Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in understanding bacterial outer-membrane biogenesis

Key Points

  • The outer membrane (OM) of Gram-negative bacteria functions as a selective barrier that controls the influx and efflux of solutes, a property that is crucial for bacterial survival in different environments. The OM of Escherichia coli has been extensively studied and serves as the paradigm for Gram-negative species. Although biochemical and microscopic data on the molecular composition and structure of the E. coli OM have been available since the 1950s, it is only relatively recently that details on the lipopolysaccharide (LPS) and OM protein (OMP) assembly factors have been obtained.

  • The components of the outer membrane — OMPs, phospholipids and LPS — are synthesized in the cytoplasm and at the inner leaflet of the inner membrane (IM), respectively, and must be transported to the OM after synthesis.

  • Translocation across the IM occurs through the SecYEG translocon for OMPs. LPS is transported from the inner leaflet to the outer leaflet of the IM by the ATP-binding cassette transporter MsbA, which 'flips' LPS from one leaflet to the other. In E. coli, MsbA might also transport phospholipids across the IM.

  • Three possible scenarios for transit of proteins, phospholipids and LPS from the inner membrane across the periplasm to the OM have been considered — vesicle-mediated transit, transit at contact sites between the two membranes and chaperone-mediated transit — and each of these scenarios is considered in turn.

  • Researchers have used a variety of genetic screens to identify OM-assembly mutants. Although such screens have greatly increased our knowledge of the biosynthesis of components of the OM and how they are transported across the IM, they generate too many unrelated mutations to be of use in identifying factors involved in OM assembly.

  • In our laboratory, we have identified additional criteria that, if used, can help identify leaky mutants that are truly defective in OM biogenesis; these criteria, and the experiments that led to their delineation, are discussed. In addition, we have identified a novel application of chemical genetics — chemical conditionality — that we have used to successfully identify a factor required for OM assembly, YfgL. YfgL was found to exist in a multiprotein complex with the β-barrel OMP YaeT and two OM lipoproteins, YfiO and NlpB.

  • Although the discovery of the YfgL-containing multiprotein complex is a key step towards understanding the assembly of the OM, it is likely that additional factors involved in the assembly of the OM remain to be identified. The chemical-conditionality screening technique described here could be used to identify these factors, and could also be useful in identifying factors involved in the assembly of other organelles.

Abstract

The outer membrane of Gram-negative bacteria such as Escherichia coli serves as a protective barrier that controls the influx and efflux of solutes. This allows the bacteria to inhabit several different, and often hostile, environments. The assembly of the E. coli outer membrane has been difficult to study using traditional genetic and biochemical methods, and how all its components reach the outer membrane after being synthesized in the cytoplasm and cytoplasmic membrane, how they are assembled in an environment that is devoid of an obvious energy source, and how assembly proceeds without disrupting the integrity of this essential cellular structure are all fundamental questions that remain unanswered. Here, we review the new approaches that have led to the recent discovery of components of the machinery involved in the biogenesis of this distinctive cellular organelle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General structure of the Escherichia coli cell envelope.
Figure 2: Biogenesis of the outer membrane.
Figure 3: A chemical genetic approach to identify outer-membrane-assembly factors.
Figure 4: The pathway of chemical sensitivity.

Similar content being viewed by others

References

  1. Gram, H. C. J. Über die isolirte Färbung der Schizomyceten in Schnitt- und Trockenpräparaten. Fortschr. Med. 2, 185–189 (1884).

    Google Scholar 

  2. Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593–656 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kanemasa, Y., Akamatsu, Y. & Nojima, S. Composition and turnover of the phospholipids in Escherichia coli. Biochim. Biophys. Acta 144, 382–390 (1967).

    CAS  PubMed  Google Scholar 

  4. Yamagami, A., Yoshioka, T. & Kanemasa, Y. Differences in phospholipid composition between wild strains and streptomycin resistant mutants of certain enteric bacteria. Jpn. J. Microbiol. 14, 174–176 (1970).

    CAS  PubMed  Google Scholar 

  5. Tokuda, H. & Matsuyama, S. Sorting of lipoproteins to the outer membrane in E. coli. Biochim. Biophys. Acta 1694, 1–9 (2004). This is a recent comprehensive review that discusses the current model for lipoprotein sorting and trafficking in the cell envelope.

    Google Scholar 

  6. Van Wielink, J. E. & Duine, J. A. How big is the periplasmic space? Trends Biochem. Sci. 15, 136–137 (1990).

    CAS  PubMed  Google Scholar 

  7. Nakamoto, H. & Bardwell, J. C. Catalysis of disulfide bond formation and isomerization in the Escherichia coli periplasm. Biochim. Biophys. Acta 1694, 111–119 (2004).

    CAS  PubMed  Google Scholar 

  8. Duguay, A. R. & Silhavy, T. J. Quality control in the bacterial periplasm. Biochim. Biophys. Acta 1694, 121–134 (2004).

    CAS  PubMed  Google Scholar 

  9. Mogensen, J. E. & Otzen, D. E. Interactions between folding factors and bacterial outer membrane proteins. Mol. Microbiol. 57, 326–346 (2005).

    CAS  PubMed  Google Scholar 

  10. Hoch, J. A. Two-component and phosphorelay signal transduction. Curr. Opin. Microbiol. 3, 165–170 (2000).

    CAS  PubMed  Google Scholar 

  11. Vollmer, W. & Holtje, J. V. The architecture of the murein (peptidoglycan) in Gram-negative bacteria: vertical scaffold or horizontal layer(s)? J. Bacteriol. 186, 5978–5987 (2004). This article revisits a large body of data on peptidoglycan and evaluates models regarding the orientation of peptidoglycan in the cell.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Braun, V. Covalent lipoprotein from the outer membrane of Escherichia coli. Biochim. Biophys. Acta 415, 335–377 (1975).

    CAS  PubMed  Google Scholar 

  13. Smit, J., Kamio, Y. & Nikaido, H. Outer membrane of Salmonella typhimurium: chemical analysis and freeze-fracture studies with lipopolysaccharide mutants. J. Bacteriol. 124, 942–958 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kamio, Y. & Nikaido, H. Outer membrane of Salmonella typhimurium: accessibility of phospholipid head groups to phospholipase c and cyanogen bromide activated dextran in the external medium. Biochemistry 15, 2561–2570 (1976). This article presents the first experimental evidence supporting the asymmetric nature of the OM.

    CAS  PubMed  Google Scholar 

  15. Lugtenberg, E. J. & Peters, R. Distribution of lipids in cytoplasmic and outer membranes of Escherichia coli K12. Biochim. Biophys. Acta 441, 38–47 (1976).

    CAS  PubMed  Google Scholar 

  16. Ishinaga, M., Kanamoto, R. & Kito, M. Distribution of phospholipid molecular species in outer and cytoplasmic membrane of Escherichia coli. J. Biochem. (Tokyo) 86, 161–165 (1979).

    CAS  Google Scholar 

  17. White, D. A., Lennarz, W. J. & Schnaitman, C. A. Distribution of lipids in the wall and cytoplasmic membrane subfractions of the cell envelope of Escherichia coli. J. Bacteriol. 109, 686–690 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Raetz, C. R. & Whitfield, C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71, 635–700 (2002).

    CAS  PubMed  Google Scholar 

  19. Nikaido, H. & Vaara, M. Molecular basis of bacterial outer membrane permeability. Microbiol. Rev. 49, 1–32 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Takeuchi, Y. & Nikaido, H. Persistence of segregated phospholipid domains in phospholipid–lipopolysaccharide mixed bilayers: studies with spin-labeled phospholipids. Biochemistry 20, 523–529 (1981).

    CAS  PubMed  Google Scholar 

  21. Schulz, G. E. The structure of bacterial outer membrane proteins. Biochim. Biophys. Acta 1565, 308–317 (2002).

    CAS  PubMed  Google Scholar 

  22. Kuhn, H. M., Meier-Dieter, U. & Mayer, H. ECA, the enterobacterial common antigen. FEMS Microbiol. Rev. 4, 195–222 (1988).

    CAS  PubMed  Google Scholar 

  23. Whitfield, C. & Roberts, I. S. Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol. Microbiol. 31, 1307–1319 (1999).

    CAS  PubMed  Google Scholar 

  24. Remaut, H. & Waksman, G. Structural biology of bacterial pathogenesis. Curr. Opin. Struct. Biol. 14, 161–170 (2004).

    CAS  PubMed  Google Scholar 

  25. Osborn, M. J., Gander, J. E. & Parisi, E. Mechanism of assembly of the outer membrane of Salmonella typhimurium. Site of synthesis of lipopolysaccharide. J. Biol. Chem. 247, 3973–3986 (1972).

    CAS  PubMed  Google Scholar 

  26. White, D. A., Albright, F. R., Lennarz, W. J. & Schnaitman, C. A. Distribution of phospholipid-synthesizing enzymes in the wall and membrane subfractions of the envelope of Escherichia coli. Biochim. Biophys. Acta 249, 636–642 (1971).

    CAS  PubMed  Google Scholar 

  27. Bell, R. M., Mavis, R. D., Osborn, M. J. & Vagelos, P. R. Enzymes of phospholipid metabolism: localization in the cytoplasmic and outer membrane of the cell envelope of Escherichia coli and Salmonella typhimurium. Biochim. Biophys. Acta 249, 628–635 (1971).

    CAS  PubMed  Google Scholar 

  28. Cronan, J. E. Bacterial membrane lipids: where do we stand? Annu. Rev. Microbiol. 57, 203–224 (2003).

    CAS  PubMed  Google Scholar 

  29. Bernstein, H. D. The biogenesis and assembly of bacterial membrane proteins. Curr. Opin. Microbiol. 3, 203–209 (2000).

    CAS  PubMed  Google Scholar 

  30. Holland, I. B. Translocation of bacterial proteins — an overview. Biochim. Biophys. Acta 1694, 5–16 (2004).

    CAS  PubMed  Google Scholar 

  31. Dalbey, R. E. Leader peptidase. Mol. Microbiol. 5, 2855–2860 (1991).

    CAS  PubMed  Google Scholar 

  32. Doerrler, W. T., Gibbons, H. S. & Raetz, C. R. MsbA-dependent translocation of lipids across the inner membrane of Escherichia coli. J. Biol. Chem. 279, 45102–45109 (2004).

    CAS  PubMed  Google Scholar 

  33. Doerrler, W. T. & Raetz, C. R. ATPase activity of the MsbA lipid flippase of Escherichia coli. J. Biol. Chem. 277, 36697–36705 (2002).

    CAS  PubMed  Google Scholar 

  34. Doerrler, W. T., Reedy, M. C. & Raetz, C. R. An Escherichia coli mutant defective in lipid export. J. Biol. Chem. 276, 11461–11464 (2001). This article describes the novel finding that MsbA is involved in lipid trafficking in Gram-negative bacteria.

    CAS  PubMed  Google Scholar 

  35. Tefsen, B., Bos, M. P., Beckers, F., Tommassen, J. & de Cock, H. MsbA is not required for phospholipid transport in Neisseria meningitidis. J. Biol. Chem. 25 Aug 2005 (10.1074/jbc.M509026200)

  36. Kol, M. A. et al. Phospholipid flop induced by transmembrane peptides in model membranes is modulated by lipid composition. Biochemistry 42, 231–237 (2003). This article shows that the transmembrane-helix-induced 'flop' of phospholipids depends on the lipid nature of both the membrane and the translocating phospholipid.

    CAS  PubMed  Google Scholar 

  37. Dijkstra, A. J. & Keck, W. Peptidoglycan as a barrier to transenvelope transport. J. Bacteriol. 178, 5555–5562 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bayer, M. E. Areas of adhesion between wall and membrane of Escherichia coli. J. Gen. Microbiol. 53, 395–404 (1968).

    CAS  PubMed  Google Scholar 

  39. Muhlradt, P. F., Menzel, J., Golecki, J. R. & Speth, V. Outer membrane of Salmonella. Sites of export of newly synthesised lipopolysaccharide on the bacterial surface. Eur. J. Biochem. 35, 471–481 (1973).

    CAS  PubMed  Google Scholar 

  40. Ishidate, K. et al. Isolation of differentiated membrane domains from Escherichia coli and Salmonella typhimurium, including a fraction containing attachment sites between the inner and outer membranes and the murein skeleton of the cell envelope. J. Biol. Chem. 261, 428–443 (1986).

    CAS  PubMed  Google Scholar 

  41. Tefsen, B., Geurtsen, J., Beckers, F., Tommassen, J. & de Cock, H. Lipopolysaccharide transport to the bacterial outer membrane in spheroplasts. J. Biol. Chem. 280, 4504–4509 (2005).

    CAS  PubMed  Google Scholar 

  42. Jones, N. C. & Osborn, M. J. Translocation of phospholipids between the outer and inner membranes of Salmonella typhimurium. J. Biol. Chem. 252, 7405–7412 (1977). This article was the first to show bidirectional transport of phospholipids between the IM and OM.

    CAS  PubMed  Google Scholar 

  43. Langley, K. E., Hawrot, E. & Kennedy, E. P. Membrane assembly: movement of phosphatidylserine between the cytoplasmic and outer membranes of Escherichia coli. J. Bacteriol. 152, 1033–1041 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kellenberger, E. The 'Bayer bridges' confronted with results from improved electron microscopy methods. Mol. Microbiol. 4, 697–705 (1990).

    CAS  PubMed  Google Scholar 

  45. Bayer, M. E. Zones of membrane adhesion in the cryofixed envelope of Escherichia coli. J. Struct. Biol. 107, 268–280 (1991).

    CAS  PubMed  Google Scholar 

  46. Chen, R. & Henning, U. A periplasmic protein (Skp) of Escherichia coli selectively binds a class of outer membrane proteins. Mol. Microbiol. 19, 1287–1294 (1996). With references 69 and 71, this was one of the first articles to support the existence of periplasmic chaperones that participate in the biogenesis of OMPs.

    CAS  PubMed  Google Scholar 

  47. Harms, N. et al. The early interaction of the outer membrane protein PhoE with the periplasmic chaperone Skp occurs at the cytoplasmic membrane. J. Biol. Chem. 276, 18804–18811 (2001).

    CAS  PubMed  Google Scholar 

  48. Schafer, U., Beck, K. & Muller, M. Skp, a molecular chaperone of Gram-negative bacteria, is required for the formation of soluble periplasmic intermediates of outer membrane proteins. J. Biol. Chem. 274, 24567–24574 (1999).

    CAS  PubMed  Google Scholar 

  49. Thome, B. M., Hoffschulte, H. K., Schiltz, E. & Muller, M. A protein with sequence identity to Skp (FirA) supports protein translocation into plasma membrane vesicles of Escherichia coli. FEBS Lett. 269, 113–116 (1990).

    CAS  PubMed  Google Scholar 

  50. Walton, T. A. & Sousa, M. C. Crystal structure of Skp, a prefoldin-like chaperone that protects soluble and membrane proteins from aggregation. Mol. Cell 15, 367–374 (2004).

    CAS  PubMed  Google Scholar 

  51. Geyer, R., Galanos, C., Westphal, O. & Golecki, J. R. A lipopolysaccharide-binding cell-surface protein from Salmonella minnesota. Isolation, partial characterization and occurrence in different Enterobacteriaceae. Eur. J. Biochem. 98, 27–38 (1979).

    CAS  PubMed  Google Scholar 

  52. Bulieris, P. V., Behrens, S., Holst, O. & Kleinschmidt, J. H. Folding and insertion of the outer membrane protein OmpA is assisted by the chaperone Skp and by lipopolysaccharide. J. Biol. Chem. 278, 9092–9099 (2003).

    CAS  PubMed  Google Scholar 

  53. Rizzitello, A. E., Harper, J. R. & Silhavy, T. J. Genetic evidence for parallel pathways of chaperone activity in the periplasm of Escherichia coli. J. Bacteriol. 183, 6794–6800 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu, T. et al. Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121, 235–245 (2005). This paper describes the biochemical identification of a multiprotein complex that assembles OMPs.

    CAS  PubMed  Google Scholar 

  55. Masuda, K., Matsuyama, S. & Tokuda, H. Elucidation of the function of lipoprotein-sorting signals that determine membrane localization. Proc. Natl Acad. Sci. USA 99, 7390–7395 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sauer, F. G., Remaut, H., Hultgren, S. J. & Waksman, G. Fiber assembly by the chaperone-usher pathway. Biochim. Biophys. Acta 1694, 259–267 (2004).

    CAS  PubMed  Google Scholar 

  57. Jacob-Dubuisson, F., Striker, R. & Hultgren, S. J. Chaperone-assisted self-assembly of pili independent of cellular energy. J. Biol. Chem. 269, 12447–12455 (1994).

    CAS  PubMed  Google Scholar 

  58. Bieker, K. L., Phillips, G. J. & Silhavy, T. J. The sec and prl genes of Escherichia coli. J. Bioenerg. Biomembr. 22, 291–310 (1990).

    CAS  PubMed  Google Scholar 

  59. Lopes, J., Gottfried, S. & Rothfield, L. Leakage of periplasmic enzymes by mutants of Escherichia coli and Salmonella typhimurium: isolation of “periplasmic leaky” mutants. J. Bacteriol. 109, 520–525 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Tamaki, S., Sato, T. & Matsuhashi, M. Role of lipopolysaccharides in antibiotic resistance and bacteriophage adsorption of Escherichia coli K-12. J. Bacteriol. 105, 968–975 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Fralick, J. A. Evidence that TolC is required for functioning of the Mar/AcrAB efflux pump of Escherichia coli. J. Bacteriol. 178, 5803–5805 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Young, J. C., Agashe, V. R., Siegers, K. & Hartl, F. U. Pathways of chaperone-mediated protein folding in the cytosol. Nature Rev. Mol. Cell Biol. 5, 781–791 (2004).

    CAS  Google Scholar 

  63. Ruiz, N. & Silhavy, T. J. Sensing external stress: watchdogs of the Escherichia coli cell envelope. Curr. Opin. Microbiol. 8, 122–126 (2005).

    CAS  PubMed  Google Scholar 

  64. Raivio, T. L. & Silhavy, T. J. The σE and Cpx regulatory pathways: overlapping but distinct envelope stress responses. Curr. Opin. Microbiol. 2, 159–165 (1999).

    CAS  PubMed  Google Scholar 

  65. Mecsas, J., Rouviere, P. E., Erickson, J. W., Donohue, T. J. & Gross, C. A. The activity of σE, an Escherichia coli heat-inducible σ-factor, is modulated by expression of outer membrane proteins. Genes Dev. 7, 2618–2628 (1993).

    CAS  PubMed  Google Scholar 

  66. Missiakas, D., Betton, J. M. & Raina, S. New components of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH. Mol. Microbiol. 21, 871–884 (1996).

    CAS  PubMed  Google Scholar 

  67. Tam, C. & Missiakas, D. Changes in lipopolysaccharide structure induce the σE-dependent response of Escherichia coli. Mol. Microbiol. 55, 1403–1412 (2005).

    CAS  PubMed  Google Scholar 

  68. Dartigalongue, C., Missiakas, D. & Raina, S. Characterization of the Escherichia coli σE regulon. J. Biol. Chem. 276, 20866–20875 (2001).

    CAS  PubMed  Google Scholar 

  69. Rouviere, P. E. & Gross, C. A. SurA, a periplasmic protein with peptidyl-prolyl isomerase activity, participates in the assembly of outer membrane porins. Genes Dev. 10, 3170–3182 (1996).

    CAS  PubMed  Google Scholar 

  70. Tormo, A., Almiron, M. & Kolter, R. surA, an Escherichia coli gene essential for survival in stationary phase. J. Bacteriol. 172, 4339–4347 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lazar, S. W. & Kolter, R. SurA assists the folding of Escherichia coli outer membrane proteins. J. Bacteriol. 178, 1770–1773 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Hennecke, G., Nolte, J., Volkmer-Engert, R., Schneider-Mergener, J. & Behrens, S. The periplasmic chaperone SurA exploits two features characteristic of integral outer membrane proteins for selective substrate recognition. J. Biol. Chem. 280, 23540–23548 (2005).

    CAS  PubMed  Google Scholar 

  73. Behrens, S., Maier, R., de Cock, H., Schmid, F. X. & Gross, C. A. The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity. EMBO J. 20, 285–294 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Misra, R., Sampson, B. A., Occi, J. L. & Benson, S. A. in Antibiotic Inhibition of Bacterial Cell Surface Assembly and Function (eds Actor, P., Dana-Moore, L., Higgins, M., Salton, M. & Schockman, G. D.) 436–442 (ASM, Washington DC, 1987).

    Google Scholar 

  75. Sampson, B. A., Misra, R. & Benson, S. A. Identification and characterization of a new gene of Escherichia coli K-12 involved in outer membrane permeability. Genetics 122, 491–501 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Braun, M. & Silhavy, T. J. Imp/OstA is required for cell envelope biogenesis in Escherichia coli. Mol. Microbiol. 45, 1289–1302 (2002). This article describes the first OMP in E. coli required for the biogenesis of the OM.

    CAS  PubMed  Google Scholar 

  77. Bos, M. P. & Tommassen, J. Viability of a capsule- and lipopolysaccharide-deficient mutant of Neisseria meningitidis. Infect. Immun. 73, 6194–6197 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Steeghs, L. et al. Meningitis bacterium is viable without endotoxin. Nature 392, 449–450 (1998).

    CAS  PubMed  Google Scholar 

  79. Bos, M. P., Tefsen, B., Geurtsen, J. & Tommassen, J. Identification of an outer membrane protein required for the transport of lipopolysaccharide to the bacterial cell surface. Proc. Natl Acad. Sci. USA 101, 9417–9422 (2004). This article describes how Imp is required for the assembly of LPS in the OM.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ruiz, N., Falcone, B., Kahne, D. & Silhavy, T. J. Chemical conditionality: a genetic strategy to probe organelle assembly. Cell 121, 307–317 (2005). This article describes a chemical genetic approach to study OM biogenesis.

    CAS  PubMed  Google Scholar 

  81. Eggert, U. S. et al. Genetic basis for activity differences between vancomycin and glycolipid derivatives of vancomycin. Science 294, 361–364 (2001).

    CAS  PubMed  Google Scholar 

  82. Voulhoux, R. & Tommassen, J. Omp85, an evolutionarily conserved bacterial protein involved in outer-membrane-protein assembly. Res. Microbiol. 155, 129–135 (2004).

    CAS  PubMed  Google Scholar 

  83. Genevrois, S., Steeghs, L., Roholl, P., Letesson, J. J. & van der Ley, P. The Omp85 protein of Neisseria meningitidis is required for lipid export to the outer membrane. EMBO J. 22, 1780–1789 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Doerrler, W. T. & Raetz, C. R. Loss of outer membrane proteins without inhibition of lipid export in an Escherichia coli YaeT mutant. J. Biol. Chem. 280, 27679–27687 (2005).

    CAS  PubMed  Google Scholar 

  85. Surana, N. K. et al. Evidence for conservation of architecture and physical properties of Omp85-like proteins throughout evolution. Proc. Natl Acad. Sci. USA 101, 14497–14502 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Onufryk, C., Crouch, M. L., Fang, F. C. & Gross, C. A. Characterization of six lipoproteins in the σE regulon. J. Bacteriol. 187, 4552–4561 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Vaara, M. Antibiotic-supersusceptible mutants of Escherichia coli and Salmonella typhimurium. Antimicrob. Agents Chemother. 37, 2255–2260 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Leive, L. The barrier function of the Gram-negative envelope. Ann. N.Y. Acad. Sci. 235, 109–129 (1974).

    CAS  PubMed  Google Scholar 

  89. Jia, W. et al. Lipid trafficking controls endotoxin acylation in outer membranes of Escherichia coli. J. Biol. Chem. 279, 44966–44975 (2004).

    CAS  PubMed  Google Scholar 

  90. Nikaido, H. Restoring permeability barrier function to outer membrane. Chem. Biol. 12, 507–509 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institute of General Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Silhavy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

Escherichia coli

Neisseria meningitidis

Glossary

Organelle

A structure in a cell that carries out a specific function.

Two-component system

Protein pair involved in signal transduction in which the sensor is a histidine kinase, the effector is a response regulator, and the signalling is based on the phosphotransfer between these two components.

Lipid A

A phosphorylated glucosamine disaccharide acylated with fatty acids.

Core oligosaccharide

Part of lipopolysaccharide that is attached to lipid A and that contains 3-deoxy-d-manno-oct-2-ulosonic acid, heptoses and hexoses.

SecYEG translocon

Inner-membrane protein complex composed of SecY, SecE and SecG through which newly synthesized envelope proteins are transported into or across the inner membrane.

ABC transporter

An inner-membrane protein or multiprotein complex that translocates substrates across the inner membrane using ATP as the energy source.

Leaky mutant

A cell with a defective outer membrane that allows the entry of molecules and/or the loss of periplasmic constituents.

Envelope stress responses

Signal-transduction pathways that sense an extracytoplasmic stress and upregulate components that combat it.

Suppressor mutation

A mutation that reverses a phenotype caused by a different mutation.

Spontaneous mutant

A mutant obtained without the use of mutagens such as transposons or chemicals.

Chemical genetics

Genetic approach that uses small molecules to elicit a phenotypic change.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz, N., Kahne, D. & Silhavy, T. Advances in understanding bacterial outer-membrane biogenesis. Nat Rev Microbiol 4, 57–66 (2006). https://doi.org/10.1038/nrmicro1322

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1322

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing