Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Shiga toxins — from cell biology to biomedical applications

Key Points

  • Owing to the oligomeric structure of the Shiga toxin receptor-binding B subunit, these toxins cluster glycosphingolipids to mediate their trafficking into cells.

  • Shiga toxins use poorly explored trafficking pathways to enter cells by clathrin-independent endocytosis and to reach intracellular compartments through the retrograde route.

  • For translocation of the cytotoxic A subunit into the cytosol, Shiga toxins need to be transported to the endoplasmic reticulum, where they use cellular machinery to cross membranes.

  • Shiga toxins kill cells by inhibiting protein biosynthesis. However, they also induce many signalling events that contribute in a major way to the establishment of disease.

  • The expression of globotriaosylceramide, the receptor for Shiga toxins, on dendritic cells and its overexpression by human tumours open possibilities for using the receptor-binding B subunit of Shiga toxins as delivery tools for immunotherapy and targeted tumour therapy.

  • There are several intervention strategies being explored currently, some of which are showing promising results.

Abstract

Shiga toxin-producing Escherichia coli is an emergent pathogen that can induce haemolytic uraemic syndrome. The toxin has received considerable attention not only from microbiologists but also in the field of cell biology, where it has become a powerful tool to study intracellular trafficking. In this Review, we summarize the Shiga toxin family members and their structures, receptors, trafficking pathways and cellular targets. We discuss how Shiga toxin affects cells not only by inhibiting protein biosynthesis but also through the induction of signalling cascades that lead to apoptosis. Finally, we discuss how Shiga toxins might be exploited in cancer therapy and immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Shiga toxin structures.
Figure 2: Trafficking of Shiga toxins.
Figure 3: The endoplasmic reticulum-associated protein degradation pathway.
Figure 4: Apoptosis pathways that are induced by Shiga toxins.

Similar content being viewed by others

References

  1. Konowalchuk, J., Speirs, J. I. & Stavric, S. Vero response to a cytotoxin of Escherichia coli. Infect. Immun. 18, 775–779 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. O'Brien, A. D. et al. Shiga-like toxin-converting phages from Escherichia coli strains that cause haemorrhagic colitis or infantile diarrhea. Science 226, 694–696 (1984).

    Article  CAS  PubMed  Google Scholar 

  3. Karmali, M. A., Steele, B. T., Petric, M. & Lim, C. Sporadic cases of haemolytic-uraemic syndrome associated with faecal cytotoxin and cytotoxin-producing Escherichia coli in stools. Lancet 1, 619–620 (1983).

    Article  CAS  PubMed  Google Scholar 

  4. Boerlin, P. et al. Associations between virulence factors of Shiga toxin-producing Escherichia coli and disease in humans. J. Clin. Microbiol. 37, 497–503 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Jackson, M. P., Newland, J. W., Holmes, R. K. & O'Brien, A. D. Nucleotide sequence analysis of the structural genes for Shiga-like toxin I encoded by bacteriophage 933J from Escherichia coli. Microb. Pathog. 2, 147–153 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Unkmeir, A. & Schmidt, H. Structural analysis of phage-borne stx genes and their flanking sequences in Shiga toxin-producing Escherichia coli and Shigella dysenteriae type 1 strains. Infect. Immun. 68, 4856–4864 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Herold, S., Karch, H. & Schmidt, H. Shiga toxin-encoding bacteriophages – genomes in motion. Int. J. Med. Microbiol. 294, 115–121 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Neely, M. N. & Friedman, D. I. Functional and genetic analysis of regulatory regions of coliphage H-19B: location of shiga-like toxin and lysis genes suggest a role for phage functions in toxin release. Mol. Microbiol. 28, 1255–1267 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Tyler, J. S., Mills, M. J. & Friedman, D. I. The operator and early promoter region of the Shiga toxin type 2-encoding bacteriophage 933W and control of toxin expression. J. Bacteriol. 186, 7670–7679 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wagner, P. L. et al. Bacteriophage control of Shiga toxin 1 production and release by Escherichia coli. Mol. Microbiol. 44, 957–970 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Wagner, P. L., Acheson, D. W. & Waldor, M. K. Human neutrophils and their products induce Shiga toxin production by enterohemorrhagic Escherichia coli. Infect. Immun. 69, 1934–1937 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Calderwood, S. B. & Mekalanos, J. J. Iron regulation of Shiga-like toxin expression in Escherichia coli is mediated by the fur locus. J. Bacteriol. 169, 4759–4764 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Proulx, F., Seidman, E. G. & Karpman, D. Pathogenesis of Shiga toxin-associated haemolytic uraemic syndrome. Pediatr. Res. 50, 163–171 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Lingwood, C. A. Role of verotoxin receptors in pathogenesis. Trends Microbiol. 4, 147–153 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Tarr, P. I., Gordon, C. A. & Chandler, W. L. Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet 365, 1073–1086 (2005).

    CAS  PubMed  Google Scholar 

  16. Ostroff, S. M. et al. Toxin genotypes and plasmid profiles as determinants of systemic sequelae in Escherichia coli O157:H7 infections. J. Infect. Dis. 160, 994–998 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Donohue-Rolfe, A., Kondova, I., Oswald, S., Hutto, D. & Tzipori, S. Escherichia coli O157:H7 strains that express Shiga toxin (Stx) 2 alone are more neurotropic for gnotobiotic piglets than are isotypes producing only Stx1 or both Stx1 and Stx2. J. Infect. Dis. 181, 1825–1829 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Offner, G., Brodehl, J., Galaske, R. & Rutt, T. Acute renal failure in children: prognostic features after treatment with acute dialysis. Eur. J. Pediatr. 144, 482–486 (1986).

    Article  CAS  PubMed  Google Scholar 

  19. Fraser, M. E., Chernaia, M. M., Kozlov, Y. V. & James, M. N. Crystal structure of the holotoxin from Shigella dysenteriae at 2.5 Å resolution. Nature Struct. Biol. 1, 59–64 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Stein, P. E., Boodhoo, A., Tyrrell, G. J., Brunton, J. L. & Read, R. J. Crystal structure of the cell-binding B oligomer of verotoxin-1 from E. coli. Nature 355, 748–750 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Donohue-Rolfe, A. & Keusch, G. T. Shigella dysenteriae 1 cytotoxin: periplasmic protein releasable by polymyxin B and osmotic shock. Infect. Immun. 39, 270–274 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hirst, T. R., Sanchez, J., Kaper, J. B., Hardy, S. J. & Holmgren, J. Mechanism of toxin secretion by Vibrio cholerae investigated in strains harbouring plasmids that encode heat-labile enterotoxins of Escherichia coli. Proc. Natl Acad. Sci. USA 81, 7752–7756 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Endo, Y. et al. Site of action of a Vero toxin (VT2) from Escherichia coli O157:H7 and of Shiga toxin on eukaryotic ribosomes. RNA N-glycosidase activity of the toxins. Eur. J. Biochem. 171, 45–50 (1988).

    Article  CAS  PubMed  Google Scholar 

  24. Saxena, S. K., O'Brien, A. D. & Ackerman, E. J. Shiga toxin, Shiga-like toxin II variant, and ricin are all single-site RNA N-glycosidases of 28 S RNA when microinjected into Xenopus oocytes. J. Biol. Chem. 264, 596–601 (1989).

    CAS  PubMed  Google Scholar 

  25. Hale, T. L. & Formal, S. B. Cytotoxicity of Shigella dysenteriae 1 for cultured mammalian cells. Am. J. Clin. Nutr. 33, 2485–2490 (1980).

    Article  CAS  PubMed  Google Scholar 

  26. Suh, J. K., Hovde, C. J. & Robertus, J. D. Shiga toxin attacks bacterial ribosomes as effectively as eucaryotic ribosomes. Biochemistry 37, 9394–9398 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Jacewicz, M., Clausen, H., Nudelman, E., Donohue-Rolfe, A. & Keusch, G. T. Pathogenesis of Shigella diarrhea. XI. Isolation of a Shigella toxin-binding glycolipid from rabbit jejunum and HeLa cells and its identification as globotriaosylceramide. J. Exp. Med. 163, 1391–1404 (1986).

    Article  CAS  PubMed  Google Scholar 

  28. Lindberg, A. A. et al. Identification of the carbohydrate receptor for Shiga toxin produced by Shigella dysenteriae type 1. J. Biol. Chem. 262, 1779–1785 (1987).

    CAS  PubMed  Google Scholar 

  29. Waddell, T., Cohen, A. & Lingwood, C. A. Induction of verotoxin sensitivity in receptor-deficient cell lines using the receptor glycolipid globotriosylceramide. Proc. Natl Acad. Sci. USA 87, 7898–7901 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Donohue-Rolfe, A., Jacewicz, M. & Keusch, G. T. Isolation and characterization of functional Shiga toxin subunits and renatured holotoxin. Mol. Microbiol. 3, 1231–1236 (1989).

    Article  CAS  PubMed  Google Scholar 

  31. Nyholm, P. G., Brunton, J. L. & Lingwood, C. A. Modelling of the interaction of verotoxin-1 (VT1) with its glycolipid receptor, globotriaosylceramide (Gb3). Int. J. Biol. Macromol. 17, 199–204 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Nyholm, P. G. et al. Two distinct binding sites for globotriaosyl ceramide on verotoxins: identification by molecular modelling and confirmation using deoxy analogues and a new glycolipid receptor for all verotoxins. Chem. Biol. 3, 263–275 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Picking, W. D., McCann, J. A., Nutikka, A. & Lingwood, C. A. Localization of the binding site for modified Gb3 on verotoxin 1 using fluorescence analysis. Biochemistry 38, 7177–7184 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Ling, H. et al. Structure of the shiga-like toxin I B-pentamer complexed with an analogue of its receptor Gb3. Biochemistry 37, 1777–1788 (1998). This paper describes the co-crystal that is formed between the Shiga toxin 1 B subunit and soluble Gb3 receptor analogues. The study shows that there are up to 15 Gb3 binding sites per B subunit pentamer and lays the groundwork for structure–function relationship studies of the B subunit–Gb3 complex.

    Article  CAS  PubMed  Google Scholar 

  35. Bast, D. J., Banerjee, L., Clark, C., Read, R. J. & Brunton, J. L. The identification of three biologically relevant globotriaosyl ceramide receptor binding sites on the Verotoxin 1 B subunit. Mol. Microbiol. 32, 953–960 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Soltyk, A. M. et al. A mutational analysis of the globotriaosylceramide-binding sites of verotoxin VT1. J. Biol. Chem. 277, 5351–5359 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Shimizu, H., Field, R. A., Homans, S. W. & Donohue-Rolfe, A. Solution structure of the complex between the B-subunit homopentamer of verotoxin VT-1 from Escherichia coli and the trisaccharide moiety of globotriaosylceramide. Biochemistry 37, 11078–11082 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Fuchs, G. et al. Pathogenesis of Shigella diarrhea: rabbit intestinal cell microvillus membrane binding site for Shigella toxin. Infect. Immun. 53, 372–377 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. St. Hilaire, P. M., Boyd, M. K. & Toone, E. J. Interaction of the Shiga-like toxin type 1 B-subunit with its carbohydrate receptor. Biochemistry 33, 14452–14463 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Kiarash, A., Boyd, B. & Lingwood, C. A. Glycosphingolipid receptor function is modified by fatty acid content. Verotoxin 1 and verotoxin 2c preferentially recognize different globotriaosyl ceramide fatty acid homologues. J. Biol. Chem. 269, 11138–11146 (1994). This pioneering work on the importance of Gb3 structure in the recognition by Shiga toxins finds that B subunit binding to different Gb3 molecular species is dependent on fatty acid chain length and saturation degree.

    CAS  PubMed  Google Scholar 

  41. Pellizzari, A., Pang, H. & Lingwood, C. A. Binding of verocytotoxin 1 to its receptor is influenced by differences in receptor fatty acid content. Biochemistry 31, 1363–1370 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. Head, S. C., Karmali, M. A. & Lingwood, C. A. Preparation of VT1 and VT2 hybrid toxins from their purified dissociated subunits. Evidence for B subunit modulation of a subunit function. J. Biol. Chem. 266, 3617–3621 (1991).

    CAS  PubMed  Google Scholar 

  43. Tesh, V. L. et al. Comparison of the relative toxicities of Shiga-like toxins type I and type II for mice. Infect. Immun. 61, 3392–3402 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Binnington, B., Lingwood, D., Nutikka, A. & Lingwood, C. A. Effect of globotriaosyl ceramide fatty acid α-hydroxylation on the binding by verotoxin 1 and verotoxin 2. Neurochem. Res. 27, 807–813 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Arab, S. & Lingwood, C. A. Influence of phospholipid chain length on verotoxin/globotriaosyl ceramide binding in model membranes: comparison of a supported bilayer film and liposomes. Glycoconj. J. 13, 159–166 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Boyd, B., Magnusson, G., Zhiuyan, Z. & Lingwood, C. A. Lipid modulation of glycolipid receptor function. Availability of Gal(α1-4)Gal disaccharide for verotoxin binding in natural and synthetic glycolipids. Eur. J. Biochem. 223, 873–878 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Mahfoud, R., Manis, A. & Lingwood, C. A. Fatty acid-dependent globotriaosyl ceramide receptor function in detergent resistant model membranes. J. Lipid Res. 50, 1744–1755 (2008).

    Article  PubMed  CAS  Google Scholar 

  48. Nakajima, H. et al. Kinetic analysis of binding between Shiga toxin and receptor glycolipid Gb3Cer by surface plasmon resonance. J. Biol. Chem. 276, 42915–42922 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Newburg, D. S. et al. Susceptibility to haemolytic-uraemic syndrome relates to erythrocyte glycosphingolipid patterns. J. Infect. Dis. 168, 476–479 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Bonifacino, J. S. & Rojas, R. Retrograde transport from endosomes to the trans-Golgi network. Nature Rev. Mol. Cell Biol. 7, 568–579 (2006).

    Article  CAS  Google Scholar 

  51. Johannes, L. & Decaudin, D. Protein toxins: intracellular trafficking for targeted therapy. Gene Ther. 12, 1360–1368 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Johannes, L. & Popoff, V. Tracing the retrograde route in protein trafficking. Cell 135, 1175–1187 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Sandvig, K. & van Deurs, B. Delivery into cells: lessons learned from plant and bacterial toxins. Gene Ther. 12, 865–872 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Amessou, M., Popoff, V., Yelamos, B., Saint-Pol., A. & Johannes, L. Measuring retrograde transport to the trans-Golgi network. Curr. Protoc. Cell Biol. Chapter 15, Unit 15.10 (2006).

  55. Mallard, F. & Johannes, L. Shiga toxin B-subunit as a tool to study retrograde transport. Methods Mol. Med. 73, 209–220 (2003).

    CAS  PubMed  Google Scholar 

  56. Sandvig, K., Olsnes, S., Brown, J. E., Petersen, O. W. & van Deurs, B. Endocytosis from coated pits of Shiga toxin: a glycolipid-binding protein from Shigella dysenteriae 1. J. Cell Biol. 108, 1331–1343 (1989).

    Article  CAS  PubMed  Google Scholar 

  57. Lauvrak, S. U., Torgersen, M. L. & Sandvig, K. Efficient endosome-to-Golgi transport of Shiga toxin is dependent on dynamin and clathrin. J. Cell Sci. 117, 2321–2331 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Nichols, B. J. et al. Rapid cycling of lipid raft markers between the cell surface and Golgi complex. J. Cell Biol. 153, 529–541 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Saint-Pol., A. et al. Clathrin adaptor epsinR is required for retrograde sorting on early endosomal membranes. Dev. Cell 6, 525–538 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Romer, W. et al. Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 450, 670–675 (2007). This work addresses the biological relevance of constructing protein–lipid nanodomains in the cellular uptake of Shiga toxin and proposes a new mechanism for the generation of negative curvature.

    Article  PubMed  CAS  Google Scholar 

  61. Sandvig, K. et al. Retrograde transport of endocytosed Shiga toxin to the endoplasmic reticulum. Nature 358, 510–512 (1992). A pioneering study that demonstrates that the localization of Shiga toxin in the membranes of the endoplasmatic reticulum is the result of retrograde transport through the secretory pathway.

    Article  CAS  PubMed  Google Scholar 

  62. Mallard, F. et al. Direct pathway from early/recycling endosomes to the Golgi apparatus revealed through the study of Shiga toxin B-fragment transport. J. Cell Biol. 143, 973–990 (1998). This article describes the discovery of a transport connection between early and recycling endosomes and the TGN that is different to the recycling pathway of the mannose-6-phosphate receptor between late endosomes and the TGN. The early and recycling endosomes–TGN interface is also used by the cellular protein TGN38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lombardi, D. et al. Rab9 functions in transport between late endosomes and the trans Golgi network. EMBO J. 12, 677–682 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bujny, M. V., Popoff, V., Johannes, L. & Cullen, P. J. The retromer component sorting nexin-1 is required for efficient retrograde transport of Shiga toxin from early endosome to the trans Golgi network. J. Cell Sci. 120, 2010–2021 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Popoff, V. et al. The retromer complex and clathrin define an early endosomal retrograde exit site. J. Cell Sci. 120, 2022–2031 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Utskarpen, A., Slagsvold, H. H., Dyve, A. B., Skanland, S. S. & Sandvig, K. SNX1 and SNX2 mediate retrograde transport of Shiga toxin. Biochem. Biophys. Res. Commun. 358, 566–570 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Bonifacino, J. S. & Hurley, J. H. Retromer. Curr. Opin. Cell Biol. 20, 427–436 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Falguieres, T. et al. Targeting of Shiga toxin B-subunit to retrograde transport route in association with detergent-resistant membranes. Mol. Biol. Cell 12, 2453–2468 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kovbasnjuk, O., Edidin, M. & Donowitz, M. Role of lipid rafts in Shiga toxin 1 interaction with the apical surface of Caco-2 cells. J. Cell Sci. 114, 4025–4031 (2001).

    CAS  PubMed  Google Scholar 

  70. Girod, A. et al. Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum. Nature Cell Biol. 1, 423–430 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. McKenzie, J., Johannes, L., Taguchi, T. & Sheff, D. Passage through the Golgi is necessary for Shiga toxin B subunit to reach the endoplasmic reticulum. FEBS J. 276, 1581–1595 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Garred, O., van Deurs, B. & Sandvig, K. Furin-induced cleavage and activation of Shiga toxin. J. Biol. Chem. 270, 10817–10821 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Kurmanova, A. et al. Structural requirements for furin-induced cleavage and activation of Shiga toxin. Biochem. Biophys. Res. Commun. 357, 144–149 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Lea, N., Lord, J. M. & Roberts, L. M. Proteolytic cleavage of the A subunit is essential for maximal cytotoxicity of Escherichia coli O157:H7 Shiga-like toxin-1. Microbiology 145, 999–1004 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. O'Brien, A. D. & Holmes, R. K. Shiga and Shiga-like toxins. Microbiol. Rev. 51, 206–220 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Olsnes, S., Reisbig, R. & Eiklid, K. Subunit structure of Shigella cytotoxin. J. Biol. Chem. 256, 8732–8738 (1981).

    CAS  PubMed  Google Scholar 

  77. Falguieres, T. & Johannes, L. Shiga toxin B-subunit binds to the chaperone BiP and the nucleolar protein B23. Biol. Cell 98, 125–134 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. LaPointe, P., Wei, X. & Gariepy, J. A role for the protease-sensitive loop region of Shiga-like toxin 1 in the retrotranslocation of its A1 domain from the endoplasmic reticulum lumen. J. Biol. Chem. 280, 23310–23318 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Yu, M. & Haslam, D. B. Shiga toxin is transported from the endoplasmic reticulum following interaction with the luminal chaperone HEDJ/ERdj3. Infect. Immun. 73, 2524–2532 (2005). This investigation finds evidence for a function of HEDJ, other chaperones and the translocon Sec61 in the retro-translocation of Shiga toxin from the ER lumen to the cytosol.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Meunier, L., Usherwood, Y. K., Chung, K. T. & Hendershot, L. M. A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins. Mol. Biol. Cell 13, 4456–4469 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tam, P. J. & Lingwood, C. A. Membrane cytosolic translocation of verotoxin A1 subunit in target cells. Microbiology 153, 2700–2710 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Mayerhofer, P. U. et al. Ricin A chain insertion into endoplasmic reticulum membranes is triggered by a temperature increase to 37 °C. J. Biol. Chem. 284, 10232–10242 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hazes, B. & Read, R. J. Accumulating evidence suggests that several AB-toxins subvert the endoplasmic reticulum-associated protein degradation pathway to enter target cells. Biochemistry 36, 11051–11054 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Deeks, E. D. et al. The low lysine content of ricin A chain reduces the risk of proteolytic degradation after translocation from the endoplasmic reticulum to the cytosol. Biochemistry 41, 3405–3413 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Wesche, J., Rapak, A. & Olsnes, S. Dependence of ricin toxicity on translocation of the toxin A-chain from the endoplasmic reticulum to the cytosol. J. Biol. Chem. 274, 34443–34449 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Ray, P. E. & Liu, X. H. Pathogenesis of Shiga toxin-induced haemolytic uraemic syndrome. Pediatr. Nephrol. 16, 823–839 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Falguieres, T. et al. Human colorectal tumours and metastases express Gb3 and can be targeted by an intestinal pathogen-based delivery tool. Mol. Cancer Ther. 7, 2498–2508 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Iordanov, M. S. et al. Ribotoxic stress response: activation of the stress-activated protein kinase JNK1 by inhibitors of the peptidyl transferase reaction and by sequence-specific RNA damage to the α-sarcin/ricin loop in the 28S rRNA. Mol. Cell Biol. 17, 3373–3381 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Foster, G. H. & Tesh, V. L. Shiga toxin 1-induced activation of c-Jun NH2-terminal kinase and p38 in the human monocytic cell line THP-1: possible involvement in the production of TNF-α. J. Leukoc. Biol. 71, 107–114 (2002).

    CAS  PubMed  Google Scholar 

  90. Ikeda, M., Gunji, Y., Yamasaki, S. & Takeda, Y. Shiga toxin activates p38 MAP kinase through cellular Ca2+ increase in Vero cells. FEBS Lett. 485, 94–98 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Jandhyala, D. M., Ahluwalia, A., Obrig, T. & Thorpe, C. M. ZAK: a MAP3Kinase that transduces Shiga toxin- and ricin-induced proinflammatory cytokine expression. Cell. Microbiol. 10, 1468–1477 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Smith, W. E. et al. Shiga toxin 1 triggers a ribotoxic stress response leading to p38 and JNK activation and induction of apoptosis in intestinal epithelial cells. Infect. Immun. 71, 1497–1504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lauvrak, S. U. et al. Shiga toxin regulates its entry in a Syk-dependent manner. Mol. Biol. Cell 17, 1096–1109 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Katagiri, Y. U. et al. Activation of Src family kinase Yes induced by Shiga toxin binding to globotriaosyl ceramide (Gb3/CD77) in low density, detergent-insoluble microdomains. J. Biol. Chem. 274, 35278–35282 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Mori, T. et al. Globotriaosyl ceramide (CD77/Gb3) in the glycolipid-enriched membrane domain participates in B-cell receptor-mediated apoptosis by regulating lyn kinase activity in human B cells. Exp. Hematol. 28, 1260–1268 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Torgersen, M. L., Walchli, S., Grimmer, S., Skanland, S. S. & Sandvig, K. Protein kinase Cδ is activated by Shiga toxin and regulates its transport. J. Biol. Chem. 282, 16317–16328 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Thorpe, C. M. et al. Shiga toxins stimulate secretion of interleukin-8 from intestinal epithelial cells. Infect. Immun. 67, 5985–5993 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Shimizu, T. et al. An association of 27- and 40-kDa molecules with glycolipids that bind A-B bacterial enterotoxins to cultured cells. Biochim. Biophys. Acta 1612, 186–194 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Hehnly, H., Sheff, D. & Stamnes, M. Shiga toxin facilitates its retrograde transport by modifying microtubule dynamics. Mol. Biol. Cell 17, 4379–4389 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Takenouchi, H. et al. Shiga toxin binding to globotriaosyl ceramide induces intracellular signals that mediate cytoskeleton remodeling in human renal carcinoma-derived cells. J. Cell Sci. 117, 3911–3922 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Harrison, L. M., van Haaften, W. C. & Tesh, V. L. Regulation of proinflammatory cytokine expression by Shiga toxin 1 and/or lipopolysaccharides in the human monocytic cell line THP-1. Infect. Immun. 72, 2618–2627 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ramegowda, B. & Tesh, V. L. Differentiation-associated toxin receptor modulation, cytokine production, and sensitivity to Shiga-like toxins in human monocytes and monocytic cell lines. Infect. Immun. 64, 1173–1180 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Eisenhauer, P. B. et al. Tumour necrosis factor alpha increases human cerebral endothelial cell Gb3 and sensitivity to Shiga toxin. Infect. Immun. 69, 1889–1894 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Louise, C. B. & Obrig, T. G. Shiga toxin-associated haemolytic-uraemic syndrome: combined cytotoxic effects of Shiga toxin, interleukin-1β, and tumour necrosis factor alpha on human vascular endothelial cells in vitro. Infect. Immun. 59, 4173–4179 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Stone, M. K., Kolling, G. L., Lindner, M. H. & Obrig, T. G. p38 mitogen-activated protein kinase mediates lipopolysaccharide and tumour necrosis factor alpha induction of Shiga toxin 2 sensitivity in human umbilical vein endothelial cells. Infect. Immun. 76, 1115–1121 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Stricklett, P. K., Hughes, A. K. & Kohan, D. E. Inhibition of p38 mitogen-activated protein kinase ameliorates cytokine upregulated shigatoxin-1 toxicity in human brain microvascular endothelial cells. J. Infect. Dis. 191, 461–471 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Yamasaki, C. et al. Induction of cytokines in a human colon epithelial cell line by Shiga toxin 1 (Stx1) and Stx2 but not by non-toxic mutant Stx1 which lacks N-glycosidase activity. FEBS Lett. 442, 231–234 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Cameron, P., Smith, S. J., Giembycz, M. A., Rotondo, D. & Plevin, R. Verotoxin activates mitogen-activated protein kinase in human peripheral blood monocytes: role in apoptosis and proinflammatory cytokine release. Br. J. Pharmacol. 140, 1320–1330 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cherla, R. P., Lee, S. Y., Mees, P. L. & Tesh, V. L. Shiga toxin 1-induced cytokine production is mediated by MAP kinase pathways and translation initiation factor eIF4E in the macrophage-like THP-1 cell line. J. Leukoc. Biol. 79, 397–407 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Murata, K. et al. Verotoxin-1 stimulation of macrophage-like THP-1 cells upregulates tissue factor expression through activation of c-Yes tyrosine kinase: possible signal transduction in tissue factor upregulation. Biochim. Biophys. Acta 1762, 835–843 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Kojio, S. et al. Caspase-3 activation and apoptosis induction coupled with the retrograde transport of Shiga toxin: inhibition by brefeldin A. FEMS Immunol. Med. Microbiol. 29, 275–281 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Lee, S. Y., Lee, M. S., Cherla, R. P. & Tesh, V. L. Shiga toxin 1 induces apoptosis through the endoplasmic reticulum stress response in human monocytic cells. Cell. Microbiol. 10, 770–780 (2008). The study provides an integrated view on a major toxin-induced signalling pathway, showing that Stx1 triggers monocytic cell apoptosis through activation of ER stress sensors, increased expression of DR5 and TRAIL, and activation of caspase 8 through a calpain-dependent mechanism.

    Article  CAS  PubMed  Google Scholar 

  113. Lee, S. Y., Cherla, R. P., Caliskan, I. & Tesh, V. L. Shiga toxin 1 induces apoptosis in the human myelogenous leukemia cell line THP-1 by a caspase-8-dependent, tumour necrosis factor receptor-independent mechanism. Infect. Immun. 73, 5115–5126 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fujii, J. et al. Rapid apoptosis induced by Shiga toxin in HeLa cells. Infect. Immun. 71, 2724–2735 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fujii, J. et al. Shiga toxin 2 causes apoptosis in human brain microvascular endothelial cells via C/EBP homologous protein. Infect. Immun. 76, 3679–3689 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jones, N. L. et al. Escherichia coli Shiga toxins induce apoptosis in epithelial cells that is regulated by the Bcl-2 family. Am. J. Physiol. Gastrointest. Liver Physiol. 278, G811–G819 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Suzuki, A. et al. Bcl-2 antiapoptotic protein mediates verotoxin II-induced cell death: possible association between Bcl-2 and tissue failure by E. coli O157:H7. Genes Dev. 14, 1734–1740 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Erwert, R. D. et al. Shiga toxin induces decreased expression of the anti-apoptotic protein Mcl-1 concomitant with the onset of endothelial apoptosis. Microb. Pathog. 35, 87–93 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Tetaud, C. et al. Two distinct Gb3/CD77 signalling pathways leading to apoptosis are triggered by anti-Gb3/CD77 mAb and verotoxin-1. J. Biol. Chem. 278, 45200–45208 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Williams, J. M. et al. Comparison of ribosome-inactivating proteins in the induction of apoptosis. Toxicol. Lett. 91, 121–127 (1997).

    Article  CAS  PubMed  Google Scholar 

  121. Hakomori, S. & Zhang, Y. Glycosphingolipid antigens and cancer therapy. Chem. Biol. 4, 97–104 (1997).

    Article  CAS  PubMed  Google Scholar 

  122. Kovbasnjuk, O. et al. The glycosphingolipid globotriaosylceramide in the metastatic transformation of colon cancer. Proc. Natl Acad. Sci. USA 102, 19087–19092 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Johansson, D. et al. Expression of verotoxin-1 receptor Gb3 in breast cancer tissue and verotoxin-1 signal transduction to apoptosis. BMC Cancer 9, 67 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. LaCasse, E. C. et al. Shiga-like toxin-1 receptor on human breast cancer, lymphoma, and myeloma and absence from CD34+ haematopoietic stem cells: implications for ex vivo tumour purging and autologous stem cell transplantation. Blood 94, 2901–2910 (1999).

    CAS  PubMed  Google Scholar 

  125. Arab, S., Russel, E., Chapman, W. B., Rosen, B. & Lingwood, C. A. Expression of the verotoxin receptor glycolipid, globotriaosylceramide, in ovarian hyperplasias. Oncol. Res. 9, 553–563 (1997).

    CAS  PubMed  Google Scholar 

  126. Wiels, J., Fellous, M. & Tursz, T. Monoclonal antibody against a Burkitt lymphoma-associated antigen. Proc. Natl Acad. Sci. USA 78, 6485–6488 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Farkas-Himsley, H., Hill, R., Rosen, B., Arab, S. & Lingwood, C. A. The bacterial colicin active against tumour cells in vitro and in vivo is verotoxin 1. Proc. Natl Acad. Sci. USA 92, 6996–7000 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Heath-Engel, H. M. & Lingwood, C. A. Verotoxin sensitivity of ECV304 cells in vitro and in vivo in a xenograft tumour model: VT1 as a tumour neovascular marker. Angiogenesis 6, 129–141 (2003). This article documents the expression of Gb3 in tumour neovasculature and describes the antineoplasic effect of Shiga toxin 1 after intratumoral injection in xenografted mice.

    Article  CAS  PubMed  Google Scholar 

  129. Ishitoya, S. et al. Verotoxin induces rapid elimination of human renal tumour xenografts in SCID mice. J. Urol. 171, 1309–1313 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Salhia, B., Rutka, J. T., Lingwood, C., Nutikka, A. & Van Furth, W. R. The treatment of malignant meningioma with verotoxin. Neoplasia 4, 304–311 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. LaCasse, E. C., Saleh, M. T., Patterson, B., Minden, M. D. & Gariepy, J. Shiga-like toxin purges human lymphoma from bone marrow of severe combined immunodeficient mice. Blood 88, 1561–1567 (1996).

    CAS  PubMed  Google Scholar 

  132. Janssen, K. P. et al. In vivo tumour targeting using a novel intestinal pathogen-based delivery approach. Cancer Res. 66, 7230–7236 (2006). This study demonstrates that the B subunit targets spontaneous Gb3-expressing adenocarcinomas in a transgenic mouse model and presents different imaging modalities that exploit B subunit-based delivery of contrast agents.

    Article  CAS  PubMed  Google Scholar 

  133. Viel, T. et al. In vivo tumour targeting by the B-subunit of shiga toxin. Mol. Imaging 7, 239–247 (2008).

    Article  PubMed  Google Scholar 

  134. El Alaoui, A. et al. Shiga toxin-mediated retrograde delivery of a topoisomerase I inhibitor prodrug. Angew. Chem. Int. Edn Engl. 46, 6469–6472 (2007).

    Article  CAS  Google Scholar 

  135. El Alaoui, A. et al. Synthesis and properties of a mitochondrial peripheral benzodiazepine receptor conjugate. ChemMedChem 3, 1687–1695 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Amessou, M. et al. Retrograde delivery of photosensitizer (TPPp-O-β-GluOH)3 selectively potentiates its photodynamic activity. Bioconjug. Chem. 19, 532–538 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Tarrago-Trani, M. T., Jiang, S., Harich, K. C. & Storrie, B. Shiga-like toxin subunit B (SLTB)-enhanced delivery of chlorin e6 (Ce6) improves cell killing. Photochem. Photobiol. 82, 527–537 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Haicheur, N. et al. The B subunit of Shiga toxin coupled to full-size antigenic protein elicits humoral and cell-mediated immune responses associated with a Th1-dominant polarization. Int. Immunol. 15, 1161–1171 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Haicheur, N. et al. The B subunit of Shiga toxin fused to a tumour antigen elicits CTL and targets dendritic cells to allow MHC class I-restricted presentation of peptides derived from exogenous antigens. J. Immunol. 165, 3301–3308 (2000).

    Article  CAS  PubMed  Google Scholar 

  140. Lee, R. S. et al. Major histocompatibility complex class I presentation of exogenous soluble tumour antigen fused to the B-fragment of Shiga toxin. Eur. J. Immunol. 28, 2726–2737 (1998).

    Article  CAS  PubMed  Google Scholar 

  141. Smith, D. C., Lord, J. M., Roberts, L. M., Tartour, E. & Johannes, L. 1st class ticket to class I: protein toxins as pathfinders for antigen presentation. Traffic 3, 697–704 (2002).

    Article  CAS  PubMed  Google Scholar 

  142. Vingert, B. et al. The Shiga toxin B-subunit targets antigen in vivo to dendritic cells and elicits anti-tumour immunity. Eur. J. Immunol. 36, 1124–1135 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Adotevi, O. et al. B subunit of Shiga toxin-based vaccines synergize with α-galactosylceramide to break tolerance against self antigen and elicit antiviral immunity. J. Immunol. 179, 3371–3379 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Lainhart, W., Stolfa, G. & Koudelka, G. B. Shiga toxin as a bacterial defense against a eukaryotic predator, Tetrahymena thermophila. J. Bacteriol. 191, 5116–5122 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Steinberg, K. M. & Levin, B. R. Grazing protozoa and the evolution of the Escherichia coli O157:H7 Shiga toxin-encoding prophage. Proc. Biol. Sci. 274, 1921–1929 (2007).

    Article  PubMed  Google Scholar 

  146. Cimolai, N., Carter, J. E., Morrison, B. J. & Anderson, J. D. Risk factors for the progression of Escherichia coli O157:H7 enteritis to haemolytic-uraemic syndrome. J. Pediatr. 116, 589–592 (1990).

    Article  CAS  PubMed  Google Scholar 

  147. Proulx, F., Turgeon, J. P., Delage, G., Lafleur, L. & Chicoine, L. Randomized, controlled trial of antibiotic therapy for Escherichia coli O157:H7 enteritis. J. Pediatr. 121, 299–303 (1992).

    Article  CAS  PubMed  Google Scholar 

  148. Walterspiel, J. N., Ashkenazi, S., Morrow, A. L. & Cleary, T. G. Effect of subinhibitory concentrations of antibiotics on extracellular Shiga-like toxin I. Infection 20, 25–29 (1992).

    Article  CAS  PubMed  Google Scholar 

  149. Kitov, P. I. et al. Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands. Nature 403, 669–672 (2000).

    Article  CAS  PubMed  Google Scholar 

  150. Mulvey, G. L. et al. Assessment in mice of the therapeutic potential of tailored, multivalent Shiga toxin carbohydrate ligands. J. Infect. Dis. 187, 640–649 (2003).

    Article  CAS  PubMed  Google Scholar 

  151. Kitov, P. I. et al. In vivo supramolecular templating enhances the activity of multivalent ligands: a potential therapeutic against the Escherichia coli O157 AB5 toxins. Proc. Natl Acad. Sci. USA 105, 16837–16842 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Takeda, T., Yoshino, K., Adachi, E., Sato, Y. & Yamagata, K. In vitro assessment of a chemically synthesized Shiga toxin receptor analogue attached to chromosorb P (Synsorb Pk) as a specific absorbing agent of Shiga toxin 1 and 2. Microbiol. Immunol. 43, 331–337 (1999).

    Article  CAS  PubMed  Google Scholar 

  153. Trachtman, H. et al. Effect of an oral Shiga toxin-binding agent on diarrhea-associated haemolytic uraemic syndrome in children: a randomized controlled trial. JAMA 290, 1337–1344 (2003).

    Article  CAS  PubMed  Google Scholar 

  154. Nishikawa, K. et al. A therapeutic agent with oriented carbohydrates for treatment of infections by Shiga toxin-producing Escherichia coli O157:H7. Proc. Natl Acad. Sci. USA 99, 7669–7674 (2002). A study describing SUPER TWIG, a compound that neutralizes Shiga toxins in the circulation and protects mice from challenge with a fatal dose of E. coli O157:H7. The compound seems highly promising for the development of anti-toxin strategies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Watanabe, M. et al. Oral therapeutic agents with highly clustered globotriose for treatment of Shiga toxigenic Escherichia coli infections. J. Infect. Dis. 189, 360–368 (2004).

    Article  CAS  PubMed  Google Scholar 

  156. Paton, A. W., Morona, R. & Paton, J. C. A new biological agent for treatment of Shiga toxigenic Escherichia coli infections and dysentery in humans. Nature Med. 6, 265–270 (2000).

    Article  CAS  PubMed  Google Scholar 

  157. Pinyon, R. A., Paton, J. C., Paton, A. W., Botten, J. A. & Morona, R. Refinement of a therapeutic Shiga toxin-binding probiotic for human trials. J. Infect. Dis. 189, 1547–1555 (2004).

    Article  CAS  PubMed  Google Scholar 

  158. Mukherjee, J. et al. Production and characterization of protective human antibodies against Shiga toxin 1. Infect. Immun. 70, 5896–5899 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Mukherjee, J. et al. Human Stx2-specific monoclonal antibodies prevent systemic complications of Escherichia coli O157:H7 infection. Infect. Immun. 70, 612–619 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Miller, D. J. et al. Structure-based design and characterization of novel platforms for ricin and Shiga toxin inhibition. J. Med. Chem. 45, 90–98 (2002).

    Article  CAS  PubMed  Google Scholar 

  161. Feng, Y. et al. Exo1: a new chemical inhibitor of the exocytic pathway. Proc. Natl Acad. Sci. USA 100, 6469–6474 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Feng, Y. et al. Retrograde transport of cholera toxin from the plasma membrane to the endoplasmic reticulum requires the trans-Golgi network but not the Golgi apparatus in Exo2-treated cells. EMBO Rep. 5, 596–601 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Spooner, R. A. et al. The secretion inhibitor Exo2 perturbs trafficking of Shiga toxin between endosomes and the trans-Golgi network. Biochem. J. 414, 471–484 (2008).

    Article  CAS  PubMed  Google Scholar 

  164. Saenz, J. B., Doggett, T. A. & Haslam, D. B. Identification and characterization of small molecules that inhibit intracellular toxin transport. Infect. Immun. 75, 4552–4561 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Saenz, J. B. et al. Golgicide A reveals essential roles for GBF1 in Golgi assembly and function. Nature Chem. Biol. 5, 157–165 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Roberts, J.M. Lord, J. Wiels and C. Lamaze for helpful discussion, and J. Ménétrey for help with figure 1. Work in the laboratory of the authors was supported by CEFIPRA (The Indo-French Centre for the Promotion of Advanced Research; programme n°3803), the Human Frontier Science Program (grant RGP26/2007), the ImmuCan programme of the Pôle de Compétitivité Médicen Paris Région, the Direction Générale de l'Armement programme of Paracell, the Cancerimmunotherapy project in the European Union's Seventh Framework Programme and the Programme indicactif et coopératif (PIC) on Tumour Delivery at the Institut Curie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludger Johannes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Trafficking factors that control Shiga toxin transport between early endosomes and the TGN (reviewed in 29). (PDF 158 kb)

Related links

Related links

FURTHER INFORMATION

Ludger Johannes' homepage

Glossary

Enterohaemorrhagic Escherichia coli

(EHEC). Escherichia coli strains that cause haemorrhagic colitis and haemolytic uraemic syndrome. EHEC constitutes a subset of serotypes called Shiga toxin-producing E. coli (STEC), in which these toxins are virulence factors.

Haemolytic uraemic syndrome

(HUS). A life-threatening complication characterized by microangiopathic haemolytic anaemia, thrombocytopenia and acute renal failure.

LD50

The median lethal dose of a toxic substance; this is the dose that is required to kill half of the members of a tested population.

Retromer

A heteropentameric complex that associates with the cytosolic face of endosomes and mediates retrograde transport of cargo molecules from endosomes to the trans-Golgi network.

Coat protein complex I

A large coat protein complex that initiates the vesicle budding process on the cis-Golgi and retrograde transport to the rough endoplasmic reticulum.

Chaperone

A protein that assists in the folding or unfolding of target proteins.

ER-associated degradation

(ERAD). A cellular pathway that targets misfolded proteins in the endoplasmic reticulum for ubiquitylation and subsequent degradation by the proteasome.

Interleukin-8

A chemokine of the C-X-C subfamily that is known to recruit polymorphonuclear cells into areas of infection.

Mitogen-activated protein kinase

(MAPK). One of a family of threonine-directed kinases with important roles in the regulation of diverse cellular functions, including cytokine release. MAPKs are categorized into three main pathways and include the extracellular signal-regulated kinases (ERKs), the JUN amino-terminal kinases (Jnks; also called the stress-activated protein (SAP) kinases) and MAP kinase p38.

Protein kinase Cδ

A member of the protein kinase C family, which contains at least 12 isoforms of serine/threonine kinases that are involved in signal transduction, regulation of gene expression and myeloid differentiation.

GM-CSF

(Granulocyte-macrophage colony-stimulating factor). A protein that is often secreted by macrophages, T cells, endothelial cells and fibroblasts.

Tumour necrosis factor

A cytokine involved in systemic inflammation. Its primary role is the regulation of immune cells.

Topoisomerase I

A group of proteins belonging to the topoisomerase family, which contains enzymes that catalyse ATP-independent breakage of one of the two strands of DNA, passage of the unbroken strand through the break and rejoining of the broken strand. Topoisomerase I enzymes reduce the topological stress in the DNA structure by relaxing the superhelical turns and knotted rings in the DNA helix.

Benzodiazepine

A psychoactive drug, the core chemical structure of which is the fusion of a benzene ring and a diazepine ring. Benzodiazepines have varying sedative, hypnotic, anxiolytic, anticonvulsant, muscle relaxant and amnesic properties, which make them useful in treating anxiety, insomnia, agitation, seizures, muscle spasms and alcohol withdrawal and as a pre-medication for medical or dental procedures.

Major histocompatibility complex class I

(MHC class I). A molecule found on every nucleated cell of the body. It's function is to display fragments of proteins from within the cell to T cells, so that healthy cells will be left alone and cells with foreign proteins will be attacked by the immune system. Because MHC class I molecules present peptides that are derived from cytosolic proteins, the pathway of MHC class I presentation is often called the cytosolic or endogenous pathway.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johannes, L., Römer, W. Shiga toxins — from cell biology to biomedical applications. Nat Rev Microbiol 8, 105–116 (2010). https://doi.org/10.1038/nrmicro2279

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2279

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing