Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The versatile roles of antibodies in Borrelia infections

Key Points

The tick-borne borreliae are the causative agents of relapsing fever and Lyme disease worldwide. Borrelia spirochaetes are motile, helical, microaerophilic organisms that have flagellae located within the periplasmic space, a defining characteristic of spirochaetes. The outer membrane has surface-exposed lipoproteins, which are major determinants of immunogenicity. The clinical manifestations of Lyme disease and relapsing fever can be similar, particularly those involving the central nervous system, joints and heart. Lyme disease lacks the marked and recurrent spirochaetaemia of relapsing fever, which is a more severe and rapidly developing disease. The genome of the Lyme disease spirochaete B. burgdorferi strain B31 has been sequenced and the genetic manipulation of this spirochaete has only very recently become technically feasible.

Specific antibodies fix complement on the surface of microorganisms and are typically thought to contribute significantly to the removal of microorganisms. However, although Borrelia can activate the classical and alternative pathways of the complement cascade in normal serum, many species are resistant to complement-mediated lysis. The basis of this resistance is the inactivation of complement components, which results from the binding of complement inhibitors to multiple outer-membrane proteins. Despite this evasion, circulating phagocytic cells, polymorphonuclear leukocytes and monocytes readily ingest and kill B. burgdorferi in a manner that is independent of opsonization with either antibody or complement. The spirochaetes can be killed by these cells through multiple oxygen-dependent and -independent mechanisms.

Based on the effectiveness of the antibody response to OspA that is seen in animal studies, a commercial recombinant lipidated OspA vaccine was created and sold in the United States. Although this vaccine was considered effective, indications of cross-reactivity of OspA with self-antigens limited confidence in the product. Furthermore, some antibodies to the vaccine had been shown to correlate with severe and prolonged arthritis, further prompting concerns about autoreactivity. As an additional impediment, not all vaccinated individuals developed strong immunity due to apparent signalling defects in Toll-like-receptor pathways. The vaccine has since been withdrawn from the market.

The importance of antibodies in controlling spirochaetal infections was underscored by the discovery of antibodies with directly bactericidal properties that do not require the participation of complement. The murine monoclonal antibody CB2, which is specific for OspB of B. burgdorferi, was bactericidal in the absence of complement. Agglutination is not involved, as monovalent Fab fragments also had bactericidal activity. Whereas this antibody does not show proteolytic activity against OspB, there are indications that structural changes occur in the antigen following antibody binding. Since this discovery, other complement-independent bactericidal antibodies that recognize surface-exposed proteins of different Borrelia spirochaetes have been reported.

IgM has been shown to be particularly crucial in the resolution of spirochaetaemia. The persistence of spirochaetes in the blood during the experimental infection of SCID, B-cell-deficient and secreted IgM (sIgM)-deficient mice demonstrates the absolute requirement for antibodies in resolving the infection. By contrast, the resolution of the initial peak of spirochaetaemia does not require the participation of T cells as nude, thymectomized or T-cell-depleted mice eliminate the spirochaetaemia as effectively as wild-type mice. The dispensable role of T cells in the resolution of spirochaetaemia was only recently fully addressed by experiments showing the ability of α/β-T-cell-deficient and α/β- and γ/δ-T-cell-deficient mice to clear the spirochaetaemia of relapsing fever.

Although there is undoubtedly a role for natural IgM in the immune response to Borrelia, in vivo demonstration of the infection-induced generation and specificity of a complement-independent bactericidal IgM argues that these antibodies comprise a different subset. This type of response is slowly gaining recognition as 'natural memory' that blurs the boundary between the innate immune response and the adaptive immune response.

The role of antibodies in defence against microorganisms has acquired increased significance in light of new and renewed microbial threats, both natural and man-made. Our findings, however, have uncovered a crucial role for an overlooked area of host defence and expand the increasingly versatile array of known antibody effector functions. Given the role of directly bactericidal antibodies in the tick-borne borrelioses, as well as the ability of antibodies to generate bactericidal products non-specifically, the expanding repertoire of antibody function in host defence will require inclusion of the direct bactericidal activity of antibodies.

Abstract

Antibodies are the primary weapons of the mammalian immune system that are used against the tick-borne borreliae, the causative agents of relapsing fever and Lyme disease worldwide. Some antibody responses have 'traditional' functions, whereas others are more versatile and have novel functions and modes of action. At a time when the multiple functions of antibodies are being increasingly recognized and passive immunization is being revived as therapy for infectious and other diseases, the versatile nature of the antibody response to the borreliae fits well with this antibody renaissance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The enzymatic cascade of the complement system is initiated by three distinct pathways.
Figure 2: The importance of B cells in spirochaete infection.
Figure 3: CB515 disrupts the bacterial outer membrane in the absence of complement.

Similar content being viewed by others

References

  1. Burgdorfer, W., Barbour, A. G., Hayes, S. F., Benach, J. L., Grunwaldt, E. & Davis, J. P. Lyme disease — a tick-borne spirochetosis? Science 216, 1317–1319 (1982). The first observation that tick-borne spirochaetes were associated with the antibody response in patients with Lyme disease.

    Article  CAS  PubMed  Google Scholar 

  2. Benach, J. L. et al. Spirochetes isolated from the blood of two patients with Lyme disease. N. Engl. J. Med. 308, 740–742 (1983). Demonstration of the aetiology of clinical Lyme disease with the newly discovered spirochaete.

    Article  CAS  PubMed  Google Scholar 

  3. Garcia-Monco, J. C. & Benach, J. L. Lyme neuroborreliosis. Ann. Neurol. 37, 691–702 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Southern, P. M. & Sanford, J. P. Relapsing fever. A clinical and microbiological review. Medicine 48, 129–149 (1969).

    Article  Google Scholar 

  5. Coffey, E. M. & Eveland, W. C. Experimental relapsing fever initiated by Borrelia hermsi. II. Sequential appearance of major serotypes in the rat. J. Infect. Dis. 117, 29–34 (1967).

    Article  CAS  PubMed  Google Scholar 

  6. Barbour, A. G. Antigenic variation of a relapsing fever Borrelia species. Annu. Rev. Microbiol. 44, 155–171 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Stoenner, H. G., Dodd, T. & Larsen, C. Antigenic variation of Borrelia hermsii. J. Exp. Med. 156, 1297–1311 (1982).

    Article  CAS  PubMed  Google Scholar 

  8. Barstad, P. A., Coligan, J. E., Raum, M. G. & Barbour, A. G. Variable major proteins of Borrelia hermsii Epitope mapping and partial sequence analysis of CNBr peptides. J. Exp. Med. 161, 1302–1314 (1985).

    Article  CAS  PubMed  Google Scholar 

  9. Burman, N., Bergstrom, S., Restrepo, B. I. & Barbour, A. G. The variable antigens Vmp7 and Vmp21 of the relapsing fever bacterium Borrelia hermsii are structurally analogous to the VSG proteins of the African trypanosome. Mol. Microbiol. 4, 1715–1726 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Johnson, R. C. The spirochetes. Annu. Rev. Microbiol. 31, 89–106 (1977).

    Article  CAS  PubMed  Google Scholar 

  11. Barbour, A. G. & Hayes, S. F. Biology of Borrelia species. Microbiol. Rev. 50, 381–400 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Brandt, M. E., Riley, B. S., Radolf, J. D. & Norgard, M. V. Immunogenic integral membrane proteins of Borrelia burgdorferi are lipoproteins. Infect. Immun. 58, 983–991 (1990). Provided experimental proof that this organism contained an unusually large number of lipoproteins.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bergstrom, S., Bundoc, V. G. & Barbour, A. G. Molecular analysis of linear plasmid-encoded major surface proteins, OspA and OspB, of the Lyme disease spirochaete Borrelia burgdorferi. Mol. Microbiol. 3, 479–486 (1989). This study provided the sequence of the ospA/ospB operon and detected the consensus sequence for the signal peptidase II cleavage site and for cysteine lipidation.

    Article  CAS  PubMed  Google Scholar 

  14. Carter, C. J., Bergstrom, S., Norris, S. J. & Barbour, A. G. A family of surface-exposed proteins of 20 kilodaltons in the genus Borrelia. Infect. Immun. 62, 2792–2799 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Fraser, C. M. et al. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390, 580–586 (1997). A groundbreaking sequencing paper that has revolutionized the field of Borrelia research.

    Article  CAS  PubMed  Google Scholar 

  16. Barbour, A. G. Molecular biology of antigenic variation in Lyme borreliosis and relapsing fever: a comparative analysis. Scand. J. Infect. Dis. 77 (Suppl.), 88–93 (1991).

    CAS  Google Scholar 

  17. Samuels, D. S., Mach, K. E. & Garon, C. F. Genetic transformation of the Lyme disease agent Borrelia burgdorferi with coumarin-resistant gyrB. J. Bacteriol. 176, 6045–6049 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bono, J. L., Elias, A. F., Kupko, J. J. Stevenson, B., Tilly, K. & Rosa, P. Efficient targeted mutagenesis in Borrelia burgdorferi. J. Bacteriol. 182, 2445–2452 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rosa, P. A., Tilly, K. & Stewart, P. E. The burgeoning molecular genetics of the Lyme disease spirochaete. Nature Rev. Microbiol. 3, 129–143 (2005).

    Article  CAS  Google Scholar 

  20. Medzhitov, R. & Janeway, C. Jr. Innate immunity. N. Engl. J. Med. 343, 338–344 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Cooper, N. R. The classical complement pathway: activation and regulation of the first complement component. Adv. Immunol. 37, 151–216 (1985).

    Article  CAS  PubMed  Google Scholar 

  22. Pascual, M., Paccaud, J. P., Macon, K., Volanakis, J. E. & Schifferli, J. A. Complement activation by the alternative pathway is modified in renal failure: the role of factor D. Clin. Nephrol. 32, 185–193 (1989).

    CAS  PubMed  Google Scholar 

  23. Walport, M. J. Complement. First of two parts. N. Engl. J. Med. 344, 1058–1066 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Walport, M. J. Complement. Second of two parts. N. Engl. J. Med. 344, 1140–1144 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Kochi, S. K. & Johnson, R. C. Role of immunoglobulin G in killing of Borrelia burgdorferi by the classical complement pathway. Infect. Immun. 56, 314–321 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kochi, S. K., Johnson, R. C. & Dalmasso, A. P. Complement-mediated killing of the Lyme disease spirochete Borrelia burgdorferi. Role of antibody in formation of an effective membrane attack complex. J. Immunol. 146, 3964–3970 (1991). An extensive examination of the role that both complement and antibody have in the lysis of Borrelia spirochaetes.

    CAS  PubMed  Google Scholar 

  27. Kochi, S. K., Johnson, R. C. & Dalmasso, A. P. Facilitation of complement-dependent killing of the Lyme disease spirochete, Borrelia burgdorferi, by specific immunoglobulin G Fab antibody fragments. Infect. Immun. 61, 2532–2536 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lovrich, S. D., Callister, S. M., Schmitz, J. L., Alder, J. D. & Schell, R. F. Borreliacidal activity of sera from hamsters infected with the Lyme disease spirochete. Infect. Immun. 59, 2522–2528 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Schmitz, J. L., Schell, R. F., Lovrich, S. D., Callister, S. M. & Coe, J. E. Characterization of the protective antibody response to Borrelia burgdorferi in experimentally infected LSH hamsters. Infect. Immun. 59, 1916–1921 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Rousselle, J. C. et al. Borreliacidal antibody production against outer surface protein C of Borrelia burgdorferi. J. Infect. Dis. 178, 733–741 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. van Dam, A. P. et al. Complement-mediated serum sensitivity among spirochetes that cause Lyme disease. Infect. Immun. 65, 1228–1236 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Alitalo, A. et al. Complement evasion by Borrelia burgdorferi: serum-resistant strains promote C3b inactivation. Infect. Immun. 69, 3685–3691 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alitalo, A. et al. Complement inhibitor factor H binding to Lyme disease spirochetes is mediated by inducible expression of multiple plasmid-encoded outer surface protein E paralogs. J. Immunol. 169, 3847–3853 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Hellwage, J. et al. The complement regulator factor H binds to the surface protein OspE of Borrelia burgdorferi. J. Biol. Chem. 276, 8427–8435 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Stevenson, B., El-Hage, N., Hines, M. A., Miller, J. C. & Babb, K. Differential binding of host complement inhibitor factor H by Borrelia burgdorferi Erp surface proteins: a possible mechanism underlying the expansive host range of Lyme disease spirochetes. Infect. Immun. 70, 491–497 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kraiczy, P. et al. Immune evasion of Borrelia burgdorferi: mapping of a complement- inhibitor factor H-binding site of BbCRASP-3, a novel member of the Erp protein family. Eur. J. Immunol. 33, 697–707 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Zipfel, P. F., Jokiranta, T. S., Hellwage, J., Koistinen, V. & Meri, S. The factor H protein family. Immunopharmacology 42, 53–60 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. de Bruijn, M. H. & Fey, G. H. Human complement component C3: cDNA coding sequence and derived primary structure. Proc. Natl Acad. Sci. USA 82, 708–712 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pausa, M. et al. Serum-resistant strains of Borrelia burgdorferi evade complement-mediated killing by expressing a CD59-like complement inhibitory molecule. J. Immunol. 170, 3214–3222 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Hovis, K. M., McDowell, J. V., Griffin, L. & Marconi, R. T. Identification and characterization of a linear-plasmid-encoded factor H-binding protein (FhbA) of the relapsing fever spirochete Borrelia hermsii. J. Bacteriol. 186, 2612–2618 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bockenstedt, L. K., Barthold, S., Deponte, K., Marcantonio, N. & Kantor, F. S. Borrelia burgdorferi infection and immunity in mice deficient in the fifth component of complement. Infect. Immun. 61, 2104–2107 (1993). This study defined the lack of a decisive role for complement in the immune response to the Lyme disease organism.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Benach, J. L., Fleit, H. B., Habicht, G. S., Coleman, J. L., Bosler, E. M. & Lane, B. P. Interactions of phagocytes with the Lyme disease spirochete: role of the Fc receptor. J. Infect. Dis. 150, 497–507 (1984).

    Article  CAS  PubMed  Google Scholar 

  43. Peterson, P. K., Clawson, C. C., Lee, D. A., Garlich, D. J., Quie, P. G. & Johnson, R. C. Human phagocyte interactions with the Lyme disease spirochete. Infect. Immun. 46, 608–611 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Benach, J. L., Habicht, G. S., Gocinski, B. L. & Coleman, J. L. Phagocytic cell responses to in vivo and in vitro exposure to the Lyme disease spirochete. Yale J. Biol. Med. 57, 599–605 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Montgomery, R. R., Nathanson, M. H. & Malawista, S. E. Fc- and non-Fc-mediated phagocytosis of Borrelia burgdorferi by macrophages. J. Infect. Dis. 170, 890–893 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Cinco, M., Cini, B., Murgia, R., Presani, G., Prodan, M. & Perticarari, S. Evidence of involvement of the mannose receptor in adhesion of Borrelia burgdorferi to monocyte/macrophages. Infect. Immun. 69, 2743–2747 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cinco, M., Murgia, R., Presani, G. & Perticarari, S. Integrin CR3 mediates the binding of nonspecifically opsonized Borrelia burgdorferi to human phagocytes and mammalian cells. Infect. Immun. 65, 4784–4789 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lusitani, D., Malawista, S. E. & Montgomery, R. R. Borrelia burgdorferi are susceptible to killing by a variety of human polymorphonuclear leukocyte components. J. Infect. Dis. 185, 797–804 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Garcia, R., Gusmani, L., Murgia, R., Guarnaccia, C., Cinco, M. & Rottini, G. Elastase is the only human neutrophil granule protein that alone is responsible for in vitro killing of Borrelia burgdorferi. Infect. Immun. 66, 1408–1412 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kalish, R. A., McHugh, G., Granquist, J., Shea, B., Ruthazer, R. & Steere, A. C. Persistence of immunoglobulin M or immunoglobulin G antibody responses to Borrelia burgdorferi 10–20 years after active Lyme disease. Clin. Infect. Dis. 33, 780–785 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Moffat, C. M., Sigal, L. H., Steere, A. C., Freeman, D. H. & Dwyer, J. M. Cellular immune findings in Lyme disease. Correlation with serum IgM and disease activity. Am. J. Med. 77, 625–632 (1984).

    Article  CAS  PubMed  Google Scholar 

  52. Sigal, L. H., Steere, A. C. & Dwyer, J. M. In vivo and in vitro evidence of B cell hyperactivity during Lyme disease. J. Rheumatol. 15, 648–654 (1988).

    CAS  PubMed  Google Scholar 

  53. Johnson, R. C., Kodner, C. & Russell, M. Passive immunization of hamsters against experimental infection with the Lyme disease spirochete. Infect. Immun. 53, 713–714 (1986). This was the first conclusive demonstration that antibodies to Borrelia are protective.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Barthold, S. W. & Bockenstedt, L. K. Passive immunizing activity of sera from mice infected with Borrelia burgdorferi. Infect. Immun. 61, 4696–4702 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Fikrig, E. et al. Sera from patients with chronic Lyme disease protect mice from Lyme borreliosis. J. Infect. Dis. 169, 568–574 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. Zhong, W. et al. Therapeutic passive vaccination against chronic Lyme disease in mice. Proc. Natl Acad. Sci. USA 94, 12533–12538 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Benach, J. L., Coleman, J. L. & Golightly, M. G. A murine IgM monoclonal antibody binds an antigenic determinant in outer surface protein A, an immunodominant basic protein of the Lyme disease spirochete. J. Immunol. 140, 265–272 (1988).

    CAS  PubMed  Google Scholar 

  58. Barbour, A. G., Tessier, S. L. & Todd, W. J. Lyme disease spirochetes and ixodid tick spirochetes share a common surface antigenic determinant defined by a monoclonal antibody. Infect. Immun. 41, 795–804 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Schaible, U. E., Kramer, M. D., Eichmann, K., Modolell, M., Museteanu, C. & Simon, M. M. Monoclonal antibodies specific for the outer surface protein A (OspA) of Borrelia burgdorferi prevent Lyme borreliosis in severe combined immunodeficiency (SCID) mice. Proc. Natl Acad. Sci. USA 87, 3768–3772 (1990). Antibodies to OspA prevented disease in mice with impaired cellular immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fikrig, E., Barthold, S. W., Kantor, F. S. & Flavell, R. A. Protection of mice against the Lyme disease agent by immunizing with recombinant OspA. Science 250, 553–556 (1990). This study on active immunization of mice with OspA showed that vaccination could be a preventive measure.

    Article  CAS  PubMed  Google Scholar 

  61. Barthold, S. W., deSouza, M. & Feng, S. Serum-mediated resolution of Lyme arthritis in mice. Lab. Invest. 74, 57–67 (1996).

    CAS  PubMed  Google Scholar 

  62. Bockenstedt, L. K., Fikrig, E., Barthold, S. W., Kantor, F. S. & Flavell, R. A. Inability of truncated recombinant OspA proteins to elicit protective immunity to Borrelia burgdorferi in mice. J. Immunol. 151, 900–906 (1993). One of three studies showing the necessity of the lipid modification of OspA for protection.

    CAS  PubMed  Google Scholar 

  63. Erdile, L. F. et al. Role of attached lipid in immunogenicity of Borrelia burgdorferi OspA. Infect. Immun. 61, 81–90 (1993). An important study showing that the immunogenic potential of Borrelia surface proteins is absolutely dependent on the lipid moiety of the molecule.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Weis, J. J., Ma, Y. & Erdile, L. F. Biological activities of native and recombinant Borrelia burgdorferi outer surface protein A: dependence on lipid modification. Infect. Immun. 62, 4632–4636 (1994). Another important contribution that stresses the role of the lipids in immunogenicity.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Schwan, T. G., Piesman, J., Golde, W. T., Dolan, M. C. & Rosa, P. A. Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc. Natl Acad. Sci. USA 92, 2909–2913 (1995). Made the important observation that reciprocal expression of OspA and OspC is induced during tick feeding.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gern, L., Schaible, U. E. & Simon, M. M. Mode of inoculation of the Lyme disease agent Borrelia burgdorferi influences infection and immune responses in inbred strains of mice. J. Infect. Dis. 167, 971–975 (1993).

    Article  CAS  PubMed  Google Scholar 

  67. Schaible, U. E., Gern, L., Wallich, R., Kramer, M. D., Prester, M. & Simon, M. M. Distinct patterns of protective antibodies are generated against Borrelia burgdorferi in mice experimentally inoculated with high and low doses of antigen. Immunol. Lett. 36, 219–226 (1993).

    Article  CAS  PubMed  Google Scholar 

  68. Telford, S. R., Fikrig, E., Barthold, S. W., Brunet, L. R., Spielman, A. & Flavell, R. A. Protection against antigenically variable Borrelia burgdorferi conferred by recombinant vaccines. J. Exp. Med. 178, 755–758 (1993).

    Article  CAS  PubMed  Google Scholar 

  69. Schaible, U. E. et al. Immune sera to individual Borrelia burgdorferi isolates or recombinant OspA thereof protect SCID mice against infection with homologous strains but only partially or not at all against those of different OspA/OspB genotype. Vaccine 11, 1049–1054 (1993). This study underscored variability in OspA/OspB.

    Article  CAS  PubMed  Google Scholar 

  70. Gern, L., Hu, C. M., Voet, P., Hauser, P. & Lobet, Y. Immunization with a polyvalent OspA vaccine protects mice against Ixodes ricinus tick bites infected by Borrelia burgdorferi ss, Borrelia garinii and Borrelia afzeli. Vaccine 15, 1551–1557 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Fikrig, E., Barthold, S. W., Kantor, F. S. & Flavell, R. A. Long-term protection of mice from Lyme disease by vaccination with OspA. Infect. Immun. 60, 773–777 (1992). This study opened one more door for OspA vaccine development.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. de Silva, A. M., Telford, S. R., Brunet, L. R., Barthold, S. W. & Fikrig, E. Borrelia burgdorferi OspA is an arthropod-specific transmission-blocking Lyme disease vaccine. J. Exp. Med. 183, 271–275 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Simon, M. M., Bauer, Y., Zhong, W., Hofmann, H. & Wallich, R. Lyme disease: pathogenesis and vaccine development. Zentralbl. Bakteriol. 289, 690–695 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Kramer, M. D., Wallich, R. & Simon, M. M. The outer surface protein A (OspA) of Borrelia burgdorferi: a vaccine candidate and bioactive mediator. Infection 24, 190–194 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Steere, A. C. et al. Vaccination against Lyme disease with recombinant Borrelia burgdorferi outer-surface lipoprotein A with adjuvant. Lyme Disease Vaccine Study Group. N. Engl. J. Med. 339, 209–215 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Sigal, L. H. et al. A vaccine consisting of recombinant Borrelia burgdorferi outer-surface protein A to prevent Lyme disease. Recombinant Outer-Surface Protein A Lyme Disease Vaccine Study Consortium. N. Engl. J. Med. 339, 216–222 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Gross, D. M. et al. Identification of LFA-1 as a candidate autoantigen in treatment-resistant Lyme arthritis. Science 281, 703–706 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Akin, E., McHugh, G. L., Flavell, R. A., Fikrig, E. & Steere, A. C. The immunoglobulin (IgG) antibody response to OspA and OspB correlates with severe and prolonged Lyme arthritis and the IgG response to P35 correlates with mild and brief arthritis. Infect. Immun. 67, 173–181 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Krause, A. et al. Cellular immune reactivity to recombinant OspA and flagellin from Borrelia burgdorferi in patients with Lyme borreliosis. Complexity of humoral and cellular immune responses. J. Clin. Invest. 90, 1077–1084 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kamradt, T., Lengl-Janssen, B., Strauss, A. F., Bansal, G. & Steere, A. C. Dominant recognition of a Borrelia burgdorferi outer surface protein A peptide by T helper cells in patients with treatment-resistant Lyme arthritis. Infect. Immun. 64, 1284–1289 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lengl-Janssen, B., Strauss, A. F., Steere, A. C. & Kamradt, T. The T helper cell response in Lyme arthritis: differential recognition of Borrelia burgdorferi outer surface protein A in patients with treatment-resistant or treatment-responsive Lyme arthritis. J. Exp. Med. 180, 2069–2078 (1994).

    Article  CAS  PubMed  Google Scholar 

  82. Alexopoulou, L. et al. Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1- and TLR2-deficient mice. Nature Med. 8, 878–884 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Schaible, U. E. et al. Protection against Borrelia burgdorferi infection in SCID mice is conferred by presensitized spleen cells and partially by B but not T cells alone. Int. Immunol. 6, 671–681 (1994).

    Article  CAS  PubMed  Google Scholar 

  84. Fikrig, E., Barthold, S. W., Chen, M., Grewal, I. S., Craft, J. & Flavell, R. A. Protective antibodies in murine Lyme disease arise independently of CD40 ligand. J. Immunol. 157, 1–3 (1996).

    CAS  PubMed  Google Scholar 

  85. Fikrig, E., Barthold, S. W., Chen, M., Chang, C. H. & Flavell, R. A. Protective antibodies develop, and murine Lyme arthritis regresses, in the absence of MHC class II and CD4+ T cells. J. Immunol. 159, 5682–5686 (1997).

    CAS  PubMed  Google Scholar 

  86. McKisic, M. D., Redmond, W. L. & Barthold, S. W. Cutting edge: T cell-mediated pathology in murine Lyme borreliosis. J. Immunol. 164, 6096–6099 (2000). T-cell-deficient mice produced protective IgM and an IgG subclass.

    Article  CAS  PubMed  Google Scholar 

  87. Connolly, S. E. & Benach, J. L. Cutting edge: the spirochetemia of murine relapsing fever is cleared by complement-independent bactericidal antibodies. J. Immunol. 167, 3029–3032 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Connolly, S. E., Thanassi, D. G. & Benach, J. L. Generation of a complement-independent bactericidal IgM against a relapsing fever Borrelia. J. Immunol. 172, 1191–1197 (2004). This paper is a definitive demonstration that complement-independent antibodies are generated in vivo , as a result of an infection.

    Article  CAS  PubMed  Google Scholar 

  89. Barbour, A. G. & Bundoc, V. In vitro and in vivo neutralization of the relapsing fever agent Borrelia hermsii with serotype-specific immunoglobulin M antibodies. Infect. Immun. 69, 1009–1015 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Coleman, J. L., Rogers, R. C. & Benach, J. L. Selection of an escape variant of Borrelia burgdorferi by use of bactericidal monoclonal antibodies to OspB. Infect. Immun. 60, 3098–3104 (1992). The first description that complement-independent antibodies are capable of direct bactericidal action on spirochaetes.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Coleman, J. L., Rogers, R. C., Rosa, P. A. & Benach, J. L. Variations in the ospB gene of Borrelia burgdorferi result in differences in monoclonal antibody reactivity and in production of escape variants. Infect. Immun. 62, 303–307 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Escudero, R., Halluska, M. L., Backenson, P. B., Coleman, J. L. & Benach, J. L. Characterization of the physiological requirements for the bactericidal effects of a monoclonal antibody to OspB of Borrelia burgdorferi by confocal microscopy. Infect. Immun. 65, 1908–1915 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Katona, L. I., Ayalew, S., Coleman, J. L. & Benach, J. L. A bactericidal monoclonal antibody elicits a change in its antigen, OspB of Borrelia burgdorferi, that can be detected by limited proteolysis. J. Immunol. 164, 1425–1431 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Sadziene, A., Jonsson, M., Bergstrom, S., Bright, R. K., Kennedy, R. C. & Barbour, A. G. A bactericidal antibody to Borrelia burgdorferi is directed against a variable region of the OspB protein. Infect. Immun. 62, 2037–2045 (1994). Identified more complement-independent bactericidal antibodies directed against epitopes in OspB.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Aydintug, M. K., Gu, Y. & Philipp, M. T. Borrelia burgdorferi antigens that are targeted by antibody-dependent, complement-mediated killing in the rhesus monkey. Infect. Immun. 62, 4929–4937 (1994). Evidence for antibody activity in non-human primates underscoring the importance of this immune mechanism in other species.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Ma, J., Gingrich-Baker, C., Franchi, P. M., Bulger, P. & Coughlin, R. T. Molecular analysis of neutralizing epitopes on outer surface proteins A and B of Borrelia burgdorferi. Infect. Immun. 63, 2221–2227 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Scriba, M., Ebrahim, J. S., Schlott, T. & Eiffert, H. The 39-kilodalton protein of Borrelia burgdorferi: a target for bactericidal human monoclonal antibodies. Infect. Immun. 61, 4523–4526 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Backenson, P. B., Coleman, J. L. & Benach, J. L. Borrelia burgdorferi shows specificity of binding to glycosphingolipids. Infect. Immun. 63, 2811–2817 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Peters, D. J. & Benach, J. L. Borrelia burgdorferi adherence and injury to undifferentiated and differentiated neural cells in vitro. J. Infect. Dis. 176, 470–477 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Liang, F. T., Jacobs, M. B., Bowers, L. C. & Philipp, M. T. An immune evasion mechanism for spirochetal persistence in Lyme borreliosis. J. Exp. Med. 195, 415–422 (2002). An experimental approach that added another mechanism for immune evasion and persistence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Garcia-Monco, J. C., Miller, N. S., Backenson, P. B., Anda, P. & Benach, J. L. A mouse model of Borrelia meningitis after intradermal injection. J. Infect. Dis. 175, 1243–1245 (1997). This is a mouse model of central nervous system infection derived from the intradermal inoculation of spirochaetes.

    Article  CAS  PubMed  Google Scholar 

  102. Newman, K. Jr & Johnson, R. C. In vivo evidence that an intact lytic complement pathway is not essential for successful removal of circulating Borrelia turicatae from mouse blood. Infect. Immun. 31, 465–469 (1981). This study represents the earliest observation that complement is not required for clearance of spirochaetaemia.

    PubMed  PubMed Central  Google Scholar 

  103. Alugupalli, K. R., Gerstein, R. M., Chen, J., Szomolanyi-Tsuda, E., Woodland, R.T. & Leong, J. M. The resolution of relapsing fever borreliosis requires IgM and is concurrent with expansion of B1b lymphocytes. J. Immunol. 170, 3819–3827 (2003). Most recent contribution that shows the involvement of B-cell subsets in the production of protective IgM.

    Article  CAS  PubMed  Google Scholar 

  104. Cadavid, D., Thomas, D. D., Crawley, R. & Barbour, A. G. Variability of a bacterial surface protein and disease expression in a possible mouse model of systemic Lyme borreliosis. J. Exp. Med. 179, 631–642 (1994).

    Article  CAS  PubMed  Google Scholar 

  105. Boes, M., Esau, C., Fischer, M. B., Schmidt, T., Carroll, M. & Chen, J. Enhanced B-1 cell development, but impaired IgG antibody responses in mice deficient in secreted IgM. J. Immunol. 160, 4776–4787 (1998).

    CAS  PubMed  Google Scholar 

  106. Ehrenstein, M. R., O'Keefe, T. L., Davies, S. L. & Neuberger, M. S. Targeted gene disruption reveals a role for natural secretory IgM in the maturation of the primary immune response. Proc. Natl Acad. Sci. USA 95, 10089–10093 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Newman, K. Jr & Johnson, R. C. T-cell-independent elimination of Borrelia turicatae. Infect. Immun. 45, 572–576 (1984). An elegant early paper describing the T-cell-independent nature of spirochaete removal from the bloodstream.

    PubMed  PubMed Central  Google Scholar 

  108. Martin, F., Oliver, A. M. & Kearney, J. F. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity 14, 617–629 (2001). Presents new models for the control of sepsis.

    Article  CAS  PubMed  Google Scholar 

  109. Alugupalli, K. R., Leong, J. M., Woodland, R. T., Muramatsu, M., Honjo, T. & Gerstein, R. M. B1b lymphocytes confer T cell-independent long-lasting immunity. Immunity 21, 379–390 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Shamaei-Tousi, A., Martin, P., Bergh, A., Burman, N., Brannstrom, T. & Bergstrom, S. Erythrocyte-aggregating relapsing fever spirochete Borrelia crocidurae induces formation of microemboli. J. Infect. Dis. 180, 1929–1938 (1999).

    Article  CAS  PubMed  Google Scholar 

  111. Shamaei-Tousi, A., Burns, M. J., Benach, J. L., Furie, M. B., Gergel, E. I. & Bergstrom, S. The relapsing fever spirochaete, Borrelia crocidurae, activates human endothelial cells and promotes the transendothelial migration of neutrophils. Cell. Microbiol. 2, 591–599 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Shibuya, A. et al. Fc α/μ receptor mediates endocytosis of IgM-coated microbes. Nature Immunol. 1, 441–446 (2000). Important study showing that the Fcα/μ receptor can bind the Fc of IgM and clear organisms that are opsonized with this antibody class.

    Article  CAS  Google Scholar 

  113. Gebbia, J. A., Garcia-Monco, J. C., Degen, J. L., Bugge, T. H. & Benach, J. L. The plasminogen activation system enhances brain and heart invasion in murine relapsing fever borreliosis. J. Clin. Invest. 103, 81–87 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Schoenfeld, R., Araneo, B., Ma, Y., Yang, L. M. & Weis, J. J. Demonstration of a B-lymphocyte mitogen produced by the Lyme disease pathogen, Borrelia burgdorferi. Infect. Immun. 60, 455–464 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Ma, Y. & Weis, J. J. Borrelia burgdorferi outer surface lipoproteins OspA and OspB possess B-cell mitogenic and cytokine-stimulatory properties. Infect. Immun. 61, 3843–3853 (1993). This study showed the important mitogenic activity of Borrelia with potential ramifications for both diagnosis and immunopathogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Yang, L. et al. Evidence for B-lymphocyte mitogen activity in Borrelia burgdorferi-infected mice. Infect. Immun. 60, 3033–3041 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Tai, K. F., Ma, Y. & Weis, J. J. Normal human B lymphocytes and mononuclear cells respond to the mitogenic and cytokine-stimulatory activities of Borrelia burgdorferi and its lipoprotein OspA. Infect. Immun. 62, 520–528 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Honarvar, N., Schaible, U. E., Galanos, C., Wallich, R. & Simon, M. M. A 14,000 MW lipoprotein and a glycolipid-like structure of Borrelia burgdorferi induce proliferation and immunoglobulin production in mouse B cells at high frequencies. Immunology 82, 389–396 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Boes, M. Role of natural and immune IgM antibodies in immune responses. Mol. Immunol. 37, 1141–1149 (2000). Concise review of the role of IgM in immunity.

    Article  CAS  PubMed  Google Scholar 

  120. Ochsenbein, A. F. et al. Control of early viral and bacterial distribution and disease by natural antibodies. Science 286, 2156–2159 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Diamond, M. S., Shrestha, B., Marri, A., Mahan, D. & Engle, M. B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. J. Virol. 77, 2578–2586 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Diamond, M. S., Sitati, E. M., Friend, L. D., Higgs, S., Shrestha, B. & Engle, M. A critical role for induced IgM in the protection against West Nile virus infection. J. Exp. Med. 198, 1853–1862 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Baumgarth, N., Herman, O. C., Jager, G. C., Brown, L. E., Herzenberg, L. A. & Chen, J. B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection. J. Exp. Med. 192, 271–280 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Belperron, A. A. & Bockenstedt, L. K. Natural antibody affects survival of the spirochete Borrelia burgdorferi within feeding ticks. Infect. Immun. 69, 6456–6462 (2001). Provided concrete evidence for a functional natural antibody repertoire in the response to Borrelia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Martin, F. & Kearney, J. F. Marginal-zone B cells. Nature Rev. Immunol. 2, 323–335 (2002). A timely review of an expanding area of immunology.

    Article  CAS  Google Scholar 

  126. Anderton, J. M. et al. Whole-genome DNA array analysis of the response of Borrelia burgdorferi to a bactericidal monoclonal antibody. Infect. Immun. 72, 2035–2044 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Stevenson, B. et al. The relapsing fever spirochete Borrelia hermsii contains multiple, antigen-encoding circular plasmids that are homologous to the cp32 plasmids of Lyme disease spirochetes. Infect. Immun. 68, 3900–3908 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wentworth, A. D., Jones, L. H., Wentworth, P. Jr, Janda, K. D. & Lerner, R. A. Antibodies have the intrinsic capacity to destroy antigens. Proc. Natl Acad. Sci. USA 97, 10930–10935 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wentworth, P. Jr et al. Evidence for antibody-catalyzed ozone formation in bacterial killing and inflammation. Science 298, 2195–2199 (2002). This paper demonstrates that both specific and non-specific antibodies are capable of bactericidal activity through the generation of reactive oxygen species.

    Article  CAS  PubMed  Google Scholar 

  130. Casadevall, A. Antibody-based therapies for emerging infectious diseases. Emerg. Infect. Dis. 2, 200–208 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Casadevall, A. Passive antibody administration (immediate immunity) as a specific defense against biological weapons. Emerg. Infect. Dis. 8, 833–841 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Casadevall, A. & Scharff, M. D. Return to the past: the case for antibody-based therapies in infectious diseases. Clin. Infect. Dis. 21, 150–161 (1995). A still-timely perspective, urging a shift in the current clinical paradigm.

    Article  CAS  PubMed  Google Scholar 

  133. Vitetta, E. S. & Uhr, J. W. Immunotoxins: redirecting nature's poisons. Cell 41, 653–654 (1985).

    Article  CAS  PubMed  Google Scholar 

  134. Vitetta, E. S., Fulton, R. J., May, R. D., Till, M. & Uhr, J. W. Redesigning nature's poisons to create anti-tumor reagents. Science 238, 1098–1104 (1987).

    Article  CAS  PubMed  Google Scholar 

  135. Dadachova, E., Nakouzi, A., Bryan, R. A. & Casadevall, A. Ionizing radiation delivered by specific antibody is therapeutic against a fungal infection. Proc. Natl Acad. Sci. USA 100, 10942–10947 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Casadevall, A., Dadachova, E. & Pirofski, L. A. Passive antibody therapy for infectious diseases. Nature Rev. Microbiol. 2, 695–703 (2004).

    Article  CAS  Google Scholar 

  137. Coleman, J. L. & Benach, J. L. Characterization of antigenic determinants of Borrelia burgdorferi shared by other bacteria. J. Infect. Dis. 165, 658–666 (1992).

    Article  CAS  PubMed  Google Scholar 

  138. Sadziene, A., Barbour, A. G., Rosa, P. A. & Thomas, D. D. An OspB mutant of Borrelia burgdorferi has reduced invasiveness in vitro and reduced infectivity in vivo. Infect. Immun. 61, 3590–3596 (1993). This study provided extensive characterization of some Borrelia mutants that escaped complement independent bactericidal action.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Wentworth, P. Jr et al. Evidence for the production of trioxygen species during antibody-catalyzed chemical modification of antigens. Proc. Natl Acad. Sci. USA 100, 1490–1493 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Janeway, C. Immunobiology: The Immune System in Health and Disease, xviii, p. 732 (Garland Publishing, London, 2001).

    Google Scholar 

  141. Becker, M., Bunikis, J., Lade, B. D., Dunn, J. J., Barbour, A. G. & Lawson, C. L. Structural investigation of B. burgdorferi OSPB, a bactericidal FAB target. J. Biol. Chem. 15 Feb 2005 [epub ahead of print].

Download references

Acknowledgements

The authors are supported by grants from the National Institute of Allergy and Infectious Diseases and the Mathers Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge L. Benach.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

Borrelia burgdorferi

Mac-1

OspA

OspB

Staphylococcus aureus

Vmp24

West Nile virus

Glossary

INNATE IMMUNITY

Innate immunity comprises immediate responses that are generated without the requirement for memory of, or prior exposure to, the pathogen.

ACQUIRED IMMUNITY

The antigen-specific response of T and B cells, which requires exposure to, or memory of, a pathogen. Includes antibody production and the killing of pathogen-infected cells.

TOLL-LIKE RECEPTORS

(TLRs). A rapidly growing family of receptors that recognize pathogen-associated molecular patterns that are common to large groups of microorganisms and/or viruses.

CD59

A mammalian cell-surface protein that can prevent the formation of the MAC by binding C8 and C9.

POLYMORPHONUCLEAR LEUKOCYTES

White blood cells that include neutrophils, eosinophils and basophils.

MONOCYTE

An intermediate cell type in the pathway leading from a myeloid precursor to a differentiated macrophage.

OPSONIZATION

A modification to the cell surface of a microorganism — typically the deposition of complement components or the binding of antibody — that facilitiates its ingestion by phagocytes.

DEFENSINS

Small (2–6 kDa) cationic microbicidal peptides produced by immune cells as part of the innate immune response.

ELASTASE

A trypsin-like enzyme in the granules of neutrophils.

FAB FRAGMENT

The light chain and N-terminal half of the heavy chain of an antibody after digestion by the enzyme papain. The Fab contains the antigen-binding domain of the antibody, but does not agglutinate or interact with immune cells.

PASSIVE IMMUNIZATION

Transfer of either specific antibody or immune serum into a naïve patient, thereby providing an immediate immune response to a microorganism.

CONGENIC

A strain that is produced by repeated backcrosses to an inbred strain with selection for a particular marker or chromosomal region from a donor strain.

RETICULOENDOTHELIAL CELLS

All of the phagocytic cells in the body, particularly the macrophages of the spleen, liver, and other tissues.

HOLINS

Small peptides encoded by bacteriophages that are used to penetrate the cell wall of bacteria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Connolly, S., Benach, J. The versatile roles of antibodies in Borrelia infections. Nat Rev Microbiol 3, 411–420 (2005). https://doi.org/10.1038/nrmicro1149

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1149

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing