Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Development

Cutting, pasting and painting: experimental embryology and neural development

Key Points

  • This article briefly discusses the role of experimental embryology (and experimental embryologists) in discovering the principles of vertebrate neural development. It provides a historical account of the roles of cutting, pasting and painting, as well as modifications of these techniques that have led to new approaches, in elucidating the principles of neural development.

  • Experimental embryologists have mainly used four vertebrate models to work out the principles of neural development: amphibians, chicks, mice and zebrafish. The strengths and weaknesses of these four vertebrate models are discussed.

  • Experimental embryology is founded on three main techniques. 'Cutting' involves either ablation — the removal and discarding of a tissue, a group of cells or single cells to test whether they are required for a particular developmental event — or the isolation of tissues and cells for further testing. 'Pasting' involves transplanting tissues or cells from donor to host embryos. 'Painting' involves the use of labelled cells for the purpose of tracking cell movements and fates during further development.

  • The central principle of vertebrate neural development is that the nervous system and associated structures, such as the nose, eyes, ears and (in some organisms) lateral line, arise through a series of inductive interactions between neighbouring cells. The use of cutting, pasting and painting by experimental embryologists has revealed several key principles of neural development that are related to the central principle.

  • The techniques of experimental embryology have contributed to the elucidation of a number of principles of vertebrate neural development. This review outlines the crucial series of experiments that led to the discovery of neural induction, and recent modifications of experimental embryological techniques that have been used to begin to work out its molecular mechanisms.

Abstract

The goal of experimental embryology seems rather simple: to manipulate embryos in systematic ways to elucidate mechanisms of development. Such manipulation involves variations in three main techniques — cutting, pasting and painting — and all three techniques have contributed enormously to the establishment of key principles of neural development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prospective fate maps of gastrula stages of the four vertebrate models.
Figure 2: Cutting, pasting and painting experiments in birds and mammals.
Figure 3: The molecular equivalent of cutting, pasting and painting experiments.
Figure 4: The organizer experiment.
Figure 5: The molecular equivalent of the organizer experiment.

Similar content being viewed by others

References

  1. Spemann, H. & Mangold, H. Über induktion von Embryonalanlagen durch Implantation artfremder Organisatoren. Wilhelm Roux Arch. Entwicklungsmech. Organ. 100, 599–638 (1924).

    Google Scholar 

  2. Hamburger, V. A Manual of Experimental Embryology, Revised Edition (Univ. Chicago Press, Illinois, 1960).

    Google Scholar 

  3. Hamburger, V. The Heritage of Experimental Embryology. Hans Spemann and the Organizer (Oxford Univ. Press, New York, 1988).An interesting and lively historical account of the events preceding and succeeding the discovery of the organizer, as viewed by a pioneer of experimental embryology and developmental neurobiology.

    Google Scholar 

  4. Rugh, R. Experimental Embryology (Burgess, Minneapolis, 1962).

    Google Scholar 

  5. Spemann, H. Embryonic Development and Induction (Hafner, New York, 1967).A detailed account of the series of experiments carried out on amphibian embryos in Spemann's laboratory. These experiments defined the process of induction, including neural induction.

    Google Scholar 

  6. Wilt, F. H. & Wessells, N. K. Methods in Developmental Biology (Thomas Y. Crowell Co., New York, 1967).

    Google Scholar 

  7. Sive, H. L., Grainger, R. M. & Harland, R. M. Early Development of Xenopus laevis (Cold Spring Harbor Laboratory Press, New York, 2000).

    Google Scholar 

  8. Amaya, E. & Kroll, K. L. A method for generating transgenic frog embryos. Methods Mol. Biol. 97, 393–414 (1999).

    CAS  PubMed  Google Scholar 

  9. New, D. A. T. A new technique for the cultivation of the chick embryo in vitro. J. Embryol. Exp. Morphol. 3, 326–331 (1955).

    Google Scholar 

  10. Auerbach, R., Kubai, L., Knighton, D. & Folkman, J. A simple procedure for the long-term cultivation of chicken embryos. Dev. Biol. 41, 391–394 (1974).

    Article  CAS  Google Scholar 

  11. Chapman, S. C., Collignon, J., Schoenwolf, G. C. & Lumsden, A. Improved method for chick whole-embryo culture using a filter paper carrier. Dev. Dyn. 220, 284–289 (2001).

    Article  CAS  Google Scholar 

  12. Bronner-Fraser, M. (ed.) Methods in Avian Embryology (Academic, San Diego, 1996).

    Google Scholar 

  13. Hatada, Y. & Stern, C. D. A fate map of the epiblast of the early chick embryo. Development 120, 2879–2889 (1994).

    CAS  PubMed  Google Scholar 

  14. Darnell, D. K., Garcia-Martinez, V., Lopez-Sanchez, C., Yuan, S. & Schoenwolf, G. C. in Developmental Biology Protocols Vol. I (eds Tuan, R. S. & Lo, C. W.) 305–321 (Humana, Totowa, New Jersey, 2000).

    Google Scholar 

  15. Garcia-Martinez, V., Alvarez, I. S. & Schoenwolf, G. C. Locations of the ectodermal and non-ectodermal subdivisions of the epiblast at stages 3 and 4 of avian gastrulation and neurulation. J. Exp. Zool. 267, 431–446 (1993).

    Article  CAS  Google Scholar 

  16. Lopez-Sanchez, C., Garcia-Martinez, V. & Schoenwolf, G.C. Localization of cells of the prospective neural plate, heart and somites within the primitive streak and epiblast of avian embryos at intermediate primitive-streak stages. Cells Tissues Organs 169, 334–346 (2001).

    Article  CAS  Google Scholar 

  17. Le Douarin, N. M. & Kalcheim, C. The Neural Crest (Cambridge Univ. Press, Cambridge, 1999).

    Book  Google Scholar 

  18. Morgan, B. A. & Fekete, D. M. in Methods in Avian Embryology (ed. Bronner-Fraser, M.) 185–218 (Academic, San Diego, 1996).

    Book  Google Scholar 

  19. Swartz, M., Eberhart, J., Mastick, G. S. & Krull, C. E. Sparking new frontiers: using in vivo electroporation for genetic manipulations. Dev. Biol. 233, 13–21 (2001).

    Article  CAS  Google Scholar 

  20. Timmer, J., Johnson, J. & Niswander, L. The use of in ovo electroporation for the rapid analysis of neural-specific murine enhancers. Genesis 29, 123–140 (2001).

    Article  CAS  Google Scholar 

  21. Cockroft, D. L. in Postimplantation Mammalian Embryos: a Practical Approach (eds Copp, A. J. & Cockroft D. L.) 15–40 (IRL Press, Oxford, UK, 1990).

    Google Scholar 

  22. Hogan, B., Beddington, R., Costantini, F. & Lacy, L. Manipulating the Mouse Embryo: a Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 1994).

    Google Scholar 

  23. Wassarman, P. M. & DePamphilis, M. L. Guide to Techniques in Mouse Development (Academic, New York, 1993).

    Google Scholar 

  24. Trainor, P. A. & Tam, P. P. L. Cranial paraxial mesoderm and neural crest cells of the mouse embryo: co-distribution in the craniofacial mesenchyme but distinct segregation in branchial arches. Development 121, 2569–2582 (1995).

    CAS  PubMed  Google Scholar 

  25. Lawson, K. A. & Pedersen, R. A. in Postimplantation Development in the Mouse (eds Chadwick, D. J. & Marsh, J.) 3–26 (John Wiley & Sons, Chichester, UK, 1992).

    Google Scholar 

  26. Tam, P. P. L. & Quinlan, G. A. Mapping vertebrate embryos. Curr. Biol. 6, 104–106 (1996).

    Article  CAS  Google Scholar 

  27. Ho, R. K. & Kimmel, C. B. Commitment of cell fate in the early zebrafish embryo. Science 261, 109–111 (1993).

    Article  CAS  Google Scholar 

  28. Kimmel, C. B. & Warga, R. M. Indeterminate cell lineage of the zebrafish embryo. Dev. Biol. 124, 269–280 (1987).

    Article  CAS  Google Scholar 

  29. Wilson, E. T., Helde, K. A. & Grunwald, D. J. Something's fishy here — rethinking cell movements and cell fate in the zebrafish embryo. Trends Genet. 9, 348–352 (1993).

    Article  CAS  Google Scholar 

  30. Helde, K. A., Wilson, E. T., Cretekos, C. J. & Grunwald, D. J. Contribution of early cells to the fate map of the zebrafish gastrula. Science 265, 517–520 (1994).

    Article  CAS  Google Scholar 

  31. Behringer, R. & Magnuson, T. (eds) Morpholino gene knockdowns. Genesis 30, 89–200 (2001).

    Article  Google Scholar 

  32. Jacobson, A. Inductive processes in embryonic development. Science 152, 25–34 (1966).A cogent and thoughtful summary of the hierarchy of tissue interactions that lead to induction, based on experiments in amphibians.

    Article  CAS  Google Scholar 

  33. Nieuwkoop, P. & Faber, J. Normal Table of Xenopus laevis 2nd edn (North-Holland, Amsterdam, 1967).

    Google Scholar 

  34. Hamburger, V. & Hamilton, H. L. A series of normal stages in the development of the chick embryo. J. Morphol. 88, 49–92 (1951).

    Article  CAS  Google Scholar 

  35. Eyal-Giladi, H. & Kochav, S. From cleavage to primitive streak formation: a complementary normal table and a new look at the first stages of the development of the chick. I. General morphology. Dev. Biol. 49, 321–337 (1976).

    Article  CAS  Google Scholar 

  36. Theiler, K. The House Mouse. Development and Normal Stages from Fertilization to 4 Weeks of Age (Springer, New York, 1972).

    Google Scholar 

  37. Downs, K. M. & Davies, T. Staging of gastrulating mouse embryos by morphological landmarks in the dissecting microscope. Development 118, 1255–1266 (1993).

    CAS  Google Scholar 

  38. Hausen, P. & Riebesell, M. The Early Development of Xenopus laevis. An Atlas of the Histology (Springer, Berlin, 1991).

    Google Scholar 

  39. Patten, B. M. Early Embryology of the Chick 5th edn (McGraw-Hill, New York, 1971).

    Google Scholar 

  40. Bellairs, R. & Osmond, M. The Atlas of Chick Development (Academic, San Diego, 1998).

    Google Scholar 

  41. Rugh, R. The Mouse, its Reproduction and Development (Burgess, Minneapolis, 1968).

    Google Scholar 

  42. Kaufman, M. H. The Atlas of Mouse Development (Academic, New York, 1992).

    Google Scholar 

  43. Mathews, W. W. & Schoenwolf, G. C. Atlas of Descriptive Embryology 5th edn (Prentice Hall, New Jersey, 1998).

    Google Scholar 

  44. Schoenwolf, G. C. Laboratory Studies of Vertebrate and Invertebrate Embryos. Guide and Atlas of Descriptive and Experimental Development 8th edn (Prentice Hall, New Jersey, 2001).

    Google Scholar 

  45. Nakamura, O. & Toivonen, S. Organizer — a Milestone of a Half-Century from Spemann (Elsevier/North-Holland, Amsterdam, 1978).

    Google Scholar 

  46. Gould, S. E. & Grainger, R. M. Neural induction and antero-posterior patterning in the amphibian embryo: past, present and future. Cell. Mol. Life Sci. 53, 319–338 (1997).A scholarly update of progress in understanding tissue interactions that underlie neural induction, 30 years after Jacobson's seminal review (reference 32).

    Article  CAS  Google Scholar 

  47. Nieuwkoop, P. D. Short historical survey of pattern formation in the endo-mesoderm and the neural anlage in the vertebrates: the role of vertical and planar inductive actions. Cell. Mol. Life Sci. 53, 305–318 (1997).

    Article  CAS  Google Scholar 

  48. Keller, R. Gastrulation: Movements, Patterns, and Molecules (Plenum, New York, 1991).

    Google Scholar 

  49. Schoenwolf, G. C. & Smith, J. L. Mechanisms of neurulation: traditional viewpoint and recent advances. Development 109, 243–270 (1990).

    CAS  PubMed  Google Scholar 

  50. Colas, J.-F. & Schoenwolf, G. C. Towards a cellular and molecular understanding of neurulation. Dev. Dyn. 221, 117–145 (2001).

    Article  CAS  Google Scholar 

  51. Grainger, R. M. Embryonic lens induction: shedding light on vertebrate tissue determination. Trends Genet. 8, 349–355 (1992).

    Article  CAS  Google Scholar 

  52. Ladher, R. K., Anakwe, K. U., Gurney, A. L., Schoenwolf, G. C. & Francis-West, P. H. Identification of synergistic signals initiating inner ear development. Science 290, 1965–1967 (2000).A series of experiments defining the tissue interactions that underlie induction of the inner ear in chick, and the demonstration that two growth factors/signalling molecules, FGF19 and WNT8C, act synergistically to mediate the tissue interactions.

    Article  CAS  Google Scholar 

  53. Yamada, T., Placzek, M., Tanaka, H., Dodd, J. & Jessell, T. M. Control of cell pattern in the developing nervous system: polarizing activity of the floor plate and notochord. Cell 64, 635–647 (1991).

    Article  CAS  Google Scholar 

  54. Lumsden, A. & Krumlauf, R. Patterning the vertebrate neuraxis. Science 274, 1109–1123 (1996).

    Article  CAS  Google Scholar 

  55. Moury, J. D. & Jacobson, A. G. Neural fold formation at newly created boundaries between neural plate and epidermis in the axolotl. Dev. Biol. 133, 44–57 (1989).

    Article  CAS  Google Scholar 

  56. Selleck, M. A. & Bronner-Fraser, M. The genesis of avian neural crest cells: a classic embryonic induction. Proc. Natl Acad. Sci. USA 93, 9352–9357 (1996).

    Article  CAS  Google Scholar 

  57. Roelink, H., Tanabe, Y. & Jessell, T. M. Sonic hedgehog: a mediator of inductive signaling in the ventral neural tube. Cell Dev. Biol. 7, 121–127 (1996).

    Article  CAS  Google Scholar 

  58. Crossley, P. H., Martinez, S. & Martin, G. R. Midbrain development induced by fgf8 in the chick embryo. Nature 380, 66–68 (1996).

    Article  CAS  Google Scholar 

  59. Beddington, R. S. P. & Robertson, E. J. Anterior patterning in mouse. Trends Genet. 14, 277–284 (1998).A summary of evidence for the existence of a head organizer in mice, which is unique and spatially separated from the trunk–tail/Spemann organizer (that is, the node).

    Article  CAS  Google Scholar 

  60. Smith, J. C. & Slack, J. M. Dorsalization and neural induction: properties of the organizer in Xenopus laevis. J. Embryol. Exp. Morphol. 78, 299–317 (1983).

    CAS  PubMed  Google Scholar 

  61. Hemmati-Brivanlou, A. & Melton, D. Vertebrate embryonic cells will become nerve cells unless told otherwise. Cell 88, 13–17 (1997).A turning point in our understanding of neural induction. This paper presents evidence that neural is the default state of ectodermal cells.

    Article  CAS  Google Scholar 

  62. De Robertis, E. M., Larrain, J., Oelgeschlager, M. & Wessely, O. The establishment of the Spemann's organizer and patterning of the vertebrate embryo. Nature Rev. Genet. 1, 171–181 (2000).

    Article  CAS  Google Scholar 

  63. Sasai, Y., Lu, B., Steinbeisser, H., Geissert, D., Gont, L. K. & De Robertis, E. M. Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homoeobox genes. Cell 79, 779–790 (1994).

    Article  CAS  Google Scholar 

  64. De Robertis, E. M. & Sasai, Y. A common plan for dorsoventral patterning in Bilateria. Nature 380, 37–40 (1996).

    Article  CAS  Google Scholar 

  65. Gerhart, J. Inversion of the chordate body axis: are there alternatives? Proc. Natl Acad. Sci. USA 97, 4445–4448 (2000).

    Article  CAS  Google Scholar 

  66. Wolpert, L., Beddington, R., Brockes, J., Jessell, T., Lawrence, P. & Meyerowitz, E. Principles of Development (Current Biology Ltd, London, 1998).

    Google Scholar 

  67. Rasmussen, J. T., Deardorff, M. A., Tan, C., Rao, M. S., Klein, P. S. & Vetter, M. L. Regulation of eye development by frizzled signaling in Xenopus. Proc. Natl Acad. Sci. USA 98, 3861–3866 (2001).This paper presents the extraordinary finding that a single transmembrane receptor (frizzled 3) for a signalling molecule, when overexpressed, results in the formation of a complex structure (the eye), and that expression of a dominant-negative form of this receptor on one side of the embryo completely blocks eye formation on that side.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research on this subject in my laboratory was supported by the US National Institutes of Health. This article is dedicated to the memory of Viktor Hamburger, a pioneer in experimental embryology and neural development, and one of my scientific heroes. I am indebted to the late R. M. Sweeney, L. Vakaet and R. L. Watterson for teaching me the elegance of avian experimental embryology. I thank J.-F. Colas and R. Ladher for their critical comments on drafts of this manuscript. I apologize to those many authors whose work could not be considered here owing to space constraints; rather than being exhaustive, cited references merely provide examples of relevant studies.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

FlyBase

Dpp

Sog

GenBank

frizzled 3

Pax6

LocusLink

BMP

cerberus

chordin

Fgf8

follistatin

Frzb

noggin

Shh

Sox2

Wnt

FURTHER INFORMATION

The Zebrafish Book

Glossary

DOMINANT NEGATIVE

A mutant molecule capable of forming a heteromeric complex with the normal molecule, knocking out the activity of the entire complex.

FORWARD-GENETIC SCREEN

A genetic analysis that proceeds from phenotype to genotype by positional cloning or candidate-gene analysis.

ELECTROPORATION

The transient generation of pores in a cell membrane by exposing the cell to a high field strength electrical pulse.

IONTOPHORESIS

The introduction of a substance into a cell by ion transfer, using electrodes to apply an electrical potential to the membrane.

CRE/LOXP

A site-specific recombination system derived from Escherichia coli bacteriophage P1. Two short DNA sequences (loxP sites) are engineered to flank the target DNA. Activation of the Cre-recombinase enzyme catalyses recombination between the loxP sites, leading to excision of the intervening sequence.

MORPHOLINO

An antisense oligonucleotide that acts specifically to block the initiation of translation.

GASTRULATION

The process by which the embryo becomes regionalized into three layers: ectoderm, mesoderm and endoderm.

NEURULATION

A morphogenetic process during which the progenitors of the nervous system segregate from the ectoderm as a dorsal, hollow nerve cord.

NOTOCHORD

A rod-like structure of mesodermal origin that is found in vertebrate embryos. It participates in the differentiation of the ventral neural tube and in the specification of motor neurons.

FLOOR PLATE

The ventral cells of the neural tube that lie in the midline.

ISTHMUS

A narrow section of the neural tube, which separates the midbrain from the hindbrain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoenwolf, G. Cutting, pasting and painting: experimental embryology and neural development. Nat Rev Neurosci 2, 763–771 (2001). https://doi.org/10.1038/35097549

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35097549

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing