Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Ten reasons to exclude viruses from the tree of life

Abstract

When viruses were discovered, they were accepted as missing links between the inert world and living organisms. However, this idea was soon abandoned as information about their molecular parasitic nature accumulated. Recently, the notion that viruses are living organisms that have had a role in the evolution of some essential features of cells has experienced a renaissance owing to the discovery of unusually large and complex viruses that possess typical cellular genes. Here, we contend that there is strong evidence against the notion that viruses are alive and represent ancient lineages of the tree of life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Limitations of morphology.
Figure 2: Multiple evolutionary origins of Mimivirus genes.

Similar content being viewed by others

References

  1. Muller, H. J. in 4th International Congress of Plant Science 917–918 (ed. Duggar, B. M.) 917–918 (Bantha Publishing, Menasha, 1929)

    Google Scholar 

  2. Podolsky, S. The role of the virus in origin-of-life theorizing. J. Hist. Biol. 29, 79–126 (1996).

    CAS  PubMed  Google Scholar 

  3. Simon, C. E. (ed.) The Filterable Viruses (Reinhold, New York, 1928).

    Google Scholar 

  4. Haldane, J. B. S. The origin of life. Rationalist Ann. 3–10 (1929).

  5. Beutner, R. Life's Beginning on the Earth (Williams and Wilkins, Baltimore, 1938).

    Book  Google Scholar 

  6. Oparin, A. I. Life: its Nature, Origin and Development (Academic Press, New York, 1961).

    Google Scholar 

  7. Avery, O. T., MacLeod, C. M. & McCarty, M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus type III. J. Exper. Med. 79, 137–158 (1944).

    Article  CAS  Google Scholar 

  8. van Regenmortel, M. H. V. in 7th Report of the International Committee on Taxonomy of Viruses (eds van Regenmortel, M. H. V. et al.) 3–16 (Academic Press, San Diego, 2000).

    Google Scholar 

  9. van Regenmortel, M. H. V. in Encyclopedia of Virology (eds Mahy, B. W. J. & van Regenmortel, M. H. V.) 398–402 (Elsevier/Academic Press, 2008).

    Book  Google Scholar 

  10. Bamford, D. H., Grimes, J. M. & Stuart, D. I. What does structure tell us about virus evolution? Curr. Opin. Struct. Biol. 15, 655–663 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Forterre, P. Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular domain. Proc. Natl Acad. Sci. USA 103, 3669–3674 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. La Scola, B. et al. A giant virus in amoebae. Science 299, 2033 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Raoult, D. et al. The 1.2-megabase genome sequence of Mimivirus. Science 306, 1344–1350 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Luisi, P. L. About various definitions of life. Orig. Life Evol. Biosph. 28, 613–622 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Alexander, J. & Bridges, C. B. in Colloid Chemistry, Theoretical and Applied (ed. Alexander, J.) 54 (Reinhold, New York, 1928).

    Google Scholar 

  16. Guerrero, R., Piqueras, M. & Berlanga, M. Microbial mats and the search for minimal ecosystems. Int. Microbiol 5, 177–188 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Fitch, W. M. Homology a personal view on some of the problems. Trends Genet. 16, 227–231 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Koonin, E. V., Senkevich, T. G. & Dolja, V. V. The ancient virus world and evolution of cells. Biol. Direct. 1, 29 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Doolittle, W. F. The nature of the universal ancestor and the evolution of the proteome. Curr. Opin. Struct. Biol. 10, 355–358 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Ranea, J. A., Sillero, A., Thornton, J. M. & Orengo, C. A. Protein superfamily evolution and the last universal common ancestor (LUCA). J. Mol. Evol. 63, 513–525 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Raoult, D. & Forterre, P. Redefining viruses: lessons from Mimivirus. Nature Rev. Microbiol. 6, 315–319 (2008).

    Article  CAS  Google Scholar 

  22. Benson, S. D., Bamford, J. K., Bamford, D. H. & Burnett, R. M. Does common architecture reveal a viral lineage spanning all three domains of life? Mol. Cell 16, 673–685 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Rice, G. et al. The structure of a thermophilic archaeal virus shows a double-stranded DNA viral capsid type that spans all domains of life. Proc. Natl Acad. Sci. USA 101, 7716–7720 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Terada, T. et al. Functional convergence of two lysyl-tRNA synthetases with unrelated topologies. Nature Struct. Biol. 9, 257–262 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Gherardini, P. F., Wass, M. N., Helmer-Citterich, M. & Sternberg, M. J. Convergent evolution of enzyme active sites is not a rare phenomenon. J. Mol. Biol. 372, 817–845 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Wales, D. J. The energy landscape as a unifying theme in molecular science. Philos. Transact A Math. Phys. Eng. Sci. 363, 357–375 (2005).

    Article  CAS  Google Scholar 

  27. Olson, A. J., Hu, Y. H. & Keinan, E. Chemical mimicry of viral capsid self-assembly. Proc. Natl Acad. Sci. USA 104, 20731–20736 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barocchi, M. A., Masignani, V. & Rappuoli, R. Cell entry machines: a common theme in nature? Nature Rev. Microbiol. 3, 349–358 (2005).

    Article  CAS  Google Scholar 

  29. Yeates, T. O., Kerfeld, C. A., Heinhorst, S., Cannon, G. C. & Shively, J. M. Protein-based organelles in bacteria: carboxysomes and related microcompartments. Nature Reviews Microbiology 6, 681–691 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Koonin, E. V. & Dolja, V. V. Evolution of complexity in the viral world: the dawn of a new vision. Virus Res. 117, 1–4 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Koonin, E. V., Makarova, K. S. & Aravind, L. Horizontal gene transfer in prokaryotes: quantification and classification. Annu. Rev. Microbiol. 55, 709–742 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moreira, D. & Brochier-Armanet, C. Giant viruses, giant chimeras: the multiple evolutionary histories of Mimivirus genes. BMC Evol. Biol. 8, 12 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gray, M. W. & Doolittle, W. F. Has the endosymbiont hypothesis been proven? Microbiol. Rev. 46, 1–42 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Woolhouse, M. E., Taylor, L. H. & Haydon, D. T. Population biology of multihost pathogens. Science 292, 1109–1112 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Coats, D. W. Parasitic life styles of marine dinoflagellates. J. Euk. Microbiol. 46, 402–409 (2007).

    Article  Google Scholar 

  36. Woolhouse, M. E., Haydon, D. T. & Antia, R. Emerging pathogens: the epidemiology and evolution of species jumps. Trends Ecol. Evol. 20, 238–244 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ball, A. & Johnson, K. L. in The Insect Viruses (eds. Miller, L. K. & Ball, L. A.) 225–267 (Plenum Publishing, New York, 1998).

    Book  Google Scholar 

  38. Selling, B. H., Allison, R. F. & Kaesberg, P. Genomic RNA of an insect virus directs synthesis of infectious virions in plants. Proc. Natl Acad. Sci. USA 87, 434–438 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Price, B. D., Rueckert, R. R. & Ahlquist, P. Complete replication of an animal virus and maintenance of expression vectors derived from it in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 93, 9465–9470 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Prangishvili, D., Forterre, P. & Garrett, R. A. Viruses of the Archaea: a unifying view. Nature Rev. Microbiol. 4, 837–848 (2006).

    Article  CAS  Google Scholar 

  41. Cavalier-Smith, T. Membrane heredity and early chloroplast evolution. Trends Plant Sci. 5, 174–182 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Miller, S. & Krijnse-Locker, J. Modification of intracellular membrane structures for virus replication. Nature Rev. Microbiol. 6, 363–374 (2008).

    Article  CAS  Google Scholar 

  43. Peretó, J., López-García, P. & Moreira, D. Ancestral lipid biosynthesis and early membrane evolution. Trends Biochem. Sci. 29, 469–477 (2004).

    Article  PubMed  Google Scholar 

  44. Dinsdale, E. A. et al. Functional metagenomic profiling of nine biomes. Nature 452, 629–632 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Mann, N. H., Cook, A., Millard, A., Bailey, S. & Clokie, M. Marine ecosystems: bacterial photosynthesis genes in a virus. Nature 424, 741 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. McClure, M. A. Evolution of the DUT gene: horizontal transfer between host and pathogen in all three domains of Life. Curr. Protein Pept. Sci. 2, 313–324 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Bratke, K. A. & McLysaght, A. Identification of multiple independent horizontal gene transfers into poxviruses using a comparative genomics approach. BMC Evol. Biol. 8, 67 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Moreira, D. & López-García, P. Comment on “The 1.2-megabase genome sequence of Mimivirus”. Science 308, 1114 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Shutt, T. E. & Gray, M. W. Bacteriophage origins of mitochondrial replication and transcription proteins. Trends Genet. 22, 90–95 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Moreira, D. Multiple independent horizontal transfers of informational genes from bacteria to plasmids and phages: implications for the origin of bacterial replication machinery. Mol. Microbiol. 35, 1–5 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Drake, J. W., Charlesworth, B., Charlesworth, D. & Crow, J. F. Rates of spontaneous mutation. Genetics 148, 1667–1686 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Awadalla, P. The evolutionary genomics of pathogen recombination. Nature Rev. Genet. 4, 50–60 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Forterre, P. The origin of viruses and their possible roles in major evolutionary transitions. Virus Res. 117, 5–16 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Yin, Y. & Fischer, D. On the origin of microbial ORFans: quantifying the strength of the evidence for viral lateral transfer. BMC Evol. Biol. 6, 63 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Suttle, C. A. Marine viruses—major players in the global ecosystem. Nature Rev. Microbiol. 5, 801–812 (2007).

    Article  CAS  Google Scholar 

  56. Zhaxybayeva, O. & Gogarten, J. P. Cladogenesis, coalescence and the evolution of the three domains of life. Trends Genet. 20, 182–187 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Lwoff, A. L'évolution physiologique. Etude des Pertes de Fonctions Chez les Microorganismes (Hermann et Cie, Paris, 1943).

    Google Scholar 

  58. Iyer, L. M., Balaji, S., Koonin, E. V. & Aravind, L. Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Res. 20, 20 (2006).

    Google Scholar 

  59. Diener, T. O. Circular RNAs: relics of precellular evolution? Proc. Natl Acad. Sci. USA 86, 9370–9374 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Claverie, J. M. Viruses take center stage in cellular evolution. Gen. Biol. 7, 110 (2006).

    Article  Google Scholar 

  61. Novoa, R. R. et al. Virus factories: associations of cell organelles for viral replication and morphogenesis. Biol. Cell 97, 147–172 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Futse, J. E., Brayton, K. A., Dark, M. J., Knowles, D. P. Jr & Palmer, G. H. Superinfection as a driver of genomic diversification in antigenically variant pathogens. Proc. Natl Acad. Sci. USA 105, 2123–2127 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Aristotle, D.a. De anima (350 BC) (ed. Hick, R. D.) (George Olms Verlag, Hildesheim, 1990).

    Google Scholar 

  64. Engels, F. Herrn Eugen Dühring's Umwälzung der Wissenschaft (Dietz Verlag, Stuttgart, 1894).

    Google Scholar 

  65. Schrödinger, E. What is Life? (Cambridge University Press, Cambridge, 1944).

    Google Scholar 

  66. Von Neumann, J. in Lectures on the Theory and Organisation of Complicated Automata (ed. Burks, A. W.) (University of Illinois Press, Urbana 1949).

    Google Scholar 

  67. de Duve, C. Blueprint for a Cell (Patterson, Burlington 1991).

    Google Scholar 

  68. Prigogine, I. Introduction to Thermodynamics of Irreversible Processes (Wiley, New York, 1961).

    Google Scholar 

  69. Bernal, J. D. in Theoretical and Mathematical Biology (eds. Waterman, T. & Morowitz, H. J.) 96–135 (Blaisdell, New York, 1965).

    Google Scholar 

  70. Gánti, T. The Principles of Life (Oxford University Press, Oxford, 2003).

    Book  Google Scholar 

  71. Varela, F. G., Maturana, H. R. & Uribe, R. Autopoiesis: the organization of living systems, its characterization and a model. Curr. Mod. Biol. 5, 187–196 (1974).

    CAS  PubMed  Google Scholar 

  72. Maynard Smith, J. The Problems of Biology (Oxford University Press, Oxford, 1986).

    Google Scholar 

  73. Joyce, G. F. in Origins of Life: the Central Concepts (eds Deamer, D. W. & Fleischaker, G. R.) xi–xii (Jones & Bartlett, Boston, 1994).

    Google Scholar 

  74. Ruiz-Mirazo, K., Pereto, J. & Moreno, A. A universal definition of life: autonomy and open-ended evolution. Orig. Life Evol. Biosph. 34, 323–346 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank three anonymous referees for helpful comments and criticisms, T.O. Yeates and S.W. Wilhelm for permission to use the photographs shown in Figure 1, and the French Agence Nationale de la Recherche (ANR JC05_44,674) and the CNRS for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Moreira.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Ecologie, Systématique et Evolution

Encyclopedia of Earth

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreira, D., López-García, P. Ten reasons to exclude viruses from the tree of life. Nat Rev Microbiol 7, 306–311 (2009). https://doi.org/10.1038/nrmicro2108

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2108

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing