Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Inside the brain of an elite athlete: the neural processes that support high achievement in sports

A Corrigendum to this article was published on 20 July 2009

Key Points

  • Elite athletes exhibit enhanced motor, perceptual and decision-making abilities developed over extensive periods of task-relevant practise.

  • Their motor acts are very precise, but are not confined to stereotypical kinematic patterns; it is the goal-relevant outcome that is controlled precisely, in line with current computational theories of motor control such as optimal feedback control.

  • Because sporting skills are highly complex and take years of practise, determining how learning is achieved in the setting of very delayed rewards represents a challenge for current theories of reinforcement learning.

  • The performance of expert athletes seems automatic, and often operates best in the absence of conscious control, but it is the level of performance, for example a new speed–accuracy trade-off, not automaticity per se, that defines expertise. The development of perceptual and motor skill correlates with structural changes in primary sensory and motor cortices, whereas functional imaging suggests a more efficient and focused use of neural resources across the brain.

  • Expert–novice paradigms suggest that athletes predict how events will unfold based on the movements of their opponents, and use these predictions to increase the speed and accuracy of their decisions.

  • The ability to make such predictions is consistent with the idea of a forward model that predicts the consequence of an opponent's actions.

  • The impressive ability of athletes to make good time-pressured decisions is compatible with recent models of motor decision making, which suggest that multiple motor acts are specified in parallel in sensorimotor regions of the cortex and compete through biased inhibitory connections to yield a single winning motor choice.

Abstract

Events like the World Championships in athletics and the Olympic Games raise the public profile of competitive sports. They may also leave us wondering what sets the competitors in these events apart from those of us who simply watch. Here we attempt to link neural and cognitive processes that have been found to be important for elite performance with computational and physiological theories inspired by much simpler laboratory tasks. In this way we hope to inspire neuroscientists to consider how their basic research might help to explain sporting skill at the highest levels of performance.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The learning curve for skill acquisition.
Figure 2: Neural substrates of the affordance competition model.
Figure 3: Anticipatory information pickup by expert athletes.

Similar content being viewed by others

References

  1. Ericsson, K. A. (ed.) The road to excellence: the acquisition of expert performance in the arts and sciences, sports, and games (Lawrence Erlbaum Associates, Mahwah, New Jersey, 1996).

    Google Scholar 

  2. Cisek, P. Integrated neural processes for defining potential actions and deciding between them: a computational model. J. Neurosci. 26, 9761–9770 (2006). This paper presents a computational model based on biased inhibitory interactions, which combines motor decisions and motor planning in a single parallel process.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Todorov, E. Optimality principles in sensorimotor control. Nature Neurosci. 7, 907–915 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Todorov, E. & Jordan, M. I. Optimal feedback control as a theory of motor coordination. Nature Neurosci. 5, 1226–1235 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Nowak, D. A., Timmann, D. & Hermsdorfer, J. Dexterity in cerebellar agenesis. Neuropsychologia 45, 696–703 (2007).

    Article  PubMed  Google Scholar 

  6. Miall, R. C., Christensen, L. O., Cain, O. & Stanley, J. Disruption of state estimation in the human lateral cerebellum. PLoS Biol. 5, e316 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Scott, S. H. Optimal feedback control and the neural basis of volitional motor control. Nature Rev. Neurosci. 5, 532–546 (2004).

    Article  CAS  Google Scholar 

  8. Shadmehr, R. & Krakauer, J. W. A computational neuroanatomy for motor control. Exp. Brain Res. 185, 359–381 (2008). An up-to-date review that outlines the computational framework of optimal feedback control and uses it to interpret neuropsychological deficits and guide thinking about functional localization in the brain.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bernstein, N. A. The co-ordination and regulation of movements (Pergamon, Oxford, 1967).

    Google Scholar 

  10. Morasso, P. Spatial control of arm movements. Exp. Brain Res. 42, 223–227 (1981).

    Article  CAS  PubMed  Google Scholar 

  11. Collewijn, H., Erkelens, C. J. & Steinman, R. M. Binocular co-ordination of human horizontal saccadic eye movements. J. Physiol 404, 157–182 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang, J. F. & Scholz, J. P. Learning a throwing task is associated with differential changes in the use of motor abundance. Exp. Brain Res. 163, 137–158 (2005).

    Article  PubMed  Google Scholar 

  13. Scholz, J. P. & Schoner, G. The uncontrolled manifold concept: identifying control variables for a functional task. Exp. Brain Res. 126, 289–306 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Muller, H. & Sternad, D. Decomposition of variability in the execution of goal-oriented tasks: three components of skill improvement. J. Exp. Psychol. Hum. Percept. Perform. 30, 212–233 (2004).

    Article  PubMed  Google Scholar 

  15. Scholz, J. P., Schoner, G. & Latash, M. L. Identifying the control structure of multijoint coordination during pistol shooting. Exp. Brain Res. 135, 382–404 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Bartlett, R., Wheat, J. & Robins, M. Is movement variability important for sports biomechanists? Sports Biomech. 6, 224–243 (2007).

    Article  PubMed  Google Scholar 

  17. Graziano, M. S., Taylor, C. S. & Moore, T. Complex movements evoked by microstimulation of precentral cortex. Neuron 34, 841–851 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Schmidt, R. A. A schema theory of discrete motor skill learning. Psychol. Rev. 82, 225–260 (1975).

    Article  Google Scholar 

  19. Kao, M. H., Wright, B. D. & Doupe, A. J. Neurons in a forebrain nucleus required for vocal plasticity rapidly switch between precise firing and variable bursting depending on social context. J. Neurosci. 28, 13232–13247 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ericsson, K. A., Krampe, R. T. & Tesch-Romer, C. The role of deliberate practice in the acquisition of expert performance. Psychol. Rev. 100, 363–406 (1993). This paper introduced the deliberate practise framework, providing an important counterpoint to genetic accounts of elite performance.

    Article  Google Scholar 

  21. Newell, K. M. & Rosenbloom, P. S. Mechanisms of skill acquisition and the law of practice in Cognitive skills and their acquisition (ed. Anderson, J. R.) 1–55 (Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1981).

    Google Scholar 

  22. Crossman, E. R. F. W. A theory of the acquisition of speed-skill. Ergonomics 2, 153–166 (1959).

    Article  Google Scholar 

  23. Shadmehr, R. & Mussa-Ivaldi, F. A. Adaptive representation of dynamics during learning of a motor task. J. Neurosci. 14, 3208–3224 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Krakauer, J. W., Pine, Z. M., Ghilardi, M. F. & Ghez, C. Learning of visuomotor transformations for vectorial planning of reaching trajectories. J. Neurosci. 20, 8916–8924 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nozaki, D., Kurtzer, I. & Scott, S. H. Limited transfer of learning between unimanual and bimanual skills within the same limb. Nature Neurosci. 9, 1364–1366 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Mazzoni, P. & Krakauer, J. W. An implicit plan overrides an explicit strategy during visuomotor adaptation. J. Neurosci. 26, 3642–3645 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ghilardi, M. F., Moisello, C., Silvestri, G., Ghez, C. & Krakauer, J. W. Learning of a sequential motor skill comprises explicit and implicit components that consolidate differently. J. Neurophysiol. 101, 2218–2229 (2009).

    Article  PubMed  Google Scholar 

  28. Law, C. T. & Gold, J. I. Reinforcement learning can account for associative and perceptual learning on a visual-decision task. Nature Neurosci. 12, 655–663 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Takahashi, Y., Schoenbaum, G. & Niv, Y. Silencing the critics: understanding the effects of cocaine sensitization on dorsolateral and ventral striatum in the context of an actor/critic model. Front Neurosci. 2, 86–99 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Huang, V. S., Shadmehr, R. & Diedrichsen, J. Active learning: learning a motor skill without a coach. J. Neurophysiol. 100, 879–887 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Recanzone, G. H., Merzenich, M. M., Jenkins, W. M., Grajski, K. A. & Dinse, H. R. Topographic reorganization of the hand representation in cortical area 3b owl monkeys trained in a frequency-discrimination task. J. Neurophysiol. 67, 1031–1056 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Recanzone, G. H., Schreiner, C. E. & Merzenich, M. M. Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J. Neurosci. 13, 87–103 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schoups, A., Vogels, R., Qian, N. & Orban, G. Practising orientation identification improves orientation coding in V1 neurons. Nature 412, 549–553 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Wehr, M. & Laurent, G. Odour encoding by temporal sequences of firing in oscillating neural assemblies. Nature 384, 162–166 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Green, C. S. & Bavelier, D. Action video game modifies visual selective attention. Nature 423, 534–537 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Buckles, K. M., Yund, E. W. & Efron, R. Visual detectability gradients: effect of high-speed visual experience. Brain Cogn. 17, 52–63 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Overney, L. S., Blanke, O. & Herzog, M. H. Enhanced temporal but not attentional processing in expert tennis players. PLoS ONE 3, e2380 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kleim, J. A. et al. Motor learning-dependent synaptogenesis is localized to functionally reorganized motor cortex. Neurobiol. Learn. Mem. 77, 63–77 (2002).

    Article  PubMed  Google Scholar 

  39. Matsuzaka, Y., Picard, N. & Strick, P. L. Skill representation in the primary motor cortex after long-term practice. J. Neurophysiol. 97, 1819–1832 (2007).

    Article  PubMed  Google Scholar 

  40. Classen, J., Liepert, J., Wise, S. P., Hallett, M. & Cohen, L. G. Rapid plasticity of human cortical movement representation induced by practice. J. Neurophysiol. 79, 1117–1123 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Karni, A. et al. Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377, 155–158 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Fitts, P. M. Perceptual-motor skill learning in Categories of human learning (ed. Melton, A. W.) 243–285 (Academic, New York, 1964).

    Book  Google Scholar 

  43. Shiffrin, R. M. & Schneider, W. Controlled and automatic human information processing: II. Perceptual learning, automatic attending, and a general theory. Psychol. Rev. 84, 127–190 (1977).

    Article  Google Scholar 

  44. Leavitt, J. L. Cognitive demands of skating and stickhandling in ice hockey. Can. J. Appl. Sport Sci. 4, 46–55 (1979).

    CAS  PubMed  Google Scholar 

  45. Beilock, S. L., Carr, T. H., MacMahon, C. & Starkes, J. L. When paying attention becomes counterproductive: impact of divided versus skill-focused attention on novice and experienced performance of sensorimotor skills. J. Exp. Psychol. Appl. 8, 6–16 (2002).

    Article  PubMed  Google Scholar 

  46. Ericsson, K. A. Deliberate practice and the modifiability of body and mind: toward a science of the structure and acquisition of expert and elite performance. Int. J. Sport Psychol. 38, 4–34 (2007).

    Google Scholar 

  47. Reis, J. et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc. Natl Acad. Sci. USA 106, 1590–1595 (2009). This paper describes a positive effect of transcranial direct current stimulation on motor learning and, thus, suggests a way that skill acquisition could be augmented.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nielsen, J. B. & Cohen, L. G. The Olympic brain. Does corticospinal plasticity play a role in acquisition of skills required for high-performance sports? J. Physiol. 586, 65–70 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Pearce, A. J., Thickbroom, G. W., Byrnes, M. L. & Mastaglia, F. L. Functional reorganisation of the corticomotor projection to the hand in skilled racquet players. Exp. Brain Res. 130, 238–243 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Fourkas, A. D., Bonavolonta, V., Avenanti, A. & Aglioti, S. M. Kinesthetic imagery and tool-specific modulation of corticospinal representations in expert tennis players. Cereb. Cortex 18, 2382–2390 (2008).

    Article  PubMed  Google Scholar 

  51. Johansen-Berg, H., Della-Maggiore, V., Behrens, T. E., Smith, S. M. & Paus, T. Integrity of white matter in the corpus callosum correlates with bimanual co-ordination skills. Neuroimage 36 (Suppl. 2), T16–T21 (2007).

    Article  Google Scholar 

  52. Reis, J. et al. Role of brain derived neurotrophic factor (BDNF) in acquisition and long-term retention of a novel visuomotor skill. Society for Neuroscience abstracts: 38th annual meeting. 2008.

  53. Williams, L. R. & Gross, J. B. Heritability of motor skill. Acta Genet. Med. Gemellol. (Roma) 29, 127–136 (1980).

    Article  CAS  Google Scholar 

  54. Fox, P. W., Hershberger, S. L. & Bouchard, T. J., Jr Genetic and environmental contributions to the acquisition of a motor skill. Nature 384, 356–358 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Missitzi, J., Geladas, N. & Klissouras, V. Heritability in neuromuscular coordination: implications for motor control strategies. Med. Sci. Sports Exerc. 36, 233–240 (2004).

    Article  PubMed  Google Scholar 

  56. Draganski, B. et al. Neuroplasticity: changes in grey matter induced by training. Nature 427, 311–312 (2004). This important paper demonstrated alteration in the human brain's macroscopic structure upon skill learning.

    Article  CAS  PubMed  Google Scholar 

  57. Driemeyer, J., Boyke, J., Gaser, C., Buchel, C. & May, A. Changes in gray matter induced by learning—revisited. PLoS ONE 3, e2669 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. May, A. et al. Structural brain alterations following 5 days of intervention: dynamic aspects of neuroplasticity. Cereb. Cortex 17, 205–210 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Pascual-Leone, A., Tarazona, F. & Catala, M. D. Applications of transcranial magnetic stimulation in studies on motor learning. Electroencephalogr. Clin. Neurophysiol. Suppl. 51, 157–161 (1999).

    CAS  PubMed  Google Scholar 

  60. Kelly, A. M. & Garavan, H. Human functional neuroimaging of brain changes associated with practice. Cereb. Cortex 15, 1089–1102 (2005).

    Article  PubMed  Google Scholar 

  61. Milton, J., Solodkin, A., Hlustik, P. & Small, S. L. The mind of expert motor performance is cool and focused. Neuroimage 35, 804–813 (2007).

    Article  PubMed  Google Scholar 

  62. Baumeister, J., Reinecke, K., Liesen, H. & Weiss, M. Cortical activity of skilled performance in a complex sports related motor task. Eur. J. Appl. Physiol. 104, 625–631 (2008).

    Article  PubMed  Google Scholar 

  63. Babiloni, C. et al. Golf putt outcomes are predicted by sensorimotor cerebral EEG rhythms. J. Physiol. 586, 131–139 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Rushworth, M. F. Intention, choice, and the medial frontal cortex. Ann. NY Acad. Sci. 1124, 181–207 (2008).

    Article  PubMed  Google Scholar 

  65. Gold, J. I. & Shadlen, M. N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Trommershauser, J., Maloney, L. T. & Landy, M. S. Decision making, movement planning and statistical decision theory. Trends Cogn. Sci. 12, 291–297 (2008).

    Article  PubMed  Google Scholar 

  67. Trommershauser, J., Gepshtein, S., Maloney, L. T., Landy, M. S. & Banks, M. S. Optimal compensation for changes in task-relevant movement variability. J. Neurosci. 25, 7169–7178 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Brown, S. D. & Heathcote, A. The simplest complete model of choice response time: linear ballistic accumulation. Cognit. Psychol. 57, 153–178 (2008).

    Article  PubMed  Google Scholar 

  69. Pashler, H. Dual-task interference in simple tasks: data and theory. Psychol. Bull. 116, 220–244 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Rosenbaum, D. A. Human movement initiation: specification of arm, direction, and extent. J. Exp. Psychol. Gen. 109, 444–474 (1980).

    Article  CAS  PubMed  Google Scholar 

  71. Cisek, P. & Kalaska, J. F. Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action. Neuron 45, 801–814 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Georgopoulos, A. P., Lurito, J. T., Petrides, M., Schwartz, A. B. & Massey, J. T. Mental rotation of the neuronal population vector. Science 243, 234–236 (1989).

    Article  CAS  PubMed  Google Scholar 

  73. Pesaran, B., Nelson, M. J. & Andersen, R. A. Free choice activates a decision circuit between frontal and parietal cortex. Nature 453, 406–409 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ghez, C. et al. Discrete and continuous planning of hand movements and isometric force trajectories. Exp. Brain Res. 115, 217–233 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Findlay, J. M. Global visual processing for saccadic eye movements. Vision Res. 22, 1033–1045 (1982).

    Article  CAS  PubMed  Google Scholar 

  76. McPeek, R. M. & Keller, E. L. Superior colliculus activity related to concurrent processing of saccade goals in a visual search task. J. Neurophysiol. 87, 1805–1815 (2002).

    Article  PubMed  Google Scholar 

  77. Gold, J. I. & Shadlen, M. N. Representation of a perceptual decision in developing oculomotor commands. Nature 404, 390–394 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Shadlen, M. N. & Newsome, W. T. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86, 1916–1936 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Churchland, A. K., Kiani, R. & Shadlen, M. N. Decision-making with multiple alternatives. Nature Neurosci. 11, 693–702 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Hanks, T. D., Ditterich, J. & Shadlen, M. N. Microstimulation of macaque area LIP affects decision-making in a motion discrimination task. Nature Neurosci. 9, 682–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Murthy, A., Ray, S., Shorter, S. M., Schall, J. D. & Thompson, K. G. Neural control of visual search by frontal eye field: effects of unexpected target displacement on visual selection and saccade preparation. J. Neurophysiol. 101, 2485–2506 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kording, K. P. & Wolpert, D. M. Bayesian integration in sensorimotor learning. Nature 427, 244–247 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Abernethy, B. & Russell, D. G. Advance cue utilisation by skilled cricket batsmen. Aust. J. Sci. Med. Sport 16, 2–10 (1984).

    Google Scholar 

  84. Gibson A. P. & Adams R. D. Batting stroke timing with a bowler and a bowling machine: A case study. Aust. J. Sci. Med. Sport 21, 3–6 (1989).

    Google Scholar 

  85. Muller, S., Abernethy, B. & Farrow, D. How do world-class cricket batsmen anticipate a bowler's intention? Q. J. Exp. Psychol. (Colchester) 59, 2162–2186 (2006). A thorough example of how temporal and spatial occlusion techniques can be combined to understand the nature of the expert advantage in anticipation-based decision making.

    Article  Google Scholar 

  86. Muller, S. & Abernethy, B. Batting with occluded vision: an in situ examination of the information pick-up and interceptive skills of high- and low-skilled cricket batsmen. J. Sci. Med. Sport 9, 446–458 (2006).

    Article  PubMed  Google Scholar 

  87. Land, M. F. & McLeod, P. From eye movements to actions: how batsmen hit the ball. Nature Neurosci. 3, 1340–1345 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Goulet, C. et al. Analysis of advance visual indices in receiving a tennis serve. Can. J. Sport Sci. 13, 79–87 (1988) (in french).

    CAS  PubMed  Google Scholar 

  89. Abernethy, B. Anticipation in squash: differences in advance cue utilization between expert and novice players. J. Sports Sci. 8, 17–34 (1990).

    Article  CAS  PubMed  Google Scholar 

  90. Starkes, J. L., Edwards, P., Dissanayake, P. & Dunn, T. A new technology and field test of advance cue usage in volleyball. Res. Q. Exerc. Sport 66, 162–167 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. Savelsbergh, G. J., Williams, A. M., Van der, K. J. & Ward, P. Visual search, anticipation and expertise in soccer goalkeepers. J. Sports Sci. 20, 279–287 (2002).

    Article  PubMed  Google Scholar 

  92. Aglioti, S. M., Cesari, P., Romani, M. & Urgesi, C. Action anticipation and motor resonance in elite basketball players. Nature Neurosci. (2008). This paper links the mirror system, presumed to have a key role in action understanding, with the anticipatory decision making abilities shown by athletes in response to the movements of their opponents.

  93. De Groot, A. Thought and choice in chess (Mouton de Gruyter, The Hague, 1978).

    Google Scholar 

  94. Chase, W. G. & Simon, H. A. The mind's eye in chess in Visual information processing (ed. Chase, W. G.) 215–282 (Academic, New York, 1973).

    Book  Google Scholar 

  95. Hodges, N. J., Starkes, J. L. & MacMahon, C. Expert performance in sport in Cambridge Handbook of Expertise (eds Charness, N., Ericsson, K. A., Hoffman, R. R. & Feltovich, P.) 471–488 (Cambridge University Press, New York, 2006).

    Book  Google Scholar 

  96. Ward, P. & Williams, A. M. Perceptual and cognitive skill development: the multidimensional nature of expert performance. J. Sport Exerc. Psychol. 25, 93–111 (2003).

    Article  Google Scholar 

  97. Knoblich, G. & Flach, R. Predicting the effects of actions: interactions of perception and action. Psychol. Sci. 12, 467–472 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Fadiga, L., Fogassi, L., Pavesi, G. & Rizzolatti, G. Motor facilitation during action observation: a magnetic stimulation study. J. Neurophysiol. 73, 2608–2611 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Di Pellegrino G., Fadiga, L., Fogassi, L., Gallese, V. & Rizzolatti, G. Understanding motor events: a neurophysiological study. Exp. Brain Res. 91, 176–180 (1992).

    Article  PubMed  Google Scholar 

  100. Fabbri-Destro, M. & Rizzolatti, G. Mirror neurons and mirror systems in monkeys and humans. Physiology (Bethesda) 23, 171–179 (2008).

    Google Scholar 

  101. Shmuelof, L. & Zohary, E. Mirror-image representation of action in the anterior parietal cortex. Nature Neurosci. 11, 1267–1269 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Hodges, N. J., Williams, A. M., Hayes, S. J. & Breslin, G. What is modelled during observational learning? J. Sports Sci. 25, 531–545 (2007).

    Article  PubMed  Google Scholar 

  103. Calvo-Merino, B., Grezes, J., Glaser, D. E., Passingham, R. E. & Haggard, P. Seeing or doing? Influence of visual and motor familiarity in action observation. Curr. Biol. 16, 1905–1910 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Calvo-Merino, B., Glaser, D. E., Grezes, J., Passingham, R. E. & Haggard, P. Action observation and acquired motor skills: an FMRI study with expert dancers. Cereb. Cortex 15, 1243–1249 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Wolpert, D. M. & Miall, R. C. Forward models for physiological motor control. Neural Netw. 9, 1265–1279 (1996).

    Article  PubMed  Google Scholar 

  106. Flanagan, J. R. & Wing, A. M. The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J. Neurosci. 17, 1519–1528 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wagner, M. J. & Smith, M. A. Shared internal models for feedforward and feedback control. J. Neurosci. 28, 10663–10673 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chen-Harris, H., Joiner, W. M., Ethier, V., Zee, D. S. & Shadmehr, R. Adaptive control of saccades via internal feedback. J. Neurosci. 28, 2804–2813 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Vaziri, S., Diedrichsen, J. & Shadmehr, R. Why does the brain predict sensory consequences of oculomotor commands? Optimal integration of the predicted and the actual sensory feedback. J. Neurosci. 26, 4188–4197 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cerminara, N. L., Apps, R. & Marple-Horvat, D. E. An internal model of a moving visual target in the lateral cerebellum. J. Physiol. 587, 429–442 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Miall, R. C. Connecting mirror neurons and forward models. Neuroreport 14, 2135–2137 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Niv, Y. Cost, benefit, tonic, phasic: what do response rates tell us about dopamine and motivation? Ann. NY Acad. Sci. 1104, 357–376 (2007).

    Article  PubMed  Google Scholar 

  113. Mazzoni, P., Hristova, A. & Krakauer, J. W. Why don't we move faster? Parkinson's disease, movement vigor, and implicit motivation. J. Neurosci. 27, 7105–7116 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Takikawa, Y., Kawagoe, R., Itoh, H., Nakahara, H. & Hikosaka, O. Modulation of saccadic eye movements by predicted reward outcome. Exp. Brain Res. 142, 284–291 (2002).

    Article  PubMed  Google Scholar 

  115. Satoh, T., Nakai, S., Sato, T. & Kimura, M. Correlated coding of motivation and outcome of decision by dopamine neurons. J. Neurosci. 23, 9913–9923 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kühn, A. A. et al. Motivation modulates motor-related feedback activity in the human basal ganglia. Curr. Biol. 18, R648–R650 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Galton, F. Inquiries into human faculty and its development (Macmillan, London, 1883).

    Book  Google Scholar 

  118. Watson, J. B. Behaviorism (Norton, New York, 1934).

    Google Scholar 

  119. Howe, M. J., Davidson, J. W. & Sloboda, J. A. Innate talents: reality or myth? Behav. Brain Sci. 21, 399–407 (1998).

    Article  CAS  PubMed  Google Scholar 

  120. Bloom, B. S. Generalizations about talent development in Developing talent in young people (ed. Bloom, B. S.) 507–549 (Ballantine Books, New York, 1985).

    Google Scholar 

  121. Starkes, J. L., Deakin, J. M., Allard, F., Hodges, N. J. & Hayes, A. Deliberate practice in sports: what is it anyway? in The road to excellence: the acquisition of expert performance in the arts and sciences, sports and games (ed. Ericsson, K. A.) 81–106 (Lawrence Erlbaum Associates, Mahwah, New Jersey, 1996).

    Google Scholar 

  122. Helson, W. F., Starkes, J. L. & Hodges, N. J. Team sports and the theory of deliberate practice. J. Sport Exerc. Psychol. 20, 12–34 (1998).

    Article  Google Scholar 

  123. Ward, P., Hodges, N. J., Williams, A. M. & Starkes, J. L. Deliberate practice and expert performance: defining the path to excellence in Skill acquisition in sport: research, theory and practice (eds Williams, A. M. & Hodges, N. J.) 231–258 (Routhledge, London, 2004).

    Google Scholar 

  124. Jokl, E. The human hand. Int. J. Sport Psychol. 12, 140–148 (1981).

    Google Scholar 

  125. Greksa, L. P. Effect of altitude on the stature, chest depth and forced vital capacity of low-to-high altitude migrant children of European ancestry. Hum. Biol. 60, 23–32 (1988).

    CAS  PubMed  Google Scholar 

  126. Pelliccia, A. et al. Remodeling of left ventricular hypertrophy in elite athletes after long-term deconditioning. Circulation 105, 944–949 (2002).

    Article  PubMed  Google Scholar 

  127. Iemitsu, M., Maeda, S., Miyauchi, T., Matsuda, M. & Tanaka, H. Gene expression profiling of exercise-induced cardiac hypertrophy in rats. Acta Physiol. Scand. 185, 259–270 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Howe, M. J. The childhoods and early lives of geniuses: combining psychological and biographical evidence in The road to excellence: the acquisition of expert performance in the arts and sciences, sports and games (ed. Ericsson, K. A.) 255–270 (Lawrence Erlbaum Associates, Mahwah, New Jersey, 1996).

    Google Scholar 

  129. Winner, E. The rage to master: the decisive role of talent in the visual arts in The road to excellence: the acquisition of expert performance in the arts and sciences, sports and games (ed. Ericsson, K. A.) 271–302 (Lawrence Erlbaum Associates, Mahwah, New Jersey, 1996).

    Google Scholar 

  130. Sternberg, R. J. Costs of expertise in The road to excellence: the acquisition of expert performance in the arts and sciences, sports and games (ed. Ericsson, K. A.) 347–354 (Lawrence Erlbaum Associates, Mahwah, New Jersey, 1996).

    Google Scholar 

  131. Bouchard, C. et al. Familial aggregation of VO2max response to exercise training: results from the HERITAGE Family Study. J. Appl. Physiol 87, 1003–1008 (1999).

    Article  CAS  PubMed  Google Scholar 

  132. Thomis, M. A. et al. Strength training: importance of genetic factors. Med. Sci. Sports Exerc. 30, 724–731 (1998).

    Article  CAS  PubMed  Google Scholar 

  133. Plomin, R., DeFries J. C., MccClearn, G. E. & McGuffin, P. Behavioural genetics (Freeman, New York, 2001).

    Google Scholar 

  134. Macarthur, D. G. & North, K. N. Genes and human elite athletic performance. Hum. Genet. 116, 331–339 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Wolfarth, B. et al. The human gene map for performance and health-related fitness phenotypes: the 2004 update. Med. Sci. Sports Exerc. 37, 881–903 (2005).

    CAS  PubMed  Google Scholar 

  136. Gonzalez-Freire, M. et al. Unique among unique. Is it genetically determined? Br. J. Sports Med.(2008).

  137. de la Chapelle A., Traskelin, A. L. & Juvonen, E. Truncated erythropoietin receptor causes dominantly inherited benign human erythrocytosis. Proc. Natl Acad. Sci. USA 90, 4495–4499 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Le Galliard, J. F., Clobert, J. & Ferriere, R. Physical performance and Darwinian fitness in lizards. Nature 432, 502–505 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Davids, K. & Baker, J. Genes, environment and sport performance: why the nature–nurture dualism is no longer relevant. Sports Med. 37, 961–980 (2007).

    Article  PubMed  Google Scholar 

  140. Jordet, G. Why do English players fail in soccer penalty shootouts? A study of team status, self-regulation, and choking under pressure. J. Sports Sci. 1–10 (2008).

  141. Jordet, G. & Hartmen, E. Avoidance motivation and choking under pressure in soccer penalty shootouts. J. Sport Exerc. Psychol. 30, 450–457 (2008).

    Article  PubMed  Google Scholar 

  142. Baumeister, R. F. Choking under pressure: self-consciousness and paradoxical effects of incentives on skillful performance. J. Pers. Soc. Psychol. 46, 610–620 (1984).

    Article  CAS  PubMed  Google Scholar 

  143. Beilock, S. L., Bertenthal, B. I., McCoy, A. M. & Carr, T. H. Haste does not always make waste: expertise, direction of attention, and speed versus accuracy in performing sensorimotor skills. Psychon. Bull. Rev. 11, 373–379 (2004).

    Article  PubMed  Google Scholar 

  144. Jueptner, M. et al. Anatomy of motor learning. I. Frontal cortex and attention to action. J. Neurophysiol. 77, 1313–1324 (1997).

    Article  CAS  PubMed  Google Scholar 

  145. Burgess, P. W., Dumontheil, I. & Gilbert, S. J. The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends Cogn. Sci. 11, 290–298 (2007).

    Article  PubMed  Google Scholar 

  146. Meeusen, R. et al. Prevention, diagnosis and treatment of the overtraining syndrome. Eur. J. Sports Sci. 6, 1–14 (2006).

    Article  Google Scholar 

  147. Defazio, G., Berardelli, A. & Hallett, M. Do primary adult-onset focal dystonias share aetiological factors? Brain 130, 1183–1193 (2007).

    Article  PubMed  Google Scholar 

  148. Adler, C. H., Crews, D., Hentz, J. G., Smith, A. M. & Caviness, J. N. Abnormal co-contraction in yips-affected but not unaffected golfers: evidence for focal dystonia. Neurology 64, 1813–1814 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Seibel, R. Discrimination reaction time for 1,023-alternative task. J. Exp. Psychol. 66, 215–226 (1963).

    Article  CAS  PubMed  Google Scholar 

  150. Heathcote, A., Brown, S. & Mewhort, D. J. The power law repealed: the case for an exponential law of practice. Psychon. Bull. Rev. 7, 185–207 (2000).

    Article  CAS  PubMed  Google Scholar 

  151. di-Japha, E., Karni, A., Parnes, A., Loewenschuss, I. & Vakil, E. A shift in task routines during the learning of a motor skill: group-averaged data may mask critical phases in the individuals' acquisition of skilled performance. J. Exp. Psychol. Learn. Mem. Cogn. 34, 1544–1551 (2008).

    Article  Google Scholar 

  152. Kristofferson, A. B. A quantal step function in duration discrimination. Percept. Psychophys. 27, 300–306 (1980).

    Article  CAS  PubMed  Google Scholar 

  153. Cisek, P. Cortical mechanisms of action selection: the affordance competition hypothesis. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 362, 1585–1599 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

Peter Brown is supported by the Medical Research Council. John W. Krakauer is supported by NIH grant R01-052804. The authors thank Drs R. Shadmehr and Y. Niv for crucial comments on sections of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Brown.

Related links

Related links

FURTHER INFORMATION

Kielan Yarrow's homepage

Peter Brown's homepage

John Krakauer's homepage

Glossary

Mirror system

A network of premotor and parietal cortical areas that is activated by both the execution and the observation of action.

Policy

Defines the relationship between a state and the action to be taken.

Cost to go

The total cost remaining in the current trial. It is computed by combining expected rewards, end point variability, effort and other variables.

Degrees of freedom

The number of parameters needed to specify the posture of a mechanical linkage such as an arm.

Kinematic pattern

A description of the spatial position of body parts over time.

Execution noise

Random fluctuations in motor output that are not present in the central motor command.

Prism glasses

Lenses that distort the visual input received by the eyes, typically displacing it by a set amount.

Rotation adaptation

An experimental procedure in which artificial visual feedback (a hand position that is rotated by a constant amount relative to the true direction of hand movement) is presented during reaching movements.

Reward function

The relationship between a given state and its associated reward.

Value function

The total amount of reward over current and all future states.

Actor–critic architecture

A reinforcement learning model in which the policy structure (the actor) is separate from the value function (the critic).

Neural tuning

A function describing how a neuron modulates its firing rate as the variable that it is encoding changes; more precise tuning reflects modulation over a narrower range.

Corticospinal facilitation

Increased excitability of the corticospinal tract, measured using motor-evoked potentials.

VO2max

A measure of aerobic capacity: The maximum volume of oxygen that can be used in one minute of exhaustive exercise.

Spike-field coherence

A measure of frequency-specific shared variance between spiking activity and local field potentials, the latter provide a measure of synchronised synaptic potentials in a neural population.

Random-dot motion discrimination

A task in which observers view a set of short-lived dots moving in random directions and attempt to determine the direction of a subset of dots that move coherently.

Decision variable

A single quantity, reflecting the combination of prior judgements, current evidence and subjective costs and benefits, which is compared with a decision rule to produce a choice.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yarrow, K., Brown, P. & Krakauer, J. Inside the brain of an elite athlete: the neural processes that support high achievement in sports. Nat Rev Neurosci 10, 585–596 (2009). https://doi.org/10.1038/nrn2672

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2672

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing