Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Enteric infection meets intestinal function: how bacterial pathogens cause diarrhoea

Key Points

  • Great advances have been made in understanding the adherence and virulence factors of enteric pathogens, the basic physiology of the intestine and the role of innate immunity in health and disease. This Review focuses on the primary links between enteric bacterial pathogens and diarrhoea.

  • Whereas the effect of cholera toxin on cystic fibrosis transmembrane regulator-dependent chloride and fluid secretion is well established, recent studies have uncovered the mechanisms by which the toxin finds its way from the bacterium into the host cell cytosol.

  • Bacteria that do not typically produce toxins can also alter various ion transporters on intestinal epithelial cells. The majority of work in this regard pertains to enteropathogenic Escherichia coli. The effect of enteropathogenic E. coli effector molecules (secreted through its type III secretion system) on specific epithelial cell ion transporters is discussed.

  • Tight junctions are composed of several proteins that together form a regulatable paracellular barrier to fluid and electrolytes, and also facilitate vectorial transport by maintaining distinction between the apical and basolateral sides of the epithelial monolayer (fence function). Several enteric pathogens disrupt tight junctions, and perturb barrier and fence functions. The relationship between these effects and diarrhoea is explored.

  • Intestinal pathogens encounter, and often manipulate, the innate immune system. This is an active area of investigation and is providing fundamental insights about the mammalian innate immune system. The relationship between bacterium-induced inflammation and diarrhoea is not clear; nevertheless, some speculations can be made on the basis of recent studies.

  • The ancient art of using bacteria to fight bacteria, namely the use of probiotic organisms for therapeutic interventions, is being actively explored. Moreover, advances in related areas are allowing the exploration of the scientific basis for the beneficial effects of probiotic organisms. Some current Phase III clinical trials are exploring the applicability of these approaches to combat diarrhoeal illnesses worldwide.

Abstract

Infectious diarrhoea is a significant contributor to morbidity and mortality worldwide. In bacterium-induced diarrhoea, rapid loss of fluids and electrolytes results from inhibition of the normal absorptive function of the intestine as well as the activation of secretory processes. Advances in the past 10 years in the fields of gastrointestinal physiology, innate immunity and enteric bacterial virulence mechanisms highlight the multifactorial nature of infectious diarrhoea. This Review explores the various mechanisms that contribute to loss of fluids and electrolytes following bacterial infections, and attempts to link these events to specific virulence factors and toxins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The 7 metre-long human intestine absorbs nutrients and forms a barrier to luminal contents.
Figure 2: Mechanisms by which enteric pathogens cause diarrhoea.
Figure 3: Cl secretion by intestinal epithelial cells is stimulated through the activation of cyclic AMP or Ca2+.
Figure 4: Enteropathogenic Escherichia coli (EPEC) alter apical Na+, Cl and glucose absorption.

Similar content being viewed by others

References

  1. Cheng, A. C., McDonald, J. R. & Thielman, N. M. Infectious diarrhea in developed and developing countries. J. Clin. Gastroenterol. 39, 757–773 (2005).

    Article  PubMed  Google Scholar 

  2. Kosek, M., Bern, C. & Guerrant, R. L. The global burden of diarrhoeal disease, as estimated from studies published between 1992 and 2000. Bull. World Health Organ. 81, 197–204 (2003).

    PubMed  PubMed Central  Google Scholar 

  3. Petri, W. A. Jr et al. Enteric infections, diarrhea, and their impact on function and development. J. Clin. Invest. 118, 1277–1290 (2008). This recent review on diarrhoea emphasizes epidemiological aspects, host susceptibility, vaccine development and oral rehydration therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Merrell, D. S. et al. Host-induced epidemic spread of the cholera bacterium. Nature 417, 642–645 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Butler, S. M. et al. Cholera stool bacteria repress chemotaxis to increase infectivity. Mol. Microbiol. 60, 417–426 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wiles, S., Dougan, G. & Frankel, G. Emergence of a 'hyperinfectious' bacterial state after passage of Citrobacter rodentium through the host gastrointestinal tract. Cell. Microbiol. 7, 1163–1172 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Borenshtein, D., Nambiar, P. R., Groff, E. B., Fox, J. G. & Schauer, D. B. Development of fatal colitis in FVB mice infected with Citrobacter rodentium. Infect. Immun. 75, 3271–3281 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barrett, K. E. New ways of thinking about (and teaching about) intestinal epithelial function. Adv. Physiol. Educ. 32, 25–34 (2008).

    Article  PubMed  Google Scholar 

  9. Turner, J. R. Molecular basis of epithelial barrier regulation: from basic mechanisms to clinical application. Am. J. Pathol. 169, 1901–1909 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Blikslager, A. T., Moeser, A. J., Gookin, J. L., Jones, S. L. & Odle, J. Restoration of barrier function in injured intestinal mucosa. Physiol. Rev. 87, 545–564 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Ishii, K. J., Koyama, S., Nakagawa, A., Coban, C. & Akira, S. Host innate immune receptors and beyond: making sense of microbial infections. Cell Host Microbe 3, 352–363 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Othman, M., Aguero, R. & Lin, H. C. Alterations in intestinal microbial flora and human disease. Curr. Opin. Gastroenterol. 24, 11–16 (2008).

    Article  PubMed  Google Scholar 

  13. Rhee, K. J., Sethupathi, P., Driks, A., Lanning, D. K. & Knight, K. L. Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire. J. Immunol. 172, 1118–1124 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Hughes, D. T. & Sperandio, V. Inter-kingdom signalling: communication between bacteria and their hosts. Nature Rev. Microbiol. 6, 111–120 (2008).

    Article  CAS  Google Scholar 

  15. Pizarro-Cerda, J. & Cossart, P. Bacterial adhesion and entry into host cells. Cell 124, 715–727 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Coburn, B., Sekirov, I. & Finlay, B. B. Type III secretion systems and disease. Clin. Microbiol. Rev. 20, 535–549 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Spiller, R. C. Role of nerves in enteric infection. Gut 51, 759–762 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bischoff, S. C. & Kramer, S. Human mast cells, bacteria, and intestinal immunity. Immunol. Rev. 217, 329–337 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Sherman, M. A. The role of mast cells in bacterial enteritis. Am. J. Pathol. 171, 399–401 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shaykhiev, R. & Bals, R. Interactions between epithelial cells and leukocytes in immunity and tissue homeostasis. J. Leukoc. Biol. 82, 1–15 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Seidler, U. et al. Molecular mechanisms of disturbed electrolyte transport in intestinal inflammation. Ann. NY Acad. Sci. 1072, 262–275 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Riordan, J. R. et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. Kimberg, D. V., Field, M., Johnson, J., Henderson, A. & Gershon, E. Stimulation of intestinal mucosal adenyl cyclase by cholera enterotoxin and prostaglandins. J. Clin. Invest. 50, 1218–1230 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sharp, G. W. & Hynie, S. Stimulation of intestinal adenyl cyclase by cholera toxin. Nature 229, 266–269 (1971).

    Article  CAS  PubMed  Google Scholar 

  25. Takahashi, A. et al. Mechanisms of chloride secretion induced by thermostable direct haemolysin of Vibrio parahaemolyticus in human colonic tissue and a human intestinal epithelial cell line. J. Med. Microbiol. 49, 801–810 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Fuller, C. M. et al. Ca2+-activated Cl channels: a newly emerging anion transport family. Pflugers Arch. 443 (Suppl. 1), S107–S110 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Vanden Broeck, D., Horvath, C. & De Wolf, M. J. Vibrio cholerae: cholera toxin. Int. J. Biochem. Cell Biol. 39, 1771–1775 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Lu, L., Khan, S., Lencer, W. & Walker, W. A. Endocytosis of cholera toxin by human enterocytes is developmentally regulated. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G332–341 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Lu, L. et al. Hydrocortisone modulates cholera toxin endocytosis by regulating immature enterocyte plasma membrane phospholipids. Gastroenterology 135, 185–193 (2008). This article highlights a molecular mechanism that may contribute to the increased susceptibility of neonates to the effect of cholera toxin.

    Article  CAS  PubMed  Google Scholar 

  30. Hoglund, P. et al. Mutations of the down-regulated in adenoma (DRA) gene cause congenital chloride diarrhoea. Nature Genet. 14, 316–319 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Gill, R. K. et al. Mechanism underlying inhibition of intestinal apical Cl/OH exchange following infection with enteropathogenic E. coli. J. Clin. Invest. 117, 428–437 (2007). This paper describes a novel mechanism of infection-induced diarrhoea: the redistribution, and consequent inhibition, of the apical Cl/OH exchanger following in vitro and in vivo EPEC infection. The microtubule-disrupting type III secreted molecules EspG and EspG2 were shown to be involved in the process.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Matsuzawa, T., Kuwae, A., Yoshida, S., Sasakawa, C. & Abe, A. Enteropathogenic Escherichia coli activates the RhoA signaling pathway via the stimulation of GEF-H1. EMBO J. 23, 3570–3582 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Subramanya, S. B. et al. Differential regulation of cholera toxin-inhibited Na–H exchange isoforms by butyrate in rat ileum. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G857–G863 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Lamprecht, G. et al. The down regulated in adenoma (dra) gene product binds to the second PDZ domain of the NHE3 kinase A regulatory protein (E3KARP), potentially linking intestinal Cl/HCO3 exchange to Na+/H+ exchange. Biochemistry 41, 12336–12342 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Hecht, G. et al. Differential regulation of Na+/H+ exchange isoform activities by enteropathogenic E. coli in human intestinal epithelial cells. Am. J. Physiol. Gastrointest Liver Physiol. 287, G370–G378 (2004).

    Article  Google Scholar 

  36. Gawenis, L. R. et al. Intestinal NaCl transport in NHE2 and NHE3 knockout mice. Am. J. Physiol. Gastrointest. Liver Physiol. 282, G776–G784 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Hodges, K., Gill, R., Ramaswamy, K., Dudeja, P. K. & Hecht, G. Rapid activation of Na+/H+ exchange by EPEC is PKC mediated. Am. J. Physiol. Gastrointest. Liver Physiol. 291, G959–968 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Hodges, K., Alto, N. M., Ramaswamy, K., Dudeja, P. K. & Hecht, G. The enteropathogenic Escherichia coli effector protein EspF decreases sodium hydrogen exchanger 3 activity. Cell. Microbiol. 10, 1735–1745 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dean, P., Maresca, M., Schuller, S., Phillips, A. D. & Kenny, B. Potent diarrheagenic mechanism mediated by the cooperative action of three enteropathogenic Escherichia coli-injected effector proteins. Proc. Natl Acad. Sci. USA 103, 1876–1881 (2006). The authors demonstrate that EPEC downregulates the Na+/glucose cotransporter by multiple mechanisms and suggest that this may explain the refractoriness of severe EPEC-induced diarrhoea to oral rehydration therapy (which depends on SGLT1).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nataro, J. P. & Kaper, J. B. Diarrheagenic Escherichia coli. [erratum appears in Clin. Microbiol. Rev. 11, 403]. Clin. Microbiol. Rev. 11, 142–201 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Preston, G. M. & Agre, P. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc. Natl Acad. Sci. USA 88, 11110–11114 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guttman, J. A. et al. Aquaporins contribute to diarrhoea caused by attaching and effacing bacterial pathogens. Cell. Microbiol. 9, 131–141 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Borenshtein, D. et al. Diarrhea as a cause of mortality in a mouse model of infectious colitis. Genome Biol. 9, R122 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Tsukita, S., Furuse, M. & Itoh, M. Multifunctional strands in tight junctions. Nature Rev. Mol. Cell Biol. 2, 285–293 (2001).

    Article  CAS  Google Scholar 

  45. Scott, K. G., Meddings, J. B., Kirk, D. R., Lees-Miller, S. P. & Buret, A. G. Intestinal infection with Giardia spp. reduces epithelial barrier function in a myosin light chain kinase-dependent fashion. Gastroenterology 123, 1179–1190 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Yuhan, R., Koutsouris, A., Savkovic, S. D. & Hecht, G. Enteropathogenic Escherichia coli-induced myosin light chain phosphorylation alters intestinal epithelial permeability. Gastroenterology 113, 1873–1882 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Zolotarevsky, Y. et al. A membrane-permeant peptide that inhibits MLC kinase restores barrier function in in vitro models of intestinal disease. Gastroenterology 123, 163–172 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Clayburgh, D. R. et al. Epithelial myosin light chain kinase-dependent barrier dysfunction mediates T cell activation-induced diarrhea in vivo. J. Clin. Invest. 115, 2702–2715 (2005). This study confirms the contribution of epithelial barrier disruption to fluid and electrolyte loss using a mouse model of T-cell-mediated acute diarrhoea.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Simonovic, I., Rosenberg, J., Koutsouris, A. & Hecht, G. Enteropathogenic Escherichia coli dephosphorylates and dissociates occludin from intestinal epithelial tight junctions. Cell. Microbiol. 2, 305–315 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Kohler, H. et al. Salmonella enterica serovar Typhimurium regulates intercellular junction proteins and facilitates transepithelial neutrophil and bacterial passage. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G178–G187 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Boyle, E. C., Brown, N. F. & Finlay, B. B. Salmonella enterica serovar Typhimurium effectors SopB, SopE, SopE2 and SipA disrupt tight junction structure and function. Cell. Microbiol. 8, 1946–1957 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Sakaguchi, T., Kohler, H., Gu, X., McCormick, B. A. & Reinecker, H. C. Shigella flexneri regulates tight junction-associated proteins in human intestinal epithelial cells. Cell. Microbiol. 4, 367–381 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Muza-Moons, M. M., Koutsouris, A. & Hecht, G. Disruption of cell polarity by enteropathogenic Escherichia coli enables basolateral membrane proteins to migrate apically and to potentiate physiological consequences. Infect. Immun. 71, 7069–7078 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tafazoli, F., Holmstrèom, A., Forsberg, A. & Magnusson, K. E. Apically exposed, tight junction-associated beta1-integrins allow binding and YopE-mediated perturbation of epithelial barriers by wild-type Yersinia bacteria. Infect. Immun. 68, 5335–5343 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pamer, E. G. Immune responses to commensal and environmental microbes. Nature Immunol. 8, 1173–1178 (2007).

    Article  CAS  Google Scholar 

  56. Dann, S. M. & Eckmann, L. Innate immune defenses in the intestinal tract. Curr. Opin. Gastroenterol. 23, 115–120 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Dennis, A. et al. The p50 subunit of NF-κB is critical for in vivo clearance of the non-invasive enteric pathogen Citrobacter rodentium. Infect. Immun. 76, 4978–4988 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mumy, K. L. et al. Distinct isoforms of phospholipase A2 mediate the ability of Salmonella enterica serotype typhimurium and Shigella flexneri to induce the transepithelial migration of neutrophils. Infect. Immun. 76, 3614–3627 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chin, A. C. & Parkos, C. A. Neutrophil transepithelial migration and epithelial barrier function in IBD: potential targets for inhibiting neutrophil trafficking. Ann. NY Acad. Sci. 1072, 276–287 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Kolachala, V. L., Bajaj, R., Chalasani, M. & Sitaraman, S. V. Purinergic receptors in gastrointestinal inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G401–410 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Crane, J. K., Olson, R. A., Jones, H. M. & Duffey, M. E. Release of ATP during host cell killing by enteropathogenic E. coli and its role as a secretory mediator. Am. J. Physiol. Gastrointest. Liver Physiol. 283, G74–G86 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Crane, J. K., Shulgina, I. & Naeher, T. M. Ecto-5′-nucleotidase and intestinal ion secretion by enteropathogenic Escherichia coli. Purinergic Signal. 3, 233–246 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Watters, T. M., Kenny, E. F. & O'Neill, L. A. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol. Cell Biol. 85, 411–419 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Sirard, J. C., Vignal, C., Dessein, R. & Chamaillard, M. Nod-like receptors: cytosolic watchdogs for immunity against pathogens. PLoS Pathog. 3, e152 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Nenci, A. et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446, 557–561 (2007). This article demonstrates the key role of the NF-κB pathway in maintaining intestinal homeostasis; intestine-specific depletion of NF-κB results in intestinal pathology including diarrhoea.

    Article  CAS  PubMed  Google Scholar 

  66. Karrasch, T., Kim, J. S., Muhlbauer, M., Magness, S. T. & Jobin, C. Gnotobiotic IL-10−/−; NF-κBEGFP mice reveal the critical role of TLR/NF-κB signaling in commensal bacteria-induced colitis. J. Immunol. 178, 6522–6532 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Watson, R. O., Novik, V., Hofreuter, D., Lara-Tejero, M. & Galán, J. E. A MyD88-deficient mouse model reveals a role for Nramp1 in Campylobacter jejuni infection. Infect. Immun. 75, 1994–2003 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gibson, D. L. et al. MyD88 signalling plays a critical role in host defence by controlling pathogen burden and promoting epithelial cell homeostasis during Citrobacter rodentium-induced colitis. Cell. Microbiol. 10, 618–631 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Lebeis, S. L., Bommarius, B., Parkos, C. A., Sherman, M. A. & Kalman, D. TLR signaling mediated by MyD88 is required for a protective innate immune response by neutrophils to Citrobacter rodentium. J. Immunol. 179, 566–577 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Vijay-Kumar, M. et al. Deletion of TLR5 results in spontaneous colitis in mice. J. Clin. Invest. 117, 3909–3921 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Vijay-Kumar, M. et al. Toll-like receptor 5-deficient mice have dysregulated intestinal gene expression and nonspecific resistance to Salmonella-induced typhoid-like disease. Infect. Immun. 76, 1276–1281 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vijay-Kumar, M. et al. Flagellin suppresses epithelial apoptosis and limits disease during enteric infection. Am. J. Pathol. 169, 1686–1700 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rumbo, M., Nempont, C., Kraehenbuhl, J. P. & Sirard, J. C. Mucosal interplay among commensal and pathogenic bacteria: lessons from flagellin and Toll-like receptor 5. FEBS Lett. 580, 2976–2984 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Ruchaud-Sparagano, M. H., Maresca, M. & Kenny, B. Enteropathogenic Escherichia coli (EPEC) inactivate innate immune responses prior to compromising epithelial barrier function. Cell. Microbiol. 9, 1909–1921 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Netea, M. G., Van der Meer, J. W. & Kullberg, B. J. Toll-like receptors as an escape mechanism from the host defense. Trends Microbiol. 12, 484–488 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Newman, R. M., Salunkhe, P., Godzik, A. & Reed, J. C. Identification and characterization of a novel bacterial virulence factor that shares homology with mammalian Toll/interleukin-1 receptor family proteins. Infect. Immun. 74, 594–601 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cirl, C. et al. Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. Nature Med. 9, 9 (2008).

    Google Scholar 

  79. Frank, D. N. & Pace, N. R. Gastrointestinal microbiology enters the metagenomics era. Curr. Opin. Gastroenterol. 24, 4–10 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Bauer, E., Williams, B. A., Smidt, H., Verstegen, M. W. & Mosenthin, R. Influence of the gastrointestinal microbiota on development of the immune system in young animals. Curr. Issues Intest. Microbiol. 7, 35–51 (2006).

    CAS  PubMed  Google Scholar 

  81. Miller, M. A. Clinical management of Clostridium difficile-associated disease. Clin. Infect. Dis. 45 (Suppl. 2), S122–S128 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Peterson, D. A., Frank, D. N., Pace, N. R. & Gordon, J. I. Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host Microbe 3, 417–427 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Garrett, W. S. et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 131, 33–45 (2007). This article shows that loss of the transcription factor T-bet in T- and B-cell-deficient mice results in spontaneous colitis; importantly (in the context of the present Review), the flora in these mutant mice can cause colitis in wild-type mice, suggesting a key role for the intestinal flora in disease development and progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Boirivant, M. & Strober, W. The mechanism of action of probiotics. Curr. Opin. Gastroenterol. 23, 679–692 (2007).

    Article  PubMed  Google Scholar 

  85. Paton, A. W., Morona, R. & Paton, J. C. Designer probiotics for prevention of enteric infections. Nature Rev. Microbiol. 4, 193–200 (2006).

    Article  CAS  Google Scholar 

  86. Fischer Walker, C. L. & Black, R. E. Micronutrients and diarrheal disease. Clin. Infect. Dis. 45 (Suppl. 1), S73–S77 (2007).

    Article  PubMed  CAS  Google Scholar 

  87. Salvatore, S. et al. Probiotics and zinc in acute infectious gastroenteritis in children: are they effective? Nutrition 23, 498–506 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Currie, M. G. et al. Guanylin: an endogenous activator of intestinal guanylate cyclase. Proc. Natl Acad. Sci. USA 89, 947–951 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Donta, S. T., Beristain, S. & Tomicic, T. K. Inhibition of heat-labile cholera and Escherichia coli enterotoxins by brefeldin A. Infect. Immun. 61, 3282–3286 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lencer, W. I. et al. Entry of cholera toxin into polarized human intestinal epithelial cells. Identification of an early brefeldin A sensitive event required for A1-peptide generation. J. Clin. Invest. 92, 2941–2951 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Orlandi, P. A., Curran, P. K. & Fishman, P. H. Brefeldin A blocks the response of cultured cells to cholera toxin. Implications for intracellular trafficking in toxin action. J. Biol. Chem. 268, 12010–12016 (1993).

    Article  CAS  PubMed  Google Scholar 

  92. Pelham, H. R., Roberts, L. M. & Lord, J. M. Toxin entry: how reversible is the secretory pathway? Trends Cell Biol. 2, 183–185 (1992).

    Article  CAS  PubMed  Google Scholar 

  93. Lencer, W. I. et al. Targeting of cholera toxin and Escherichia coli heat labile toxin in polarized epithelia: role of COOH-terminal KDEL. J. Cell Biol. 131, 951–962 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

These studies were supported by the AGA bridging award and the University of Illinois at Chicago gastrointestinal and liver disease (GILD) council (to V.K.V.), grants DK-50694, DK-58964 and DK067887 from the National Institutes of Health, and the Veterans Affairs Merit Review (G.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gail Hecht.

Related links

Related links

DATABASES

Entrez Genome Project

Citrobacter rodentium

Salmonella enterica serovar Typhimurium

Shigella flexneri

Vibrio parahaemolyticus

OMIM

congenital chloride diarrhoea

FURTHER INFORMATION

Gail Hecht's homepage

Glossary

Diarrhoea

A disorder manifested by frequent evacuation of excessively fluid faeces.

Enteric pathogen

A pathogen whose primary target is the gastrointestinal tissue.

Commensal

An organism that derives food or other benefits from another organism without harming it.

Lamina propria

The layer of mucosal tissue directly below the epithelial cell monolayer; various cell types including those involved in immunity reside here.

Tight junctions

Also known as kissing junctions, these lipid–protein complexes at the apical junctions of epithelial cells form a regulatable barrier, selectively allowing the passage of ions and electrolytes.

Adherens junctions

Present at the contact point between epithelial cells, these serve as anchor points for cytoskeletal filaments made of actin (microfilaments).

Desmosomes

Intercellular junctions typically present in tissues subject to mechanical stress. The adhesion molecules in this region serve as a tether for cytoskeletal filaments known as intermediate filaments (for example, cytokeratins).

Microbiome

The totality of microbial species living in a specific organism.

AB5 toxins

Bacterial toxins that have the structural composition of a single catalytically active A subunit and a pentamer of B subunits. The B subunits are involved in receptor binding and deliver the A subunit to the target cells.

Attaching and effacing

Attaching and effacing pathogens are a group of enteric pathogens that includes enteropathogenic Escherichia coli, enterohaemorrhagic E. coli and the mouse pathogen Citrobacter rodentium. These bacteria attach intimately to intestinal epithelial cells and cause the effacement of the brush border microvilli. Brush border microvilli are finger-like projections on epithelial cells that facilitate nutrient absorption.

Colitis

Inflammation of the colon observed in various disease states

Runting

The birth or development of animals that are smaller than the average size for the species or strain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viswanathan, V., Hodges, K. & Hecht, G. Enteric infection meets intestinal function: how bacterial pathogens cause diarrhoea. Nat Rev Microbiol 7, 110–119 (2009). https://doi.org/10.1038/nrmicro2053

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2053

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing