Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bacterial gene amplification: implications for the evolution of antibiotic resistance

Key Points

  • Gene duplication and amplification (GDA) generates genomic variability that is then available for genetic adaptation to altered growth conditions or stresses.

  • GDA constitutes an important adaptive mechanism in bacteria, and resistance to several classes of antibiotic can be conferred by increased gene dosage through GDA. Similarly, the fitness costs of antibiotic resistance can be ameliorated by increased gene dosage of limiting functions.

  • The steady-state frequency of GDA in a population of bacterial cells is high, ranging from 10E−5 to 10E−2, depending on the chromosomal region.

  • GDAs are usually formed and lost at high rates, making them unstable and technically challenging to identify and study.

Abstract

Recent data suggest that, in response to the presence of antibiotics, gene duplication and amplification (GDA) constitutes an important adaptive mechanism in bacteria. For example, resistance to sulphonamide, trimethoprim and β-lactams can be conferred by increased gene dosage through GDA of antibiotic hydrolytic enzymes, target enzymes or efflux pumps. Furthermore, most types of antibiotic resistance mechanism are deleterious in the absence of antibiotics, and these fitness costs can be ameliorated by increased gene dosage of limiting functions. In this Review, we highlight the dynamic properties of gene amplifications and describe how they can facilitate adaptive evolution in response to toxic drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bacterial adaptation to antibiotics.
Figure 2: Frequency and response time for point mutations, gene duplication and regulatory responses in a population.
Figure 3: Proposed mechanisms of gene duplication and amplification (GDA).
Figure 4: Gene amplification as a facilitator of antibiotic resistance development.
Figure 5: Amplification of tRNAfMet ameliorates the cost of actinonin resistance mutations.

Similar content being viewed by others

References

  1. Bergthorsson, U., Andersson, D. I. & Roth, J. R. Ohno's dilemma: evolution of new genes under continuous selection. Proc. Natl Acad. Sci. USA 104, 17004–17009 (2007). Discusses the development of a new model (innovation, amplification and divergence) that can explain the evolution of new genes under continuous selection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ohno, S. Evolution by Gene Duplication (Springer, Berlin, 1970).

    Google Scholar 

  3. Romero, D. & Palacios, R. Gene amplification and genomic plasticity in prokaryotes. Annu. Rev. Genet. 31, 91–111 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Beckmann, J. S., Estivill, X. & Antonarakis, S. E. Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. Nature Rev. Genet. 8, 639–646 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Conrad, B. & Antonarakis, S. E. Gene duplication: a drive for phenotypic diversity and cause of human disease. Annu. Rev. Genomics Hum. Genet. 8, 17–35 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Harms, C. T. et al. Herbicide resistance due to amplification of a mutant acetohydroxyacid synthase gene. Mol. Gen. Genet. 233, 427–435 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Papanikou, E., Brotherton, J. E. & Widholm, J. M. Length of time in tissue culture can affect the selected glyphosate resistance mechanism. Planta 218, 589–598 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Suh, H., Hepburn, A. G., Kriz, A. L. & Widholm, J. M. Structure of the amplified 5-enolpyruvylshikimate-3-phosphate synthase gene in glyphosate-resistant carrot cells. Plant Mol. Biol. 22, 195–205 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Hemingway, J. The molecular basis of two contrasting metabolic mechanisms of insecticide resistance. Insect Biochem. Mol. Biol. 30, 1009–1015 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Raymond, M., Chevillon, C., Guillemaud, T., Lenormand, T. & Pasteur, N. An overview of the evolution of overproduced esterases in the mosquito Culex pipiens. Philos. Trans. R. Soc. Lond. B 353, 1707–1711 (1998).

    Article  CAS  Google Scholar 

  11. Albertson, D. G. Gene amplification in cancer. Trends Genet. 22, 447–455 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Fojo, T. Multiple paths to a drug resistance phenotype: mutations, translocations, deletions and amplification of coding genes or promoter regions, epigenetic changes and microRNAs. Drug Resist. Updat. 10, 59–67 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Harbottle, H., Thakur, S., Zhao, S. & White, D. G. Genetics of antimicrobial resistance. Anim. Biotechnol. 17, 111–124 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Normark, B. H. & Normark, S. Evolution and spread of antibiotic resistance. J. Intern. Med. 252, 91–106 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Nilsson, A. I. et al. Reducing the fitness cost of antibiotic resistance by amplification of initiator tRNA genes. Proc. Natl Acad. Sci. USA 103, 6976–6981 (2006). The first demonstration that the fitness costs associated with antibiotic resistance can be ameliorated by gene amplification.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Anderson, P. & Roth, J. Spontaneous tandem genetic duplications in Salmonella typhimurium arise by unequal recombination between rRNA (rrn) cistrons. Proc. Natl Acad. Sci. USA 78, 3113–3117 (1981). The first genome-wide analysis of duplication frequencies in a bacterial chromosome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Andersson, D. I., Slechta, E. S. & Roth, J. R. Evidence that gene amplification underlies adaptive mutability of the bacterial lac operon. Science 282, 1133–1135 (1998). The first demonstration that adaptive mutation in the lac operon can be explained by gene amplification of the selected lac target gene.

    Article  CAS  PubMed  Google Scholar 

  18. Kugelberg, E., Kofoid, E., Reams, A. B., Andersson, D. I. & Roth, J. R. Multiple pathways of selected gene amplification during adaptive mutation. Proc. Natl Acad. Sci. USA 103, 17319–17324 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sonti, R. V. & Roth, J. R. Role of gene duplications in the adaptation of Salmonella typhimurium to growth on limiting carbon sources. Genetics 123, 19–28 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Straus, D. S. Selection for a large genetic duplication in Salmonella typhimurium. Genetics 80, 227–237 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Straus, D. S. & D'Ari Straus, L. Large overlapping tandem genetic duplications in Salmonella typhimurium. J. Mol. Biol. 103, 143–153 (1976).

    Article  CAS  PubMed  Google Scholar 

  22. Roth, J. R. et al. in Escherichia coli and Salmonella: Cellular and Molecular Biology 2nd edn (eds Neidhardt, F. C. et al.) 2256–2276 (American Society for Microbiology, Washington DC, 1996).

    Google Scholar 

  23. Pettersson, M. E., Sun, S., Andersson, D. I. & Berg, O. G. Evolution of new gene functions: simulation and analysis of the amplification model. Genetica 135, 309–324 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Veitia, R. A. Gene dosage balance in cellular pathways: implications for dominance and gene duplicability. Genetics 168, 569–574 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Galitski, T. & Roth, J. R. Pathways for homologous recombination between chromosomal direct repeats in Salmonella typhimurium. Genetics 146, 751–767 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hastings, P. J., Ira, G. & Lupski, J. R. A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet. 5, e1000327 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Petit, M. A., Mesas, J. M., Noirot, P., Morel-Deville, F. & Ehrlich, S. D. Induction of DNA amplification in the Bacillus subtilis chromosome. EMBO J. 11, 1317–1326 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lehner, A. F. & Hill, C. W. Involvement of ribosomal ribonucleic acid operons in Salmonella typhimurium chromosomal rearrangements. J. Bacteriol. 143, 492–498 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bertini, A. et al. Multicopy blaOXA-58 gene as a source of high-level resistance to carbapenems in Acinetobacter baumannii. Antimicrob. Agents Chemother. 51, 2324–2328 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chandler, M., de la Tour, E. B., Willems, D. & Caro, L. Some properties of the chloramphenicol resistance transposon Tn9. Mol. Gen. Genet. 176, 221–231 (1979).

    CAS  PubMed  Google Scholar 

  31. Hammond, D. S., Schooneveldt, J. M., Nimmo, G. R., Huygens, F. & Giffard, P. M. blaSHV genes in Klebsiella pneumoniae: different allele distributions are associated with different promoters within individual isolates. Antimicrob. Agents Chemother. 49, 256–263 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nichols, B. P. & Guay, G. G. Gene amplification contributes to sulfonamide resistance in Escherichia coli. Antimicrob. Agents Chemother. 33, 2042–2048 (1989).

    Article  CAS  PubMed  Google Scholar 

  33. Nicoloff, H., Perreten, V. & Levy, S. B. Increased genome instability in Escherichia coli lon mutants: relation to emergence of multiple-antibiotic-resistant (Mar) mutants caused by insertion sequence elements and large tandem genomic amplifications. Antimicrob. Agents Chemother. 51, 1293–1303 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nicoloff, H., Perreten, V., McMurry, L. M. & Levy, S. B. Role for tandem duplication and Lon protease in AcrAB–TolC-dependent multiple antibiotic resistance (Mar) in an Escherichia coli mutant without mutations in marRAB or acrRAB. J. Bacteriol. 188, 4413–4423 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rownd, R. & Mickel, S. Dissociation and reassociation of RTF and r-determinants of the R-factor NR1 in Proteus mirabilis. Nature New Biol. 234, 40–43 (1971).

    Article  CAS  PubMed  Google Scholar 

  36. Szczepanowski, R., Krahn, I., Puhler, A. & Schluter, A. Different molecular rearrangements in the integron of the IncP-1b resistance plasmid pB10 isolated from a wastewater treatment plant result in elevated b-lactam resistance levels. Arch. Microbiol. 182, 429–435 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Haack, K. R. & Roth, J. R. Recombination between chromosomal IS200 elements supports frequent duplication formation in Salmonella typhimurium. Genetics 141, 1245–1252 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Jessop, A. P. & Clugston, C. Amplification of the ArgF region in strain HfrP4X of E. coli K-12. Mol. Gen. Genet. 201, 347–350 (1985).

    Article  CAS  PubMed  Google Scholar 

  39. Lin, R. J., Capage, M. & Hill, C. W. A repetitive DNA sequence, rhs, responsible for duplications within the Escherichia coli K-12 chromosome. J. Mol. Biol. 177, 1–18 (1984).

    Article  CAS  PubMed  Google Scholar 

  40. Shyamala, V., Schneider, E. & Ames, G. F. Tandem chromosomal duplications: role of REP sequences in the recombination event at the join-point. EMBO J. 9, 939–946 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Reams, A. B. & Neidle, E. L. Gene amplification involves site-specific short homology-independent illegitimate recombination in Acinetobacter sp. strain ADP1. J. Mol. Biol. 338, 643–656 (2004). A thorough analysis of the sequence requirements for gene amplification.

    Article  CAS  PubMed  Google Scholar 

  42. Tlsty, T. D., Albertini, A. M. & Miller, J. H. Gene amplification in the lac region of E. coli. Cell 37, 217–224 (1984). A key paper showing that lac gene amplification is the predominantly selected response when cells are starved for lactose.

    Article  CAS  PubMed  Google Scholar 

  43. Whoriskey, S. K., Nghiem, V. H., Leong, P. M., Masson, J. M. & Miller, J. H. Genetic rearrangements and gene amplification in Escherichia coli: DNA sequences at the junctures of amplified gene fusions. Genes Dev. 1, 227–237 (1987).

    Article  CAS  PubMed  Google Scholar 

  44. Shen, P. & Huang, H. V. Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics 112, 441–457 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Watt, V. M., Ingles, C. J., Urdea, M. S. & Rutter, W. J. Homology requirements for recombination in Escherichia coli. Proc. Natl Acad. Sci. USA 82, 4768–4772 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Albertini, A. M., Hofer, M., Calos, M. P. & Miller, J. H. On the formation of spontaneous deletions: the importance of short sequence homologies in the generation of large deletions. Cell 29, 319–328 (1982).

    Article  CAS  PubMed  Google Scholar 

  47. Edlund, T., Grundstrom, T. & Normark, S. Isolation and characterization of DNA repetitions carrying the chromosomal b-lactamase gene of Escherichia coli K-12. Mol. Gen. Genet. 173, 115–125 (1979).

    Article  CAS  PubMed  Google Scholar 

  48. Edlund, T. & Normark, S. Recombination between short DNA homologies causes tandem duplication. Nature 292, 269–271 (1981). The first description of a chromosomal gene amplification that led to increased antibiotic resistance.

    Article  CAS  PubMed  Google Scholar 

  49. Albertini, A. M., Hofer, M., Calos, M. P., Tlsty, T. D. & Miller, J. H. Analysis of spontaneous deletions and gene amplification in the lac region of Escherichia coli. Cold Spring Harb. Symp. Quant. Biol. 47, 841–850 (1983).

    Article  PubMed  Google Scholar 

  50. Jones, I. M., Primrose, S. B. & Ehrlich, S. D. Recombination between short direct repeats in a recA host. Mol. Gen. Genet. 188, 486–489 (1982).

    Article  CAS  PubMed  Google Scholar 

  51. Lovett, S. T., Drapkin, P. T., Sutera, V. A. Jr & Gluckman-Peskind, T. J. A sister-strand exchange mechanism for recA-independent deletion of repeated DNA sequences in Escherichia coli. Genetics 135, 631–642 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lovett, S. T., Gluckman, T. J., Simon, P. J., Sutera, V. A. Jr & Drapkin, P. T. Recombination between repeats in Escherichia coli by a recA-independent, proximity-sensitive mechanism. Mol. Gen. Genet. 245, 294–300 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Marvo, S. L., King, S. R. & Jaskunas, S. R. Role of short regions of homology in intermolecular illegitimate recombination events. Proc. Natl Acad. Sci. USA 80, 2452–2456 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mazin, A. V., Kuzminov, A. V., Dianov, G. L. & Salganik, R. I. Mechanisms of deletion formation in Escherichia coli plasmids. II. Deletions mediated by short direct repeats. Mol. Gen. Genet. 228, 209–214 (1991).

    Article  CAS  PubMed  Google Scholar 

  55. Trinh, T. Q. & Sinden, R. R. The influence of primary and secondary DNA structure in deletion and duplication between direct repeats in Escherichia coli. Genetics 134, 409–422 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ikeda, H., Shiraishi, K. & Ogata, Y. Illegitimate recombination mediated by double-strand break and end-joining in Escherichia coli. Adv. Biophys. 38, 3–20 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Anderson, R. P. & Roth, J. R. Tandem chromosomal duplications in Salmonella typhimurium: fusion of histidine genes to novel promoters. J. Mol. Biol. 119, 147–166 (1978).

    Article  CAS  PubMed  Google Scholar 

  58. Hill, C. W., Foulds, J., Soll, L. & Berg, P. Instability of a missense suppressor resulting from a duplication of genetic material. J. Mol. Biol. 39, 563–581 (1969).

    Article  CAS  PubMed  Google Scholar 

  59. Bi, X. & Liu, L. F. recA-independent and recA-dependent intramolecular plasmid recombination. Differential homology requirement and distance effect. J. Mol. Biol. 235, 414–423 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Matfield, M., Badawi, R. & Brammar, W. J. Rec-dependent and Rec- independent recombination of plasmid-borne duplications in Escherichia coli K12. Mol. Gen. Genet. 199, 518–523 (1985).

    Article  CAS  PubMed  Google Scholar 

  61. Bzymek, M. & Lovett, S. T. Instability of repetitive DNA sequences: the role of replication in multiple mechanisms. Proc. Natl Acad. Sci. USA 98, 8319–8325 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Puopolo, K. M., Hollingshead, S. K., Carey, V. J. & Madoff, L. C. Tandem repeat deletion in the alpha C protein of group B Streptococcus is recA independent. Infect. Immun. 69, 5037–5045 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Brochet, M., Couve, E., Zouine, M., Poyart, C. & Glaser, P. A naturally occurring gene amplification leading to sulfonamide and trimethoprim resistance in Streptococcus agalactiae. J. Bacteriol. 190, 672–680 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Clewell, D. B., Yagi, Y. & Bauer, B. Plasmid-determined tetracycline resistance in Streptococcus faecalis: evidence for gene amplification during growth in presence of tetracycline. Proc. Natl Acad. Sci. USA 72, 1720–1724 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kroll, J. S., Loynds, B. M. & Moxon, E. R. The Haemophilus influenzae capsulation gene cluster: a compound transposon. Mol. Microbiol. 5, 1549–1560 (1991).

    Article  CAS  PubMed  Google Scholar 

  66. Mattes, R., Burkardt, H. J. & Schmitt, R. Repetition of tetracycline resistance determinant genes on R plasmid pRSD1 in Escherichia coli. Mol. Gen. Genet. 168, 173–184 (1979).

    Article  CAS  PubMed  Google Scholar 

  67. Matthews, P. R. & Stewart, P. R. Amplification of a section of chromosomal DNA in methicillin-resistant Staphylococcus aureus following growth in high concentrations of methicillin. J. Gen. Microbiol. 134, 1455–1464 (1988).

    CAS  PubMed  Google Scholar 

  68. Seoane, A., Sanchez, E. & Garcia-Lobo, J. M. Tandem amplification of a 28-kilobase region from the Yersinia enterocolitica chromosome containing the blaA gene. Antimicrob. Agents Chemother. 47, 682–688 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sugino, Y. & Hirota, Y. Conjugal fertility associated with resistance factor R in Escherichia coli. J. Bacteriol. 84, 902–910 (1962).

    CAS  Google Scholar 

  70. Falkow, S., Citarella, R. V. & Wohlhieter, J. A. The molecular nature of R-factors. J. Mol. Biol. 17, 102–116 (1966).

    Article  CAS  PubMed  Google Scholar 

  71. Rownd, R., Kasamatsu, H. & Mickel, S. The molecular nature and replication of drug resistance factors of the Enterobacteriaceae. Ann. NY Acad. Sci. 182, 188–206 (1971).

    Article  CAS  PubMed  Google Scholar 

  72. Perlman, D. & Rownd, R. H. Transition of R factor NR1 in Proteus mirabilis: molecular structure and replication of NR1 deoxyribonucleic acid. J. Bacteriol. 123, 1013–1034 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Hashimoto, H. & Rownd, R. H. Transition of the R factor NR1 and Proteus mirabilis: level of drug resistance of nontransitioned and transitioned cells. J. Bacteriol. 123, 56–68 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Huffman, G. A. & Rownd, R. H. Transition of deletion mutants of the composite resistance plasmid NR1 in Escherichia coli and Salmonella typhimurium. J. Bacteriol. 159, 488–498 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hu, S., Ohtsubo, E. & Davidson, N. Electron microscopic heteroduplex studies of sequence relations among plasmids of Escherichia coli: structure of F13 and related F-primes. J. Bacteriol. 122, 749–763 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ptashne, K. & Cohen, S. N. Occurrence of insertion sequence (IS) regions on plasmid deoxyribonucleic acid as direct and inverted nucleotide sequence duplications. J. Bacteriol. 122, 776–781 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Peterson, B. C. & Rownd, R. H. Homologous sequences other than insertion elements can serve as recombination sites in plasmid drug resistance gene amplification. J. Bacteriol. 156, 177–185 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Peterson, B. C. & Rownd, R. H. Drug resistance gene amplification of plasmid NR1 derivatives with various amounts of resistance determinant DNA. J. Bacteriol. 161, 1042–1048 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Yagi, Y. & Clewell, D. B. Plasmid-determined tetracycline resistance in Streptococcus faecalis: tandemly repeated resistance determinants in amplified forms of pAMa1 DNA. J. Mol. Biol. 102, 583–600 (1976).

    Article  CAS  PubMed  Google Scholar 

  80. Francia, M. V. & Clewell, D. B. Amplification of the tetracycline resistance determinant of pAMa1 in Enterococcus faecalis requires a site-specific recombination event involving relaxase. J. Bacteriol. 184, 5187–5193 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yagi, Y. & Clewell, D. B. Amplification of the tetracycline resistance determinant of plasmid pAMa1 in Streptococcus faecalis: dependence on host recombination machinery. J. Bacteriol. 143, 1070–1072 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Perkins, J. B. & Youngman, P. Streptococcus plasmid pAMa1 is a composite of two separable replicons, one of which is closely related to Bacillus plasmid pBC16. J. Bacteriol. 155, 607–615 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Normark, S., Edlund, T., Grundstrom, T., Bergstrom, S. & Wolf-Watz, H. Escherichia coli K-12 mutants hyperproducing chromosomal b-lactamase by gene repetitions. J. Bacteriol. 132, 912–922 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Min, Y. H. et al. Molecular analysis of constitutive mutations in ermB and ermA selected in vitro from inducibly MLSB-resistant enterococci. Arch. Pharm. Res. 31, 377–380 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Yoon, E. J., Kwon, A. R., Min, Y. H. & Choi, E. C. Foggy D-shaped zone of inhibition in Staphylococcus aureus owing to a dual character of both inducible and constitutive resistance to macrolide-lincosamide-streptogramin B. J. Antimicrob. Chemother. 61, 533–540 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Musher, D. M. et al. Emergence of macrolide resistance during treatment of pneumococcal pneumonia. N. Engl. J. Med. 346, 630–631 (2002). A clinically relevant observation of how gene amplification of a ribosome-binding site in the ermA gene can cause increased expression of a resistance gene and result in treatment failure.

    Article  PubMed  Google Scholar 

  87. Sun, S., Berg, O. G., Roth, J. R. & Andersson, D. I. Contribution of gene amplification to evolution of increased antibiotic resistance in Salmonella typhimurium. Genetics 1 Jun 2009 (doi:10.1534/genetics.109.103028).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Matagne, A. et al. The diversity of the catalytic properties of class A b-lactamases. Biochem. J. 265, 131–146 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Livermore, D. M. β-lactamases in laboratory and clinical resistance. Clin. Microbiol. Rev. 8, 557–584 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Petrosino, J., Cantu, C. 3rd & Palzkill, T. β-lactamases: protein evolution in real time. Trends Microbiol. 6, 323–327 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Nordstrom, K., Ingram, L. C. & Lundback, A. Mutations in R factors of Escherichia coli causing an increased number of R-factor copies per chromosome. J. Bacteriol. 110, 562–569 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Holloway, A. K., Palzkill, T. & Bull, J. J. Experimental evolution of gene duplicates in a bacterial plasmid model. J. Mol. Evol. 64, 215–222 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Andersson, D. I. Persistence of antibiotic resistant bacteria. Curr. Opin. Microbiol. 6, 452–456 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Andersson, D. I. The biological cost of mutational antibiotic resistance: any practical conclusions? Curr. Opin. Microbiol. 9, 461–465 (2006).

    CAS  PubMed  Google Scholar 

  95. Andersson, D. I. & Levin, B. R. The biological cost of antibiotic resistance. Curr. Opin. Microbiol. 2, 489–493 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Roth, J. R., Kugelberg, E., Reams, A. B., Kofoid, E. & Andersson, D. I. Origin of mutations under selection: the adaptive mutation controversy. Annu. Rev. Microbiol. 60, 477–501 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Patrick, W. M., Quandt, E. M., Swartzlander, D. B. & Matsumura, I. Multicopy suppression underpins metabolic evolvability. Mol. Biol. Evol. 24, 2716–2722 (2007). A landmark paper showing that promiscuity and multifunctionality are common properties of bacterial genes.

    Article  CAS  PubMed  Google Scholar 

  98. Ishoey, T., Woyke, T., Stepanauskas, R., Novotny, M. & Lasken, R. S. Genomic sequencing of single microbial cells from environmental samples. Curr. Opin. Microbiol. 11, 198–204 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Marichal, P. et al. Molecular biological characterization of an azole-resistant Candida glabrata isolate. Antimicrob. Agents Chemother. 41, 2229–2237 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cowman, A. F., Galatis, D. & Thompson, J. K. Selection for mefloquine resistance in Plasmodium falciparum is linked to amplification of the pfmdr1 gene and cross-resistance to halofantrine and quinine. Proc. Natl Acad. Sci. USA 91, 1143–1147 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Preechapornkul, P. et al. Plasmodium falciparum pfmdr1 amplification, mefloquine resistance, and parasite fitness. Antimicrob. Agents Chemother. 53, 1509–1515 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Suwanarusk, R. et al. Amplification of pvmdr1 associated with multidrug-resistant Plasmodium vivax. J. Infect. Dis. 198, 1558–1564 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Gonzalez-Pons, M., Szeto, A. C., Gonzalez-Mendez, R. & Serrano, A. E. Identification and bioinformatic characterization of a multidrug resistance associated protein (ABCC) gene in Plasmodium berghei. Malaria J. 8, 1 (2009).

    Article  CAS  Google Scholar 

  104. Reed, M. B., Saliba, K. J., Caruana, S. R., Kirk, K. & Cowman, A. F. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature 403, 906–909 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Sharom, F. J. ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics 9, 105–127 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Yuan, H. et al. Strategies to overcome or circumvent P-glycoprotein mediated multidrug resistance. Curr. Med. Chem. 15, 470–476 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Nair, S. et al. Adaptive copy number evolution in malaria parasites. PLoS Genet. 4, e1000243 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Leprohon, P. et al. Gene expression modulation is associated with gene amplification, supernumerary chromosomes and chromosome loss in antimony-resistant Leishmania infantum. Nucleic Acids Res. 37, 1387–1399 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Lin, Y. C. et al. Two distinct arsenite-resistant variants of Leishmania amazonensis take different routes to achieve resistance as revealed by comparative transcriptomics. Mol. Biochem. Parasitol. 162, 16–31 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Medini, D. et al. Microbiology in the post-genomic era. Nature Rev. Microbiol. 6, 419–430 (2008).

    Article  CAS  Google Scholar 

  111. Lee, C., Lee, S., Shin, S. G. & Hwang, S. Real-time PCR determination of rRNA gene copy number: absolute and relative quantification assays with Escherichia coli. Appl. Microbiol. Biotechnol. 78, 371–376 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Mardis, E. R. The impact of next-generation sequencing technology on genetics. Trends Genet. 24, 133–141 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Porwollik, S. et al. DNA amplification and rearrangements in archival Salmonella enterica serovar Typhimurium LT2 cultures. J. Bacteriol. 186, 1678–1682 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Shiu, S. H. & Borevitz, J. O. The next generation of microarray research: applications in evolutionary and ecological genomics. Heredity 100, 141–149 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Yagi, Y. & Clewell, D. B. Identification and characterization of a small sequence located at two sites on the amplifiable tetracycline resistance plasmid pAMa1 in Streptococcus faecalis. J. Bacteriol. 129, 400–406 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Tanak, N., Cramer, J. H. & Rownd, R. H. EcoRI restriction endonuclease map of the composite R plasmid NR1. J. Bacteriol. 127, 619–636 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Spies, T., Laufs, R. & Riess, F. C. Amplification of resistance genes in Haemophilus influenzae plasmids. J. Bacteriol. 155, 839–846 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Schmitt, R., Bernhard, E. & Mattes, R. Characterisation of Tn1721, a new transposon containing tetracycline resistance genes capable of amplification. Mol. Gen. Genet. 172, 53–65 (1979).

    Article  CAS  PubMed  Google Scholar 

  119. Schoffl, F., Arnold, W., Puhler, A., Altenbuchner, J. & Schmitt, R. The tetracycline resistance transposons Tn1721 and Tn1771 have three 38-base-pair repeats and generate five-base-pair direct repeats. Mol. Gen. Genet. 181, 87–94 (1981).

    Article  CAS  PubMed  Google Scholar 

  120. Wiebauer, K., Schraml, S., Shales, S. W. & Schmitt, R. Tetracycline resistance transposon Tn1721: recA-dependent gene amplification and expression of tetracycline resistance. J. Bacteriol. 147, 851–859 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Odakura, Y., Tanaka, T., Hashimoto, H. & Mitsuhashi, S. Mutation of R factors capable of specifying hypersynthesis of penicillinase. Antimicrob. Agents Chemother. 3, 315–324 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Meyer, J. & Iida, S. Amplification of chloramphenicol resistance transposons carried by phage P1Cm in Escherichia coli. Mol. Gen. Genet. 176, 209–219 (1979).

    CAS  PubMed  Google Scholar 

  123. Vinella, D., Cashel, M. & D'Ari, R. Selected amplification of the cell division genes ftsQftsAftsZ in Escherichia coli. Genetics 156, 1483–1492 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Yanai, K., Murakami, T. & Bibb, M. Amplification of the entire kanamycin biosynthetic gene cluster during empirical strain improvement of Streptomyces kanamyceticus. Proc. Natl Acad. Sci. USA 103, 9661–9666 (2006). An interesting observation of how high-level gene amplification of the kanamycin biosynthetic gene cluster occurred in Streptomyces kanamyceticus as a consequence of selection for strains with increased antibiotic production.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to D.I.A. from the Swedish Research Council and the European Commission 6th Framework Program, and to L.S. from Uppsala University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan I. Andersson.

Related links

Related links

DATABASES

Entrez Genome Project

Enterococcus faecalis

Escherichia coli

Proteus mirabilis

Salmonella enterica subsp. enterica serovar Typhimurium LT2

Staphylococcus aureus

Streptococcus agalactiae

Streptococcus pneumoniae

FURTHER INFORMATION

Dan I. Andersson's homepage

Glossary

Bacterial fitness

The ability of the microorganism to survive and generate progeny. Bacterial fitness is often measured by growth rate.

Transduction assays

The study of DNA transfer from one bacterium to another through a bacteriophage in order to assess the duplication frequency of a gene. The transferred DNA contains a selectable marker in the gene of interest.

Non-equal homologous recombination

The exchange of genetic material between repeated regions that are similar or identical, resulting in deletion or duplication and amplification.

Rolling circle replication

Nucleic acid replication that is common in plasmids and bacteriophages and allows rapid synthesis of multiple copies of a genome or specific region.

R plasmid

A plasmid that carries genes that confer antibiotic resistance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandegren, L., Andersson, D. Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nat Rev Microbiol 7, 578–588 (2009). https://doi.org/10.1038/nrmicro2174

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2174

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing