Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Revisiting the host as a growth medium

Key Points

  • The ability of a pathogen to cause disease relies on its ability to acquire nutrients in vivo. This Review revisits the concept of the host as a growth medium during infection and outlines the potential of this experimental approach for development of new therapeutics.

  • The carbon source can influence the ability of a pathogen to evade the immune system. Neisseria meningitidis preferentially uses a carbon source which has degradation products that feed directly into the biosynthesis of compounds important for immune evasion.

  • The available carbon source affects site-specific colonization, or tissue tropism, by certain pathogens. Unlike enterohaemorrhagic Escherichia coli (EHEC) strains, uropathogenic E. coli (UPEC) strains can colonize the urinary tract. The ability of UPEC to catabolize D-serine, excreted as a urinary waste product, might help to define this tropism.

  • Carbon resource partitioning is a method used to avoid competition with other organisms. Aggregatibacter actinomycetemcomitans, a slow-growing opportunistic pathogen that is found in the human mouth, uses a non-optimal carbon source that is produced as a waste product by prevalent and fast-growing oral streptococci.

  • Bacteria communicate using diverse chemical signals, and carbon source metabolism can influence production and dissemination of these signals. Pseudomonas aeruginosa responds to aromatic amino acids in cystic fibrosis sputum and increases production of a cell–cell communication signal that is important for interspecies competition and virulence.

  • Many infection sites, as bacterial growth media, remain undefined, and for many pathogens the in vivo carbon source is not known. Much work remains to be done to elucidate bacterial carbon metabolism during infection.

Abstract

The ability of the human body to play host to bacterial pathogens has been studied for more than 200 years. Successful pathogenesis relies on the ability to acquire the nutrients that are necessary for growth and survival, yet relatively little is understood about the in vivo physiology and metabolism of most human pathogens. This Review discusses how in vivo carbon sources can affect disease and highlights the concept that carbon metabolic pathways provide viable targets for antibiotic development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular mimicry by Neisseria meningitidis.
Figure 2: Mycobacterium tuberculosis cholesterol catabolism and virulence factor production.
Figure 3: Resource partitioning by oral bacteria.
Figure 4: Cell–cell communication, carbon metabolism and pathogenesis in Pseudomonas aeruginosa.

Similar content being viewed by others

References

  1. Pasteur, L. La Theorie des Germes. Comptes Rendus l'Academie des Sciences 86, 1037–1043 (1878).

    Google Scholar 

  2. McFarland, J. A Text-Book upon the Pathogenic Bacteria (W. B. Saunders, Philadelphia, 1900).

    Google Scholar 

  3. Zinsser, H. Infection and Resistance (Macmillan, New York, 1918).

    Book  Google Scholar 

  4. Garber, E. D. The host as a growth medium. Ann. NY Acad. Sci. 88, 1187–1194 (1960).

    Article  CAS  PubMed  Google Scholar 

  5. Hillman, J. D. et al. Construction and characterization of an effector strain of Streptococcus mutans for replacement therapy of dental caries. Infect. Immun. 68, 543–549 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Weinberg, E. D. Iron and susceptibility to infectious disease. Science 184, 952–956 (1974).

    Article  CAS  PubMed  Google Scholar 

  7. Gordeuk, V. R., McLaren, C. E., MacPhail, A. P., Deichsel, G. & Bothwell, T. H. Associations of iron overload in Africa with hepatocellular carcinoma and tuberculosis: Strachan's 1929 thesis revisited. Blood 87, 3470–3476 (1996).

    CAS  PubMed  Google Scholar 

  8. Gangaidzo, I. T. et al. Association of pulmonary tuberculosis with increased dietary iron. J. Infect. Dis. 184, 936–939 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Polla, B. S. Therapy by taking away: the case of iron. Biochem. Pharmacol. 57, 1345–1349 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Mabeza, G. F., Loyevsky, M., Gordeuk, V. R. & Weiss, G. Iron chelation therapy for malaria: a review. Pharmacol. Ther. 81, 53–75 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. van Deuren, M., Brandtzaeg, P. & van der Meer, J. W. Update on meningococcal disease with emphasis on pathogenesis and clinical management. Clin. Microbiol. Rev. 13, 144–166 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McGee, D. J. & Rest, R. F. Regulation of gonococcal sialyltransferase, lipooligosaccharide, and serum resistance by glucose, pyruvate, and lactate. Infect. Immun. 64, 4630–4637 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Parsons, N. J. et al. Lactic acid is the factor in blood cell extracts which enhances the ability of CMP-NANA to sialylate gonococcal lipopolysaccharide and induce serum resistance. Microb. Pathog. 20, 87–100 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Vogel, U. et al. Complement factor C3 deposition and serum resistance in isogenic capsule and lipooligosaccharide sialic acid mutants of serogroup B Neisseria meningitidis. Infect. Immun. 65, 4022–4029 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Leighton, M. P., Kelly, D. J., Williamson, M. P. & Shaw, J. G. An NMR and enzyme study of the carbon metabolism of Neisseria meningitidis. Microbiology 147, 1473–1482 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Exley, R. M. et al. Available carbon source influences the resistance of Neisseria meningitidis against complement. J. Exp. Med. 201, 1637–1645 (2005). Using cerebrospinal fluid as an in vitro growth substrate and in vivo animal studies, the authors find that the ability of N. meningitidis to camouflage itself from host defences is linked to in vivo carbon acquisition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Exley, R. M. et al. Neisseria meningitidis lactate permease is required for nasopharyngeal colonization. Infect. Immun. 73, 5762–5766 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Russell, D. G., Mwandumba, H. C. & Rhoades, E. E. Mycobacterium and the coat of many lipids. J. Cell Biol. 158, 421–426 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Saunders, B. M. & Cooper, A. M. Restraining mycobacteria: role of granulomas in mycobacterial infections. Immunol. Cell Biol. 78, 334–341 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Bloch, H. & Segal, W. Biochemical differentiation of Mycobacterium tuberculosis grown in vivo and in vitro. J. Bacteriol. 72, 132–141 (1956).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sassetti, C. M. & Rubin, E. J. Genetic requirements for mycobacterial survival during infection. Proc. Natl Acad. Sci. USA 100, 12989–12994 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Munoz-Elias, E. J. & McKinney, J. D. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nature Med. 11, 638–644 (2005). This study demonstrates that a metabolic inhibitor can effectively control M. tuberculosis intracellular growth.

    Article  CAS  PubMed  Google Scholar 

  23. Munoz-Elias, E. J. & McKinney, J. D. Carbon metabolism of intracellular bacteria. Cell. Microbiol. 8, 10–22 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Jain, M. et al. Lipidomics reveals control of Mycobacterium tuberculosis virulence lipids via metabolic coupling. Proc. Natl Acad. Sci. USA 104, 5133–5138 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cox, J. S., Chen, B., McNeil, M. & Jacobs, W. R. Jr. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402, 79–83 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Rousseau, C. et al. Production of phthiocerol dimycocerosates protects Mycobacterium tuberculosis from the cidal activity of reactive nitrogen intermediates produced by macrophages and modulates the early immune response to infection. Cell. Microbiol. 6, 277–287 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Pandey, A. K. & Sassetti, C. M. Mycobacterial persistence requires the utilization of host cholesterol. Proc. Natl Acad. Sci. USA 105, 4376–4380 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sih, C. J., Tai, H. H., Tsong, Y. Y., Lee, S. S. & Coombe, R. G. Mechanisms of steroid oxidation by microorganisms. XIV. Pathway of cholesterol side-chain degradation. Biochemistry 7, 808–818 (1968).

    Article  CAS  PubMed  Google Scholar 

  29. Sih, C. J., Wang, K. C. & Tai, H. H. Mechanisms of steroid oxidation by microorganisms. 13. C22 acid intermediates in the degradation of the cholesterol side chain. Biochemistry 7, 796–807 (1968).

    Article  CAS  PubMed  Google Scholar 

  30. Niemann, H. H., Schubert, W. D. & Heinz, D. W. Adhesins and invasins of pathogenic bacteria: a structural view. Microbes Infect. 6, 101–112 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Spears, K. J., Roe, A. J. & Gally, D. L. A comparison of enteropathogenic and enterohaemorrhagic Escherichia coli pathogenesis. FEMS Microbiol. Lett. 255, 187–202 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Vallance, B. A., Chan, C., Robertson, M. L. & Finlay, B. B. Enteropathogenic and enterohemorrhagic Escherichia coli infections: emerging themes in pathogenesis and prevention. Can. J. Gastroenterol. 16, 771–778 (2002).

    Article  PubMed  Google Scholar 

  33. Welch, R. A. et al. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc. Natl Acad. Sci. USA 99, 17020–17024 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ronald, A. The etiology of urinary tract infection: traditional and emerging pathogens. Am. J. Med. 113 (Suppl. 1A), 14S–19S (2002).

    Article  PubMed  Google Scholar 

  35. Foxman, B., Barlow, R., D'Arcy, H., Gillespie, B. & Sobel, J. D. Urinary tract infection: self-reported incidence and associated costs. Ann. Epidemiol. 10, 509–515 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. van de Merbel, N. C. et al. Determination of D- and L-amino acids in biological samples by two-dimensional column liquid chromatography. Chromatographia 41, 6–14 (1995).

    Article  CAS  Google Scholar 

  37. Cosloy, S. D. & McFall, E. Metabolism of D-serine in Escherichia coli K-12: mechanism of growth inhibition. J. Bacteriol. 114, 685–694 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Roesch, P. L. et al. Uropathogenic Escherichia coli use D-serine deaminase to modulate infection of the murine urinary tract. Mol. Microbiol. 49, 55–67 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Roos, V. & Klemm, P. Global gene expression profiling of the asymptomatic bacteriuria Escherichia coli strain 83972 in the human urinary tract. Infect. Immun. 74, 3565–3575 (2006). First transcriptome analysis of E. coli harvested from the human urinary tract. This study used in vitro growth in human urine as well as laboratory medium as experimental controls.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Moritz, R. L. & Welch, R. A. The Escherichia coli argW-dsdCXA genetic island is highly variable, and E. coli K1 strains commonly possess two copies of dsdCXA. J. Clin. Microbiol. 44, 4038–4048 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zinsstag, J. et al. Human benefits of animal interventions for zoonosis control. Emerg. Infect. Dis. 13, 527–531 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Roth, F. et al. Human health benefits from livestock vaccination for brucellosis: case study. Bull. World Health Organ. 81, 867–876 (2003).

    PubMed  Google Scholar 

  43. Essenberg, R. C., Seshadri, R., Nelson, K. & Paulsen, I. Sugar metabolism by Brucellae. Vet. Microbiol. 90, 249–261 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Smith, H. et al. Foetal erythritol: a cause of the localization of Brucella abortus in bovine contagious abortion. Nature 193, 47–49 (1962). In a novel approach to studying infectious abortions in cattle, the investigators used filtered tissue extracts from pregnant cattle as B. abortus growth media.

    Article  CAS  PubMed  Google Scholar 

  45. Kohler, S. et al. The analysis of the intramacrophagic virulome of Brucella suis deciphers the environment encountered by the pathogen inside the macrophage host cell. Proc. Natl Acad. Sci. USA 99, 15711–15716 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Swanson, M. S. & Hammer, B. K. Legionella pneumophila pathogenesis: a fateful journey from amoebae to macrophages. Annu. Rev. Microbiol. 54, 567–613 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Nash, T. W., Libby, D. M. & Horwitz, M. A. Interaction between the Legionnaires' disease bacterium (Legionella pneumophila) and human alveolar macrophages. Influence of antibody, lymphokines, and hydrocortisone. J. Clin. Invest. 74, 771–782 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sauer, J. D., Bachman, M. A. & Swanson, M. S. The phagosomal transporter A couples threonine acquisition to differentiation and replication of Legionella pneumophila in macrophages. Proc. Natl Acad. Sci. USA 102, 9924–9929 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chakraborty, T. et al. Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene. J. Bacteriol. 174, 568–574 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Leimeister-Wachter, M., Haffner, C., Domann, E., Goebel, W. & Chakraborty, T. Identification of a gene that positively regulates expression of listeriolysin, the major virulence factor of Listeria monocytogenes. Proc. Natl Acad. Sci. USA 87, 8336–8340 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cossart, P. & Lecuit, M. Interactions of Listeria monocytogenes with mammalian cells during entry and actin-based movement: bacterial factors, cellular ligands and signaling. EMBO J. 17, 3797–3806 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ripio, M. T., Brehm, K., Lara, M., Suarez, M. & Vazquez-Boland, J. A. Glucose-1-phosphate utilization by Listeria monocytogenes is PrfA dependent and coordinately expressed with virulence factors. J. Bacteriol. 179, 7174–7180 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chico-Calero, I. et al. Hpt, a bacterial homolog of the microsomal glucose-6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. Proc. Natl Acad. Sci. USA 99, 431–436 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Goetz, M. et al. Microinjection and growth of bacteria in the cytosol of mammalian host cells. Proc. Natl Acad. Sci. USA 98, 12221–12226 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Keeney, K. M., Stuckey, J. A. & O'Riordan, M. X. LplA1-dependent utilization of host lipoyl peptides enables Listeria cytosolic growth and virulence. Mol. Microbiol. 66, 758–770 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. O'Riordan, M., Moors, M. A. & Portnoy, D. A. Listeria intracellular growth and virulence require host-derived lipoic acid. Science 302, 462–464 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Norskov-Lauritsen, N. & Kilian, M. Reclassification of Actinobacillus actinomycetemcomitans, Haemophilus aphrophilus, Haemophilus paraphrophilus and Haemophilus segnis as Aggregatibacter actinomycetemcomitans gen. nov., comb. nov., Aggregatibacter aphrophilus comb. nov. and Aggregatibacter segnis comb. nov., and emended description of Aggregatibacter aphrophilus to include V factor-dependent and V factor-independent isolates. Int. J. Syst. Evol. Microbiol. 56, 2135–2146 (2006).

    Article  PubMed  CAS  Google Scholar 

  58. Slots, J., Reynolds, H. S. & Genco, R. J. Actinobacillus actinomycetemcomitans in human periodontal disease: a cross-sectional microbiological investigation. Infect. Immun. 29, 1013–1020 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zambon, J. J. Actinobacillus actinomycetemcomitans in human periodontal disease. J. Clin. Periodontol. 12, 1–20 (1985).

    Article  CAS  PubMed  Google Scholar 

  60. Dzink, J. L., Tanner, A. C., Haffajee, A. D. & Socransky, S. S. Gram negative species associated with active destructive periodontal lesions. J. Clin. Periodontol. 12, 648–659 (1985).

    Article  CAS  PubMed  Google Scholar 

  61. Kroes, I., Lepp, P. W. & Relman, D. A. Bacterial diversity within the human subgingival crevice. Proc. Natl Acad. Sci. USA 96, 14547–14552 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Brown, S. A. & Whiteley, M. A novel exclusion mechanism for carbon resource partitioning in Aggregatibacter actinomycetemcomitans. J. Bacteriol. 189, 6407–6414 (2007). A unique mechanism, inducer exclusion, was elucidated that is potentially used to regulate in vivo carbon substrate utilization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Laux, D. C., Cohen, P. S. & Conway, T. in Colonization of Mucosal Surfaces (ed. Nataro, J. P.) 199–212 (ASM Press, Washington DC, 2005).

    Google Scholar 

  64. Chang, D. E. et al. Carbon nutrition of Escherichia coli in the mouse intestine. Proc. Natl Acad. Sci. USA 101, 7427–7432 (2004). Used intestinal mucus and mouse model studies to investigate the in vivo carbon substrate preference hierarchy of non-pathogenic E. coli.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Freter, R., Brickner, H., Botney, M., Cleven, D. & Aranki, A. Mechanisms that control bacterial populations in continuous-flow culture models of mouse large intestinal flora. Infect. Immun. 39, 676–685 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Fabich, A. J. et al. Comparative carbon nutrition of pathogenic and commensal Escherichia coli in the mouse intestine. Infect. Immun. 76, 1143–1152 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. McDougald, D., Srinivasan, S., Rice, S. A. & Kjelleberg, S. Signal-mediated cross-talk regulates stress adaptation in Vibrio species. Microbiology 149, 1923–1933 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Xavier, K. B. & Bassler, B. L. Interference with AI-2-mediated bacterial cell-cell communication. Nature 437, 750–753 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shiner, E. K. et al. Pseudomonas aeruginosa autoinducer modulates host cell responses through calcium signalling. Cell. Microbiol. 8, 1601–1610 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Sperandio, V., Torres, A. G., Jarvis, B., Nataro, J. P. & Kaper, J. B. Bacteria–host communication: the language of hormones. Proc. Natl Acad. Sci. USA 100, 8951–8956 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ankenbauer, R. G. & Nester, E. W. Sugar-mediated induction of Agrobacterium tumefaciens virulence genes: structural specificity and activities of monosaccharides. J. Bacteriol. 172, 6442–6446 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cangelosi, G. A., Ankenbauer, R. G. & Nester, E. W. Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein. Proc. Natl Acad. Sci. USA 87, 6708–6712 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Stachel, S. E., Messens, E., Van Montagu, M. & Zambryski, P. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318, 624–629 (1985).

    Article  Google Scholar 

  74. Gheysen, G., Villarroel, R. & Van Montagu, M. Illegitimate recombination in plants: a model for T-DNA integration. Genes Dev. 5, 287–297 (1991).

    Article  CAS  PubMed  Google Scholar 

  75. Mayerhofer, R. et al. T-DNA integration: a mode of illegitimate recombination in plants. EMBO J. 10, 697–704 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Caplan, A. et al. Introduction of genetic material into plant cells. Science 222, 815–821 (1983).

    Article  CAS  PubMed  Google Scholar 

  77. Horsch, R. B. et al. A simple and general method for transferring genes into plants. Science 227, 1229–1231 (1985).

    Article  CAS  Google Scholar 

  78. Akiyoshi, D. E. et al. Cytokinin/auxin balance in crown gall tumors is regulated by specific loci in the T-DNA. Proc. Natl Acad. Sci. USA 80, 407–411 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Komro, C. T., DiRita, V. J., Gelvin, S. B. & Kemp, J. D. Site-specific mutagenesis in the TR-DNA region of octopine-type Ti plasmids. Plant Mol. Biol. 4, 253–263 (1985).

    Article  CAS  PubMed  Google Scholar 

  80. Moore, L. W., Chilton, W. S. & Canfield, M. L. Diversity of opines and opine-catabolizing bacteria isolated from naturally occurring crown gall tumors. Appl. Environ. Microbiol. 63, 201–207 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Oger, P. M., Mansouri, H., Nesme, X. & Dessaux, Y. Engineering root exudation of Lotus toward the production of two novel carbon compounds leads to the selection of distinct microbial populations in the rhizosphere. Microb. Ecol. 47, 96–103 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Guyon, P., Chilton, M. D., Petit, A. & Tempe, J. Agropine in “null-type” crown gall tumors: Evidence for generality of the opine concept. Proc. Natl Acad. Sci. USA 77, 2693–2697 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fuqua, W. C. & Winans, S. C. A LuxR–LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J. Bacteriol. 176, 2796–2806 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hwang, I. et al. TraI, a LuxI homologue, is responsible for production of conjugation factor, the Ti plasmid N-acylhomoserine lactone autoinducer. Proc. Natl Acad. Sci. USA 91, 4639–4643 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang, L., Murphy, P. J., Kerr, A. & Tate, M. E. Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones. Nature 362, 446–448 (1993).

    Article  CAS  PubMed  Google Scholar 

  86. Petit, A. et al. Substrate induction of conjugative activity of Agrobacterium tumefaciens Ti plasmids. Nature 271, 570–572 (1978).

    Article  CAS  Google Scholar 

  87. Brencic, A., Angert, E. R. & Winans, S. C. Unwounded plants elicit Agrobacterium vir gene induction and T-DNA transfer: transformed plant cells produce opines yet are tumour free. Mol. Microbiol. 57, 1522–1531 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Chmiel, J. F. & Davis, P. B. State of the art: why do the lungs of patients with cystic fibrosis become infected and why can't they clear the infection? Respir. Res. 4, 8 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Rogers, G. B. et al. Characterization of bacterial community diversity in cystic fibrosis lung infections by use of 16S ribosomal DNA terminal restriction fragment length polymorphism profiling. J. Clin. Microbiol. 42, 5176–5183 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hoiby, N. Pseudomonas in cystic fibrosis: past, present, and future. (Cystic Fibrosis Trust, Berlin, Germany, 1998).

  91. Ohman, D. E. & Chakrabarty, A. M. Utilization of human respiratory secretions by mucoid Pseudomonas aeruginosa of cystic fibrosis origin. Infect. Immun. 37, 662–669 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Diggle, S. P. et al. The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol. Microbiol. 50, 29–43 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Pesci, E. C. et al. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 96, 11229–11234 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mashburn, L. M. & Whiteley, M. Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437, 422–425 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Mashburn-Warren, L. M. & Whiteley, M. in Chemical Communication among Bacteria (eds Winans, S. C. & Bassler, B. L.) 333–344 (ASM Press, Washington DC, 2008).

    Book  Google Scholar 

  96. Mashburn-Warren, L. M. & Whiteley, M. Special delivery: vesicle trafficking in prokaryotes. Mol. Microbiol. 61, 839–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Palmer, K. L., Mashburn, L. M., Singh, P. K. & Whiteley, M. Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology. J. Bacteriol. 187, 5267–5277 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Palmer, K. L., Aye, L. M. & Whiteley, M. Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J. Bacteriol. 189, 8079–8087 (2007). Outlined the development of a defined growth medium designed to mimic cystic fibrosis sputum, allowing for mechanistic studies of P. aeruginosa responses to specific in vivo nutrients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Becker, D. et al. Robust Salmonella metabolism limits possibilities for new antimicrobials. Nature 440, 303–307 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Lesch, J. E. The First Miracle Drugs: How the Sulfa Drugs Transformed Medicine (Oxford University Press, Oxford; New York, 2007).

    Google Scholar 

  101. Brown, G. M. The biosynthesis of folic acid. II. Inhibition by sulfonamides. J. Biol.Chem. 237, 536–540 (1962).

    CAS  PubMed  Google Scholar 

  102. Schroder, K., Hertzog, P. J., Ravasi, T. & Hume, D. A. Interferon-g: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 75, 163–189 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Cooper, A. M. et al. Disseminated tuberculosis in interferon gamma gene-disrupted mice. J. Exp. Med. 178, 2243–2247 (1993).

    Article  CAS  PubMed  Google Scholar 

  104. Flynn, J. L. et al. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 178, 2249–2254 (1993).

    Article  CAS  PubMed  Google Scholar 

  105. Buchmeier, N. A. & Schreiber, R. D. Requirement of endogenous interferon-gamma production for resolution of Listeria monocytogenes infection. Proc. Natl Acad. Sci. USA 82, 7404–7408 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pfefferkorn, E. R. Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan. Proc. Natl Acad. Sci. USA 81, 908–912 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Yoshida, R., Imanishi, J., Oku, T., Kishida, T. & Hayaishi, O. Induction of pulmonary indoleamine 2,3-dioxygenase by interferon. Proc. Natl Acad. Sci. USA 78, 129–132 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Takikawa, O., Yoshida, R., Kido, R. & Hayaishi, O. Tryptophan degradation in mice initiated by indoleamine 2,3-dioxygenase. J. Biol. Chem. 261, 3648–3653 (1986).

    CAS  PubMed  Google Scholar 

  109. Sibley, L. D., Messina, M. & Niesman, I. R. Stable DNA transformation in the obligate intracellular parasite Toxoplasma gondii by complementation of tryptophan auxotrophy. Proc. Natl Acad. Sci. USA 91, 5508–5512 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Feng, H. M. & Walker, D. H. Mechanisms of intracellular killing of Rickettsia conorii in infected human endothelial cells, hepatocytes, and macrophages. Infect. Immun. 68, 6729–6736 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. MacKenzie, C. R., Hadding, U. & Daubener, W. Interferon-gamma-induced activation of indoleamine 2,3-dioxygenase in cord blood monocyte-derived macrophages inhibits the growth of group B streptococci. J. Infect. Dis. 178, 875–878 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Russell, D. G., Dant, J. & Sturgill-Koszycki, S. Mycobacterium avium- and Mycobacterium tuberculosis-containing vacuoles are dynamic, fusion-competent vesicles that are accessible to glycosphingolipids from the host cell plasmalemma. J. Immunol. 156, 4764–4773 (1996).

    CAS  PubMed  Google Scholar 

  113. Gutierrez, M. G. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753–766 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Appelberg, R. Macrophage nutriprive antimicrobial mechanisms. J. Leukoc. Biol. 79, 1117–1128 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Van der Geize, R. et al. A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc. Natl Acad. Sci. USA 104, 1947–1952 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rengarajan, J., Bloom, B. R. & Rubin, E. J. Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc. Natl Acad. Sci. USA 102, 8327–8332 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Nuttall, F. Q., Khan, M. A. & Gannon, M. C. Peripheral glucose appearance rate following fructose ingestion in normal subjects. Metabolism 49, 1565–1571 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Soyama, K. Enzymatic determination of D-mannose in serum. Clin. Chem. 30, 293–294 (1984).

    CAS  PubMed  Google Scholar 

  119. Pittard, A. J. in Escherichia coli and Salmonella 458–484 (American Society for Microbiology, Washington DC, 1996).

    Google Scholar 

  120. Song, J. & Jensen, R. A. PhhR, a divergently transcribed activator of the phenylalanine hydroxylase gene cluster of Pseudomonas aeruginosa. Mol. Microbiol. 22, 497–507 (1996).

    Article  CAS  PubMed  Google Scholar 

  121. Gallagher, L. A., McKnight, S. L., Kuznetsova, M. S., Pesci, E. C. & Manoil, C. Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J. Bacteriol. 184, 6472–6480 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge members of the Whiteley laboratory for critical discussion and review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvin Whiteley.

Related links

Related links

DATABASES

Entrez Genome Project

Aggregatibacter actinomycetemcomitans

Agrobacterium tumefaciens

Brucella abortus

Brucella suis

Escherichia coli

Legionella pneumophila

Listeria monocytogenes

Mycobacterium tuberculosis

Neisseria meningitidis

Pseudomonas aeruginosa

Rickettsia conorii

Streptococcus mutans

Toxoplasma gondii

FURTHER INFORMATION

Marvin Whiteley's homepage

Glossary

Molecular mimicry

Chemical imitation of a host structural component by a foreign body.

Granuloma

A tissue lesion that occurs when macrophages are unable to clear foreign substances from the body. The centre of a granuloma contains a high density of macrophages (sometimes necrotic), which are surrounded by multiple immune cell types, including polymorphonuclear leukocytes and fibroblasts.

Glyoxylate shunt

An anaplerotic pathway used to bypass CO2-generating reactions of the tricarboxylic acid cycle to conserve carbon for intermediate biosynthesis; required for growth on fatty acids or acetate.

Polyketide

A member of a diverse class of secondary metabolites formed by condensation of small fatty acid groups. Polyketides are produced by bacteria, archaea and eukaryotes and can function as natural antimicrobials.

Phagosome

An intracellular vacuole that is formed by phagocytosis of extracellular components. Phagocytic cells, such as macrophages, are involved in bacterial clearance during infection. Properly trafficked phagosomes fuse with lysosomes — compartments that are filled with degradative enzymes.

Cofactor

A non-proteinaceous chemical compound that is required for enzyme catalysis.

Illegitimate recombination

A type of genetic recombination that occurs in spite of little homology between nucleotide sequences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, S., Palmer, K. & Whiteley, M. Revisiting the host as a growth medium. Nat Rev Microbiol 6, 657–666 (2008). https://doi.org/10.1038/nrmicro1955

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1955

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing