Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Experimental approaches to the study of HIV-1 latency

Key Points

  • HIV-1 can establish a state of latent infection in resting memory CD4+ T cells. These cells carry a stably integrated copy of the viral genome and persist even in patients who have had prolonged suppression of viraemia to undetectable levels on highly active antiretroviral therapy (HAART).

  • Latently infected cells are rare in vivo and are therefore difficult to detect. Approaches to detection rely on three main types of assay: the isolation of pure populations of resting CD4+ T cells; the detection of integrated HIV-1 DNA in these cells; and the recovery of replication-competent virus from these cells by cellular activation.

  • There are many difficulties associated with these assays. Most of the HIV-1 DNA in the resting CD4+ T cells of viraemic patients is unintegrated and labile, so the assays used must be able to distinguish between integrated and unintegrated HIV-1 DNA. Most of the HIV-1 DNA in resting CD4+ T cells is not replication-competent, therefore special assays are also needed to detect the cells that harbour replication-competent viral genomes. Finally, no single assay can simultaneously demonstrate both integration status and replication-competence. Culture assays on purified resting CD4+ T cells from patients on HAART provide the best indication of the true frequency of latently infected cells.

  • Drug-resistant viruses can enter the latent reservoir and persist there. Developing assays to detect archived resistance is an important research goal.

  • Cell-line models for HIV-1 latency have provided much useful information but suffer from the caveat that continuously proliferating, transformed cells might not accurately mimic the profoundly quiescent G0 state of the cells that harbour latent HIV-1 in vivo.

  • Latently infected resting CD4+ T cells have been demonstrated in a SCID/hu mouse model and in the simian immunodeficiency virus (SIV) model. These systems could prove useful in the development of approaches to target the latent reservoir.

Abstract

Viral latency is a reversibly non-productive state of infection that allows some viruses to evade host immune responses. As a consequence of its tropism for activated CD4+ T cells, HIV-1 can establish latent infection in resting memory CD4+ T cells, which are generated when activated CD4+ T cells return to a quiescent state. Latent HIV-1 persists as a stably integrated but transcriptionally silent provirus. In this state, the virus is unaffected by immune responses or antiretroviral drugs, and this latent reservoir in resting CD4+ T cells is a major barrier to curing the infection. Unfortunately, there is no simple assay to measure the number of latently infected cells in a patient, nor is there an entirely representative in vitro model in which to explore the molecular mechanisms of latency. This Review will consider current approaches to the analysis of HIV-1 latency both in vivo and in vitro.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A model for the generation of the latent reservoir of HIV-1 in resting CD4+ T cells.
Figure 2: A schematic representation of the HIV lifecycle.
Figure 3: Different assays for latently infected cells detect different cell populations.
Figure 4: Dynamics of the latent reservoir.
Figure 5: An in vitro model for HIV-1 latency.

Similar content being viewed by others

References

  1. Piatak, M. Jr et al. High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science 259, 1749–1754 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Chun, T. W. et al. In vivo fate of HIV-1-infected T cells: quantitative analysis of the transition to stable latency. Nature Med. 1, 1284–1290 (1995). This paper provides the first in vivo evidence for the existence of a latent reservoir of HIV-1 in resting CD4+ T cells.

    Article  CAS  PubMed  Google Scholar 

  3. Chun, T. W. et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387, 183–188 (1997). This paper presents a detailed analysis of the frequency of latently infected cells as measured by DNA PCR, inverse PCR and culture assays. Much of the subsequent development of assays for latently infected cells was based on this study.

    Article  CAS  PubMed  Google Scholar 

  4. Finzi, D. et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278, 1295–1300 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Chun, T. W. et al. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc. Natl Acad. Sci. USA 94, 13193–13197 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wong, J. K. et al. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278, 1291–1295 (1997). Refs 4, 5 and 6 demonstrate that latently infected cells persist in patients in whom HAART has suppressed viraemia to undetectable levels.

    Article  CAS  PubMed  Google Scholar 

  7. Finzi, D. et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nature Med. 5, 512–517 (1999). The first longitudinal study of the decay rate of the latent reservoir. The measured decay rate (half life = 44 months) is so slow that lifetime persistence of HIV-1 is guaranteed. This study is widely cited as the best evidence that HIV-1 infection cannot be cured by antiretroviral therapy alone.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, L. et al. Quantifying residual HIV-1 replication in patients receiving combination antiretroviral therapy. N. Engl. J. Med. 340, 1605–1613 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Ramratnam, B. et al. The decay of the latent reservoir of replication-competent HIV-1 is inversely correlated with the extent of residual viral replication during prolonged anti-retroviral therapy. Nature Med. 6, 82–85 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Siliciano, J. D. et al. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nature Med. 9, 727–728 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Strain, M. C. et al. Heterogeneous clearance rates of long-lived lymphocytes infected with HIV: intrinsic stability predicts lifelong persistence. Proc. Natl Acad. Sci. USA 100, 4819–4824 (2003). An elegant study that follows the decay of infected cells carrying viruses with a particular drug-resistance mutation. This study also provides evidence for the lifetime persistence of HIV-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bartlett, J. G. & Lane, H. C. Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents. [online], (US Department of Health and Human Services and Kaiser Family Foundation, 2006). This document provides the United States national treatment guidelines for the treatment of HIV-1 infection, based on the detailed recommendations of an expert panel.

    Google Scholar 

  13. Perelson, A. S. et al. Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387, 188–191 (1997). An influential paper describing the two phases of decay of viraemia following the initiation of HAART. This study predicted that eradication might be possible after 2–3 years of HAART, providing there are no stable reservoirs.

    Article  CAS  PubMed  Google Scholar 

  14. Chun, T. -W. et al. Early establishment of a pool of latently infected, resting CD4+ T cells during primary HIV-1 infection. Proc. Natl Acad. Sci. USA 95, 8869–8873 (1998). A study showing that the latent reservoir is established during primary HIV-1 infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Strain, M. C. et al. Effect of treatment, during primary infection, on establishment and clearance of cellular reservoirs of HIV-1. J. Infect. Dis. 191, 1410–1418 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Chun, T. W. et al. Effect of interleukin-2 on the pool of latently infected, resting CD4+ T cells in HIV-1-infected patients receiving highly active anti- retroviral therapy. Nature Med. 5, 651–655 (1999). An initial unsuccessful attempt to purge the latent reservoir by administration of IL-1 and HAART.

    Article  CAS  PubMed  Google Scholar 

  17. Kulkosky, J. et al. Prostratin: activation of latent HIV-1 expression suggests a potential inductive adjuvant therapy for HAART. Blood 98, 3006–3015 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Kulkosky, J. et al. Intensification and stimulation therapy for human immunodeficiency virus type 1 reservoirs in infected persons receiving virally suppressive highly active antiretroviral therapy. J. Infect. Dis. 186, 1403–1411 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Korin, Y. D., Brooks, D. G., Brown, S., Korotzer, A. & Zack, J. A. Effects of prostratin on T-cell activation and human immunodeficiency virus latency. J. Virol. 76, 8118–8123 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Scripture-Adams, D. D., Brooks, D. G., Korin, Y. D. & Zack, J. A. Interleukin-7 induces expression of latent human immunodeficiency virus type 1 with minimal effects on T-cell phenotype. J. Virol. 76, 13077–13082 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lin, X. et al. Transcriptional profiles of latent human immunodeficiency virus in infected individuals: effects of Tat on the host and reservoir. J. Virol. 77, 8227–8236 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lehrman, G. et al. Depletion of latent HIV-1 infection in vivo: a proof-of-concept study. Lancet 366, 549–555 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Persaud, D. et al. A stable latent reservoir for HIV-1 in resting CD4+ T lymphocytes in infected children. J. Clin. Invest 105, 995–1003 (2000). The first study showing the persistence of drug-resistance mutations in the latent reservoir.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ruff, C. T. et al. Persistence of wild-type virus and lack of temporal structure in the latent reservoir for human immunodeficiency virus type 1 in pediatric patients with extensive antiretroviral exposure. J. Virol. 76, 9481–9492 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hermankova, M. et al. Analysis of human immunodeficiency virus type 1 gene expression in latently infected resting CD4+ T lymphocytes in vivo. J. Virol. 77, 7383–7392 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brooks, D. G. et al. Molecular characterization, reactivation, and depletion of latent HIV. Immunity 19, 413–423 (2003). This study describes an elegant model for HIV-1 latency in SCID mice reconstituted with human fetal thymus and liver tissue.

    Article  CAS  PubMed  Google Scholar 

  27. Kao, S. Y., Calman, A. F., Luciw, P. A. & Peterlin, B. M. Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product. Nature 330, 489–493 (1987).

    Article  CAS  PubMed  Google Scholar 

  28. Adams, M. et al. Cellular latency in human immunodeficiency virus-infected individuals with high CD4 levels can be detected by the presence of promoter-proximal transcripts. Proc. Natl Acad. Sci. USA 91, 3862–3866 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lassen, K. G., Bailey, J. R. & Siliciano, R. F. Analysis of human immunodeficiency virus type 1 transcriptional elongation in resting CD4+ T cells in vivo. J. Virol. 78, 9105–9114 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pomerantz, R. J., Trono, D., Feinberg, M. B. & Baltimore, D. Cells nonproductively infected with HIV-1 exhibit an aberrant pattern of viral RNA expression: a molecular model for latency. Cell 61, 1271–1276 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. Malim, M. H. & Cullen, B. R. HIV-1 structural gene expression requires the binding of multiple rev monomers to the viral RRE: Implications for HIV-1 latency. Cell 65, 241–248 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. Lassen, K. G., Ramyar, K. X., Bailey, J. R., Zhou, Y. & Siliciano, R. F. Nuclear retention of multiply spliced HIV-1 RNA in resting CD4+ T cells. PLoS Pathog. 2, e68 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Dooms, H. & Abbas, A. K. Control of CD4+ T-cell memory by cytokines and costimulators. Immunol. Rev. 211, 23–38 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Margolick, J. B., Volkman, D. J., Folks, T. M. & Fauci, A. S. Amplification of HTLV-III/LAV infection by antigen-induced activation of T cells and direct suppression by virus of lymphocyte blastogenic responses. J. Immunol. 138, 1719–1723 (1987).

    CAS  PubMed  Google Scholar 

  35. Zack, J. A., Cann, A. J., Lugo, J. P. & Chen, I. S. HIV-1 production from infected peripheral blood T cells after HTLV-I induced mitogenic stimulation. Science 240, 1026–1029 (1988).

    Article  CAS  PubMed  Google Scholar 

  36. Ho, D. D. et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Wei, X. et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373, 117–122 (1995). Refs 36 and 37 are both classic papers describing the rapid decay of plasma virus following the initiation of HAART.

    Article  CAS  PubMed  Google Scholar 

  38. Tong-Starksen, S. E., Luciw, P. A. & Peterlin, B. M. Human immunodeficiency virus long terminal repeat responds to T-cell activation signals. Proc. Natl Acad. Sci. USA 84, 6845–6849 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nabel, G. & Baltimore, D. An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326, 711–713 (1987). An extremely important study showing that HIV-1 gene expression is intimately linked to the state of cellular activation.

    Article  CAS  PubMed  Google Scholar 

  40. Bohnlein, E. et al. The same inducible nuclear proteins regulates mitogen activation of both the interleukin-2 receptor-α gene and type 1 HIV. Cell 53, 827–836 (1988).

    Article  CAS  PubMed  Google Scholar 

  41. Duh, E. J., Maury, W. J., Folks, T. M., Fauci, A. S. & Rabson, A. B. Tumor necrosis factor α activates human immunodeficiency virus type 1 through induction of nuclear factor binding to the NF-κB sites in the long terminal repeat. Proc. Natl Acad. Sci. USA 86, 5974–5978 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kinoshita, S. et al. The T cell activation factor NF-ATc positively regulates HIV-1 replication and gene expression in T cells. Immunity 6, 235–244 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Ganesh, L. et al. The gene product Murr1 restricts HIV-1 replication in resting CD4+ lymphocytes. Nature 426, 853–857 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Kim, Y. K. et al. Recruitment of TFIIH to the HIV LTR is a rate-limiting step in the emergence of HIV from latency. EMBO J. 25, 3596–3604 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pierson, T. et al. Characterization of chemokine receptor utilization of viruses in the latent reservoir for HIV-1. J. Virol. 74, 7824–7833 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zack, J. A. et al. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell 61, 213–222 (1990).

    Article  CAS  PubMed  Google Scholar 

  47. Korin, Y. D. & Zack, J. A. Nonproductive human immunodeficiency virus type-1 infection in nucleoside-treated G0 lymphocytes. J. Virol. 73, 6526–6532 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Pierson, T. C. et al. Molecular characterization of preintegration latency in HIV-1 infection. J. Virol. 76, 8518–8531 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhou, Y., Zhang, H., Siliciano, J. D. & Siliciano, R. F. Kinetics of human immunodeficiency virus type 1 decay following entry into resting CD4+ T cells. J. Virol. 79, 2199–2210 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chiu, Y. L. et al. Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells. Nature 435, 108–114 (2005). An important study describing the role of the cytidine deaminase APOBEC3G in preventing productive infection of resting CD4+ T cells. Knockdown of APOBEC3G led to productive infection of this normally resistant population.

    Article  CAS  PubMed  Google Scholar 

  51. Bukrinsky, M. I. et al. Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proc. Natl Acad. Sci. USA 89, 6580–6584 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jordan, A., Defechereux, P. & Verdin, E. The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation. EMBO J. 20, 1726–1738 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jordan, A., Bisgrove, D. & Verdin, E. HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J. 22, 1868–1877 (2003). An elegant study establishing an in vitro model for HIV latency in the Jurkat T-cell line.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Herrmann, C. H., Carroll, R. G., Wei, P., Jones, K. A. & Rice, A. P. Tat-associated kinase, TAK, activity is regulated by distinct mechanisms in peripheral blood lymphocytes and promonocytic cell lines. J. Virol. 72, 9881–9888 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Seshamma, T., Bagasra, O., Trono, D., Baltimore, D. & Pomerantz, R. J. Blocked early-stage latency in the peripheral blood cells of certain individuals infected with human immunodeficiency virus type 1. Proc. Natl Acad. Sci. USA 89, 10663–10667 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, Z. et al. Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells Science 286, 1353–1357 (1999) published erratum in Science 286, 2273 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Li, Q. et al. Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells. Nature 434, 1148–1152 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Chun, T. W. et al. Gene expression and viral prodution in latently infected, resting CD4+ T cells in viremic versus aviremic HIV-infected individuals. Proc. Natl Acad. Sci. USA 100, 1908–1913 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang, Z.-Q. et al. Sexual transmission and propagation of SIV and HIV-1 in activated and quiescent T cells. [online] (6th Conference on Retroviruses and Opportunistic Infections Jan 31–Feb 4, 1999).

    Google Scholar 

  60. Bukrinsky, M. I., Stanwick, T. L., Dempsey, M. P. & Stevenson, M. Quiescent T lymphocytes as an inducible virus reservoir in HIV-1 infection. Science 254, 423–427 (1991). A seminal study showing that in untreated HIV-1 infection, most of the HIV-1 DNA in resting CD4+ T cells is in an unintegrated form. Rescue of virus from cells with unintegrated HIV-1 DNA could be achieved by cellular activation.

    Article  CAS  PubMed  Google Scholar 

  61. Blankson, J. N. et al. Biphasic decay of latently infected CD4+ T cells in acute HIV-1 infection. J. Infect. Dis. 182, 1636–1642 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Zack, J. A., Haislip, A. M., Krogstand, P. & Chen, I. S. Y. Incompletely reverse-transcribed human immunodeficiency virus type I genomes function as intermediates in the retroviral life cycle. J. Virol. 66, 1717–1725 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Spina, C. A., Guatelli, J. C. & Richman, D. D. Establishment of a stable, inducible form of human immunodeficiency virus type 1 DNA in quiescent CD4 lymphocytes in vitro. J. Virol. 69, 2977–2988 1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Butler, S. L., Hansen, M. S. & Bushman, F. D. A quantitative assay for HIV DNA integration in vivo. Nature Med. 7, 631–634 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. O' Doherty, U., Swiggard, W. J., Jeyakumar, D., McGain, D. & Malim, M. H. A sensitive, quantitative assay for human immunodeficiency virus type 1 integration. J. Virol. 76, 10942–10950 (2002).

    Article  CAS  Google Scholar 

  66. Schroder, A. R. et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110, 521–529 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Han, Y. et al. Resting CD4+ T cells from HIV-1-infected individuals carry integrated HIV-1 genomes within actively transcribed host genes. J. Virol. 78, 6122–6133 (2004). The first study of HIV-1 integration sites in vivo . Integration sites were analysed by inverse PCR in resting CD4+ T cells from patients on HAART. Almost all of the sites detected were in introns of active genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Brussel, A., Delelis, O. & Sonigo, P. Alu-LTR real-time nested PCR assay for quantifying integrated HIV-1 DNA. Methods Mol. Biol. 304, 139–154 (2005).

    CAS  PubMed  Google Scholar 

  69. Yamamoto, N. et al. Analysis of human immunodeficiency virus type 1 integration by using a specific, sensitive and quantitative assay based on real-time polymerase chain reaction. Virus Genes 32, 105–113 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Wu, X., Li, Y., Crise, B. & Burgess, S. M. Transcription start regions in the human genome are favored targets for MLV integration. Science 300, 1749–1751 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Kieffer, T. L. et al. G→A hypermutation in protease and reverse transcriptase regions of human immunodeficiency virus type 1 residing in resting CD4+ T cells in vivo. J. Virol. 79, 1975–1980 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Monie, D. et al. A novel assay allows genotyping of the latent reservoir for human immunodeficiency virus type 1 in the resting CD4+ T cells of viremic patients. J. Virol. 79, 5185–5202 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Giorgi, J. V. et al. CD8+ lymphocyte activation at human immunodeficiency virus type 1 seroconversion: development of HLA-DR+ CD38 CD8+ cells is associated with subsequent stable CD4+ cell levels. J. Infect. Dis. 170, 775–781 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Lambotte, O. et al. The lymphocyte HIV reservoir in patients on long-term HAART is a memory of virus evolution. AIDS 18, 1147–1158 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Verhofstede, C. et al. Drug-resistant variants that evolve during nonsuppressive therapy persist in HIV-1-infected peripheral blood mononuclear cells after long-term highly active antiretroviral therapy. J. Acquir. Immune. Defic. Syndr. 35, 473–483 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Bailey, J. R. et al. Residual human immunodeficiency virus type 1 viremia in some patients on antiretroviral therapy is dominated by a small number of invariant clones rarely found in circulating CD4+ T cells. J. Virol. 80, 6441–6457 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Deeks, S. G. et al. Virologic and immunologic consequences of discontinuing combination antiretroviral-drug therapy in HIV-infected patients with detectable viremia. N. Engl. J. Med. 344, 472–480 (2001). An important study showing that, in patients who are failing therapy, interruption of HAART results in the eventual appearance of wild-type virus in the plasma. This seems to reflect the release of archived wild-type virus from the latent reservoir.

    Article  CAS  PubMed  Google Scholar 

  78. Shafer, R. W., Dupnik, K., Winters, M. A. & Eshleman, S. H. A Guide To HIV-1 Reverse Trancriptase and Protease Sequencing for Drug Resistance Studies. [online] (Los Alamos HIV Sequence Database, 2001).

    Google Scholar 

  79. Hertogs, K. et al. A rapid method for simultaneous detection of phenotypic resistance to inhibitors of protease and reverse transcriptase in recombinant human immunodeficiency virus type 1 isolates from patients treated with antiretroviral drugs. Antimicrob. Agents Chemother. 42, 269–276 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Petropoulos, C. J. et al. A novel phenotypic drug susceptibility assay for human immunodeficiency virus type 1. Antimicrob. Agents Chemother. 44, 920–928 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dornadula, G. et al. Residual HIV-1 RNA in blood plasma of patients taking suppressive highly active antiretroviral therapy. JAMA 282, 1627–1632 (1999). An important study showing that low levels of free virus are present in the plasma of patients with clinical undetectable viral loads.

    Article  CAS  PubMed  Google Scholar 

  82. Yerly, S. et al. Time of initiation of antiretroviral therapy: impact on HIV-1 viraemia. The Swiss HIV Cohort Study. AIDS 14, 243–249 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Hermankova, M. et al. HIV-1 drug resistance profiles in children and adults with viral load <50 copies/mL receiving combination therapy. JAMA 286, 196–207 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Havlir, D. V. et al. Productive infection maintains a dynamic steady state of residual viremia in human immunodeficiency virus type 1-infected persons treated with suppressive antiretroviral therapy for five years. J. Virol. 77, 11212–11219 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Palmer, S. et al. New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. J. Clin. Microbiol. 41, 4531–4536 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Persaud, D. et al. Continued production of drug-sensitive human immunodeficiency virus type 1 in children on combination antiretroviral therapy who have undetectable viral loads. J. Virol. 78, 968–979 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kieffer, T. L. et al. Genotypic analysis of HIV-1 drug resistance at the limit of detection: virus production without evolution in treated adults with undetectable HIV loads. J. Infect. Dis. 189, 1452–1465 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Nettles, R. E. et al. Intermittent HIV-1 viremia (Blips) and drug resistance in patients receiving HAART. JAMA 293, 817–829 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Liu, S. L. et al. HIV quasispecies and resampling. Science 273, 415–416 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Lassen, K., Han, Y., Zhou, Y., Siliciano, J. & Siliciano, R. F. The multifactorial nature of HIV-1 latency. Trends Mol. Med. 10, 525–531 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Hermankova, M. et al. Analysis of HIV-1 gene expression in latently infected resting CD4+ T lymphocytes in vivo. J. Virol. 77, 7383–7392 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Folks, T. M. et al. Tumor necrosis factor α induces expression of human immunodeficiency virus in a chronically infected T-cell clone. Proc. Natl Acad. Sci. USA 86, 2365–2368 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Folks, T. M., Justement, J., Kinter, A., Dinarello, C. A. & Fauci, A. S. Cytokine-induced expression of HIV-1 in a chronically infected promonocyte cell line. Science 238, 800–802 (1987).

    Article  CAS  PubMed  Google Scholar 

  94. Antoni, B. A., Rabson, A. B., Kinter, A., Bodkin, M. & Poli, G. NF-κB-dependent and -independent pathways of HIV activation in a chronically infected T cell line. Virology 202, 684–694 (1994).

    Article  CAS  PubMed  Google Scholar 

  95. Adams, M. et al. Cellular latency in human immunodeficiency virus-infected individuals with high CD4 levels can be detected by the presence of promoter-proximal transcripts. Proc. Natl Acad. Sci. USA 91, 3862–3866 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Krishnan, V. & Zeichner, S. L. Host cell gene expression during human immunodeficiency virus type 1 latency and reactivation and effects of targeting genes that are differentially expressed in viral latency. J. Virol. 78, 9458–9473 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Emiliani, S. et al. Mutations in the tat gene are responsible for human immunodeficiency virus type 1 postintegration latency in the U1 cell line. J. Virol. 72, 1666–1670 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Emiliani, S. et al. A point mutation in the HIV-1 Tat responsive element is associated with postintegration latency. Proc. Natl Acad. Sci. USA 93, 6377–6381 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Williams, S. A. et al. NF-κB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation. EMBO J. 25, 139–149 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Mahmoudi, T. et al. The SWI/SNF chromatin-remodeling complex is a cofactor for Tat transactivation of the HIV promoter. J. Biol. Chem. 281, 19960–19968 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Kim, Y. K. et al. Recruitment of TFIIH to the HIV LTR is a rate-limiting step in the emergence of HIV from latency. EMBO J. 25, 3596–3604 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Weinberger, L. S., Burnett, J. C., Toettcher, J. E., Arkin, A. P. & Schaffer, D. V. Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell 122, 169–182 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Liu, H. et al. Integration of human immunodeficiency virus type 1 in untreated infection occurs preferentially within genes. J. Virol. 80, 7765–7768 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. MacNeil, A. et al. Genomic sites of human immunodeficiency virus type 2 (HIV-2) integration: similarities to HIV-1 in vitro and possible differences in vivo. J. Virol. 80, 7316–7321 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lewinski, M. K. et al. Genome-wide analysis of chromosomal features repressing human immunodeficiency virus transcription. J. Virol. 79, 6610–6619 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Brooks, D. G., Kitchen, S. G., Kitchen, C. M., Scripture-Adams, D. D. & Zack, J. A. Generation of HIV latency during thymopoiesis. Nature Med. 7, 459–464 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. McCune, J. M. et al. The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 241, 1632–1639 (1988).

    Article  CAS  PubMed  Google Scholar 

  108. Krowka, J. F., Sarin, S., Namikawa, R., McCune, J. M. & Kaneshima, H. Human T cells in the SCID-hu mouse are phenotypically normal and functionally competent. J. Immunol. 146, 3751–3756 (1991).

    CAS  PubMed  Google Scholar 

  109. Brenchley, J. M. et al. T-cell subsets that harbor human immunodeficiency virus (HIV) in vivo: implications for HIV pathogenesis. J. Virol. 78, 1160–1168 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Brooks, D. G., Arlen, P. A., Gao, L., Kitchen, C. M. & Zack, J. A. Identification of T cell-signaling pathways that stimulate latent HIV in primary cells. Proc. Natl Acad. Sci. USA 100, 12955–12960 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jenkins, M. K. et al. In vivo activation of antigen-specific CD4 T cells. Annu. Rev. Immunol. 19, 23–45 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Farber, D. L., Acuto, O. & Bottomly, K. Differential T cell receptor-mediated signaling in naive and memory CD4 T cells. Eur. J. Immunol. 27, 2094–2101 (1997).

    Article  CAS  PubMed  Google Scholar 

  113. Dutton, R. W., Bradley, L. M. & Swain, S. L. T cell memory. Annu. Rev. Immunol. 16, 201–223 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Shen, A. et al. Resting CD4+ T lymphocytes but not thymocytes provide a latent viral reservoir in a simian immunodeficiency virus–Macaca nemestrina model of human immunodeficiency virus type 1-infected patients on highly active antiretroviral therapy. J. Virol. 77, 4938–4949 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hazuda, D. J. et al. Integrase inhibitors and cellular immunity suppress retroviral replication in rhesus macaques. Science 305, 528–532 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Hofman, M. J. et al. Efavirenz therapy in rhesus macaques infected with a chimera of simian immunodeficiency virus containing reverse transcriptase from human immunodeficiency virus type 1. Antimicrob. Agents Chemother. 48, 3483–3490 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. North, T. W. et al. Suppression of virus load by highly active antiretroviral therapy in rhesus macaques infected with a recombinant simian immunodeficiency virus containing reverse transcriptase from human immunodeficiency virus type 1. J. Virol. 79, 7349–7354 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health, by a grant from the Doris Duke Charitable Foundation and by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert F. Siliciano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

41579_2007_BFnrmicro1580_MOESM1_ESM.pdf

Supplementary information S1 (figure) The latent reservoir as an archive of the major viral variants generated during the course of HIV-1 infection. (PDF 198 kb)

Related links

Related links

FURTHER INFORMATION

Robert F. Siliciano's homepage

Glossary

Lymphoblast

A T-cell lymphoblast is a T cell that has been activated and entered the cell cycle. It can develop into an effector T cell or a memory T cell.

HIV-1 LTR

(HIV-1 long terminal repeat). DNA sequences of approximately 630 base pairs that are present at the 5′ and 3′ ends of the HIV-1 genome.

Preintegration complex

A high-molecular-weight complex including the viral genome, the transcriptase and integrase enzymes and other viral proteins.

Inverse PCR

This technique allows the DNA that flanks a region of known sequence to be amplified.

Alu PCR

PCR that amplifies DNA that is located between a sequence of interest and an Alu element.

Poisson statistics

A statistical distribution in which the probability of an individual event is small, but the number of opportunities is large enough that several such events can occur.

RT-PCR

Reverse-transcription PCR. A type of PCR in which RNA is converted into double-stranded DNA, which is then amplified.

Viral quasispecies

A closely related viral variant coevolving in a host.

SWI/SNF chromatin-remodelling complex

An enzymatic complex that achieves the remodelling of DNA–nucleosomal architecture and determines transcriptional activity.

Heterochromatic

A high-density region in the nucleus that is thought to contain compacted chromatin structures associated with silent genes.

Alphoid repeat elements

Tandem arrays of 171-bp repeats that are associated with centromeric heterochromatin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Y., Wind-Rotolo, M., Yang, HC. et al. Experimental approaches to the study of HIV-1 latency. Nat Rev Microbiol 5, 95–106 (2007). https://doi.org/10.1038/nrmicro1580

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1580

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing