A. & Huganir, R. L. Identification of the cAMP-dependent protein kinase and protein kinase C phosphorylation sites within the major intracellular domains of the β1, γ2S, and γ 2L subunits of the γ-aminobutyric acid type A receptor. J. Biol. Chem. 267, 14470–14476 (1992).

    Article  CAS  PubMed  Google Scholar 

  129. Moss, S. J., Smart, T. G., Blackstone, C. D. & Huganir, R. L. Functional modulation of GABAA receptors by cAMP-dependent protein phosphorylation. Science 257, 661– 665 (1992).

    Article  CAS  PubMed  Google Scholar 

  130. McDonald, B. J. & Moss, S. J. Differential phosphorylation of intracellular domains of γ-aminobutyric acid type A receptor subunits by calcium/calmodulin type 2-dependent protein kinase and cGMP-dependent protein kinase. J. Biol. Chem. 269, 18111– 18117 (1994).

    Article  CAS  PubMed  Google Scholar 

  131. McDonald, B. J. & Moss, S. J. Conserved phosphorylation of the intracellular domains of GABAA receptor β2 and β3 subunits by cAMP-dependent protein kinase, cGMP-dependent protein kinase protein kinase C and Ca2+/calmodulin type II-dependent protein kinase . Neuropharmacology 36, 1377– 1385 (1997).

    Article  CAS  PubMed  Google Scholar 

  132. Brandon, N. J. et al. Subunit-specific association of protein kinase C and the receptor for activated C kinase with GABA type A receptors. J. Neurosci. 19, 9228–9234 ( 1999).Using affinity purification and gel-overlay assays, a specific association of PKC and RACK1 with β1–3 GABA A receptor subunits was observed. Both proteins bind independently but directly to the β-subunit intracellular domains. Immunoprecipitation showed that both PKC and RACK1 are intimately associated with native GABA A receptors in neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mochly-Rosen, D. & Gordon, A. S. Anchoring proteins for protein kinase C: a means for isozyme selectivity. FASEB J. 12, 35–42 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  134. Chang, B. Y., Conroy, K. B., Machleder, E. M. & Cartwright, C. A. RACK1, a receptor for activated C kinase and a homolog of the β subunit of G proteins, inhibits activity of src tyrosine kinases and growth of NIH 3T3 cells. Mol. Cell. Biol. 18, 3245– 3256 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yarwood, S. J., Steele, M. R., Scotland, G., Houslay, M. D. & Bolger, G. B. The RACK1 signaling scaffold protein selectively interacts with the cAMP-specific phosphodiesterase PDE4D5 isoform . J. Biol. Chem. 274, 14909– 14917 (1999).

    Article  CAS  PubMed  Google Scholar 

  136. Brandon, N. J. et al. GABAA receptor phosphorylation and functional modulation in cortical neurons by a protein kinase C-dependent pathway. J. Biol. Chem. 275, 38856–38862 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Smart, T. G., Thomas, P., Brandon, N. J. & Moss, S. J. in Pharmacology of GABA and Glycine Neurotransmission (ed. Mohler, H.) 195–225 (Springer–Verlag, Berlin, 2001).

    Book  Google Scholar 

  138. Garner, C. C., Nash, J. & Huganir, R. L. PDZ domains in synapse assembly and signalling. Trends Cell Biol. 10, 274–280 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. Ye, B. et al. GRASP-1: a neuronal RasGEF associated with the AMPA receptor/GRIP complex. Neuron 26, 603– 617 (2000).

    Article  CAS  PubMed  Google Scholar 

  140. Kim, J. H., Liao, D., Lau, L. F. & Huganir, R. L. SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 20, 683–691 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  141. Noel, J. et al. Surface expression of AMPA receptors in hippocampal neurons is regulated by an NSF-dependent mechanism. Neuron 23, 365–376 (1999).

    Article  CAS  PubMed  Google Scholar 

  142. Nishimune, A. et al. NSF binding to GluR2 regulates synaptic transmission. Neuron 21, 87–97 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  143. Husi, H., Ward, M. A., Choudhary, J. S., Blackstock, W. P. & Grant, S. G. Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nature Neurosci. 3, 661–669 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

Glycine receptor subunits

GABAA receptor subunits

β1 subunit

β3 subunit

γ2 subunit

δ subunit

ɛ subunit

θ subunit

α2 subunit

α1 subunit

α6 subunit

β2 subunit

GABAC receptor subunits

α3 subunit

gephyrin

Raft1

collybistin

Cdc42

γ3 subunit

dystrophin

GABARAP

MAP1B

Aut7

Glyt1E/F

PKC

AP2

PKA

PKG

CaMKII

Src

RACK1

ENCYCLOPEDIA OF LIFE SCIENCES

GABAA receptors

Benzodiazepines

Glossary

BENZODIAZEPINES

Pharmacologically active molecules with sedative, anxiolytic and anticonvulsant effects. They act by binding to the GABA receptor and potentiate the response elicited by the transmitter.

BARBITURATES

Pharmacologically active molecules with potent depressor effect in the central nervous system. They act by interacting with GABA receptors, potentiating the response elicited by the transmitter.

INNER PLEXIFORM LAYER

Retinal layer formed by the synaptic contacts between the bipolar, the amacrine and the ganglion cells.

YEAST TWO-HYBRID SCREENS

System used to determine the existence of direct interactions between proteins. It involves the use of plasmids that encode two hybrid proteins; one of them is fused to the GAL4 DNA-binding domain and the other one is fused to the GAL4 activation domain. The two proteins are expressed together in yeast and, if they interact, then the resulting complex will drive the expression of a reporter gene, commonly β-galactosidase.

RAC/RHO GTPASES

Molecules related to the product of the oncogene ras, which are involved in controlling the polymerization and subsequent organization of actin.

SH DOMAINS

Src-homology domains. They are involved in the interaction with phosphorylated tyrosine residues on other proteins (SH2 domains) or with proline-rich sections of other proteins (SH3 domains).

CHANNEL-PERMEABILITY RATIO

A comparison of the ease with which two different permeant ions can pass through a channel.

DYSTROPHIN

A protein that is absent in people with Duchenne muscular dystrophy. It is thought to participate in anchoring the cytoskeleton to the plasma membrane.

ENDOSOME

Organelle that carries materials ingested by endocytosis and passes them to lysosomes for degradation or recycles them to the cell surface.

CLATHRIN

One of the main protein components of the coats formed during membrane endocytosis.

AP2 COMPLEX

Heterotetrameric complex composed of subunits called adaptins. It is one of the main components of the coats formed during membrane endocytosis.

SMALL GTPases

Family of proteins capable of hydrolysing GTP, which include Rac, Rab, Ran, Rad, Rho and others. They subserve multiple cellular functions. For example, Rho and Rac are involved in the control of the cytoskeleton.

DYNAMIN

A GTPase that is involved in endocytosis. It is thought to be involved in severing the connection between the nascent vesicle and the donor membrane.

PDZ DOMAIN

A peptide-binding domain that is important for the organization of membrane proteins, particularly at cell–cell junctions, including synapses. They can bind to the carboxyl termini of proteins or can form dimers with other PDZ domains. PDZ domains are named after the proteins in which these sequence motifs were originally identified (PSD95, Discs-large, zona occludens-1).

PSD95

A protein of the postsynaptic density, which can interact with NMDA receptors. It is thought to participate in regulating the spatial distribution of this receptor subtype.

GRIP

(Glutamate-receptor-interacting protein). A protein that can interact with AMPA receptors. It is thought to participate in regulating the spatial distribution and targeting of this receptor subtype.

RAS PROTEINS

A group of proteins involved in growth, differentiation and cellular signalling that require the binding of GTP to enter into their active state.

GRASP

(GRIP1-associated scaffold protein). A guanine-nucleotide exchange factor that owing to its interaction with GRIP might link AMPA receptors to Ras signalling.

SYNGAP

A synaptic Ras-GTPase activating protein that interacts with PSD95. It might participate in controlling the spatial distribution of NMDA receptors, as well as in regulating Ras signalling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moss, S., Smart, T. Constructing inhibitory synapses. Nat Rev Neurosci 2, 240–250 (2001). https://doi.org/10.1038/35067500

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35067500

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing