Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ashbya gossypii: a model for fungal developmental biology

Key Points

  • Fungal cells have two basic cellular morphologies: either yeast-like, such as Saccharomyces cerevisiae, or filamentous, such as Ashbya gossypii. Some fungi can switch from the yeast to the hyphal phase, and in the human fungal pathogen Candida albicans this morphogenetic switching is important in virulence.

  • The filamentous fungus A. gossypii is closely related to yeasts, as shown by its genome organization. Based on the phylogeny of genes such as rDNA, A. gossypii belongs to the family of Saccharomycetaceae. This means that A. gossypii is a suitable model for comparing the cell biology of filamentous fungi and yeasts.

  • Rho-protein modules are important regulators of the actin cytoskeleton and are involved in cell polarity establishment and the maintenance of hyphal growth. They are part of signalling networks that activate adaptor proteins that stimulate actin filament assembly.

  • The A. gossypii Wiskott–Aldrich syndrome protein homologue Wal1 has dual functions for endocytosis and vacuolar motility, and the localization of cortical actin patches, which are required for fast polarized cell growth.

  • Septation in filamentous fungi is different from cytokinesis in yeast, as it produces a septal pore that interconnects hyphal segments and therefore does not result in cell separation. In contrast to the S. cerevisiae Bud3, a central function of Bud3 in A. gossypii is the localization of the IQGAP-homologue Cyk1 to septal sites.

  • In conclusion, functional analyses of morphogenetic genes in yeast and a closely related filamentous fungus such as A. gossypii will provide new details on the general mechanisms of growth and septation and might also contribute to understanding how these processes evolved.

Abstract

Ashbya gossypii is a riboflavin-overproducing filamentous fungus that is closely related to unicellular yeasts such as Saccharomyces cerevisiae. With its close ties to yeast and the ease of genetic manipulation in this fungal species, A. gossypii is well suited as a model to elucidate the regulatory networks that govern the functional differences between filamentous growth and yeast growth, especially now that the A. gossypii genome sequence has been completed. Understanding these networks could be relevant to related dimorphic yeasts such as the human fungal pathogen Candida albicans, in which a switch in morphology from the yeast to the filamentous form in response to specific environmental stimuli is important for virulence.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Life cycle of Ashbya gossypii.
Figure 2: Potential signal cascades that regulate polarized hyphal growth and septation in Ashbya gossypii.
Figure 3: Actin cytoskeleton components in Ashbya gossypii.
Figure 4: Septation and septation mutants in Ashbya gossypii.
Figure 5: The mating-type MATA locus of Ashbya gossypii.

References

  1. Ashby, S. F. & Nowell, W. The fungi of stigmatomycosis. Ann. Bot. 40, 69–84 (1926).

    Article  Google Scholar 

  2. Wickerham, L. S., Flickinger, M. H. & Johnson, R. M. Production of riboflavin by Ashbya gossypii. Arch. Biochem. 9, 95–98 (1946).

    CAS  PubMed  Google Scholar 

  3. Demain, A. L. Riboflavin overproducers. Annu. Rev. Microbiol. 26, 369–388 (1972).

    Article  CAS  PubMed  Google Scholar 

  4. Stahmann, K. P., Revuelta, J. L. & Seulberger, H. Three biotechnological processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl. Microbiol. Biotechnol. 53, 509–516 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Mickelson, M. M. The metabolism of glucose by Ashbya gossypii. J. Bacteriol. 59, 659–666 (1950).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Prillinger, H. et al. Phytopathogenic filamentous (Ashbya, Eremothecium) and dimorphic fungi (Holleya, Nematospora) with needle-shaped ascospores as new members within the Saccharomycetaceae. Yeast 13, 945–960 (1997). Phylogenetic analyses that demonstrate the close relationship of Ashbya spp. with the yeast family.

    Article  CAS  PubMed  Google Scholar 

  7. Wendland, J. & Philippsen, P. Determination of cell polarity in germinated spores and hyphal tips of the filamentous ascomycete Ashbya gossypii requires a rhoGAP homolog. J. Cell Sci. 113, 1611–1621 (2000).

    CAS  PubMed  Google Scholar 

  8. Ayad-Durieux, Y., Knechtle, P., Goff, S., Dietrich, F. & Philippsen, P. A PAK-like kinase is required for maturation of young hyphae and septation in the filamentous ascomycete Ashbya gossypii. J. Cell Sci. 113, 4563–4575 (2000). This study describes the role of A. gossypii CLA4 in septation and growth promotion.

    CAS  PubMed  Google Scholar 

  9. Stahmann, K. P. et al. Riboflavin, overproduced during sporulation of Ashbya gossypii, protects its hyaline spores against ultraviolet light. Environ. Microbiol. 3, 545–550 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Hicks, J. K., Yu, J. H., Keller, N. P. & Adams, T. H. Aspergillus sporulation and mycotoxin production both require inactivation of the FadA Gα-protein-dependent signalling pathway. EMBO J. 16, 4916–4923 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wright, M. C. & Philippsen, P. Replicative transformation of the filamentous fungus Ashbya gossypii with plasmids containing Saccharomyces cerevisiae ARS elements. Gene 109, 99–105 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Steiner, S., Wendland, J., Wright, M. C. & Philippsen, P. Homologous recombination as the main mechanism for DNA integration and cause of rearrangements in the filamentous ascomycete Ashbya gossypii. Genetics 140, 973–987 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Schade, D., Walther, A. & Wendland, J. The development of a transformation system for the dimorphic plant pathogen Holleya sinecauda based on Ashbya gossypii DNA elements. Fungal Genet. Biol. 40, 65–71 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Wendland, J., Ayad-Durieux, Y., Knechtle, P., Rebischung, C. & Philippsen, P. PCR-based gene targeting in the filamentous fungus Ashbya gossypii. Gene 242, 381–391 (2000). This was the first demonstration of PCR-based transformation in a filamentous fungus.

    Article  CAS  PubMed  Google Scholar 

  15. Wendland, J. PCR-based methods facilitate targeted gene manipulations and cloning procedures. Curr. Genet. 44, 115–123 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Walther, A. & Wendland, J. Apical localization of actin patches and vacuolar dynamics in Ashbya gossypii depend on the WASP homolog Wal1p. J. Cell Sci. 117, 4947–4758 (2004). This study demonstrates the importance of actin patch positioning in polarized morphogenesis and endocytosis.

    Article  CAS  PubMed  Google Scholar 

  17. Gimeno, C. J., Ljungdahl, P. O., Styles, C. A. & Fink, G. R. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68, 1077–1090 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Braus, G. H., Grundmann, O., Bruckner, S. & Mosch, H. U. Amino acid starvation and Gcn4p regulate adhesive growth and FLO11 gene expression in Saccharomyces cerevisiae. Mol. Biol. Cell. 14, 4272–4284 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Berman, J. & Sudbery, P. E. Candida albicans: a molecular revolution built on lessons from budding yeast. Nature Rev. Genet. 3, 918–930 (2003).

    Article  Google Scholar 

  20. Kahmann, R. & Kamper, J. Ustilago maydis: how its biology relates to pathogenic development. New Phytol. 164, 31–42 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Alberti-Segui, C., Dietrich, F., Altmann-Johl, R., Hoepfner, D. & Philippsen, P. Cytoplasmic dynein is required to oppose the force that moves nuclei towards the hyphal tip in the filamentous ascomycete Ashbya gossypii. J. Cell Sci. 114, 975–986 (2001). This study revealed nuclear distribution defects in dyn1 mutants that are strikingly different from similar mutations in A. nidulans.

    CAS  PubMed  Google Scholar 

  22. Xiang, X., Beckwith, S. M. & Morris, N. R. Cytoplasmic dynein is involved in nuclear migration in Aspergillus nidulans. Proc. Natl Acad. Sci. USA 91, 2100–2104 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Willins, D. A., Xiang, X. & Morris, N. R. An α-tubulin mutation suppresses nuclear migration mutations in Aspergillus nidulans. Genetics 141, 1287–1298 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Plamann, M., Minke, P. F., Tinsley, J. H. & Bruno, K. S. Cytoplasmic dynein and actin-related protein Arp1 are required for normal nuclear distribution in filamentous fungi. J. Cell Biol. 127, 139–149 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Riquelme, M., Gierz, G. & Bartnicki-Garcia, S. Dynein and dynactin deficiencies affect the formation and function of the Spitzenkörper and distort hyphal morphogenesis of Neurospora crassa. Microbiology 146, 1743–1753 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Eshel, D. et al. Cytoplasmic dynein is required for normal nuclear segregation in yeast. Proc. Natl Acad. Sci. USA 90, 11172–11176 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Martin, R., Walther, A. & Wendland, J. Deletion of the dynein heavy chain gene DYN1 leads to aberrant nuclear positioning and defective hyphal development in Candida albicans. Euk. Cell 3, 1574–1588 (2004).

    Article  CAS  Google Scholar 

  28. Matsui, Y. Polarized distribution of intracellular components by class V myosins in Saccharomyces cerevisiae. Int. Rev. Cytol. 229, 1–42 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Pruyne, D., Legesse-Miller, A., Gao, L., Dong, Y. & Bretscher, A. Mechanisms of polarized growth and organelle segregation in yeast. Annu. Rev. Cell. Dev. Biol. 20, 229–591 (2004).

    Article  Google Scholar 

  30. Wendland, J. & Philippsen, P. Cell polarity and hyphal morphogenesis are controlled by multiple rho-protein modules in the filamentous ascomycete Ashbya gossypii. Genetics 157, 601–610 (2001). This is the first description of the role of multiple Rho GTPases in different stages of hyphal morphogenesis

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lew, D. J. & Reed, S. I. Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins. J. Cell Biol. 120, 1305–1320 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Zheng, X. & Wang, Y. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. EMBO J. 23, 1845–1856 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bachewich, C. & Whiteway, M. Cyclin Cln3p links G1 progression to hyphal and pseudohyphal development in Candida albicans. Euk. Cell 4, 95–102 (2005).

    Article  CAS  Google Scholar 

  34. Riquelme, M., Fischer, R. & Bartnicki-Garcia, S. Apical growth and mitosis are independent processes in Aspergillus nidulans. Protoplasma 222, 211–215 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Wendland, J. Comparison of morphogenetic networks of filamentous fungi and yeast. Fungal Genet. Biol. 34, 62–83 (2001).

    Article  Google Scholar 

  36. Madden, K. & Snyder, M. Cell polarity and morphogenesis in budding yeast. Annu. Rev. Microbiol. 52, 687–744 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Bauer, Y., Knechtle, P., Wendland, J., Helfer, H. & Philippsen, P. A Ras like GTPase is involved in hyphal growth guidance in the filamentous fungus Ashbya gossypii. Mol. Biol. Cell 15, 4622–4632 (2004). This study incorporates signalling components upstream and downstream of Rho GTPases in the morphogenetic network.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wedlich-Soldner, R., Altschuler, S., Wu, L. & Li, R. Spontaneous cell polarization through actomyosin-based delivery of the Cdc42 GTPase. Science 299, 1231–1235 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Caviston, J. P., Tcheperegine, S. E. & Bi, E. Singularity in budding: a role for the evolutionary conserved small GTPase Cdc42p. Proc. Natl Acad. Sci. USA 99, 12185–12190 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Johnson, D. I. Cdc42: an essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiol. Mol. Biol. Rev. 63, 54–105 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bender, A. & Pringle, J. R. Multicopy suppression of the cdc24 budding defect in yeast by CDC42 and three newly identified genes including the ras-related gene RSR1. Proc. Natl Acad. Sci. USA 86, 9976–9980 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gulli, M. P. et al. Phosphorylation of the Cdc42 exchange factor Cdc24 by the PAK-like kinase Cla4 may regulate polarized growth in yeast. Mol. Cell 6, 1155–1167 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Bose, I. et al. Assembly of scaffold-mediated complexes containing Cdc42p, the exchange factor Cdc24p, and the effector Cla4p required for cell cycle-regulated phosphorylation of Cdc24p. J. Biol. Chem. 276, 7176–7186 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Yamochi, W. et al. Growth site localization of Rho1 small GTP-binding protein and its involvement in bud formation in Saccharomyces cerevisiae. J. Cell Biol. 125, 1077–1093 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Kamada, Y. et al. Activation of yeast protein kinase C by Rho1 GTPase. J. Biol. Chem. 271, 9193–9196 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Adamo, J. E., Rossi, G. & Brennwald, P. The Rho GTPase Rho3 has a direct role in exocytosis that is distinct from its role in actin polarity. Mol. Biol. Cell 10, 4121–4133 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sheu, Y. J., Santos, B., Fortin, N., Costigan, C. & Snyder, M. Spa2p interacts with cell polarity proteins and signaling components involved in yeast cell morphogenesis. Mol. Cell Biol. 18, 4053–4069 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fujiwara T. et al. Rho1p–Bni1p–Spa2p interactions: implication in localization of Bni1p at the bud site and regulation of the actin cytoskeleton in Saccharomyces cerevisiae. Mol. Biol. Cell 9, 1221–1233 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Knechtle, P., Dietrich, F. & Philippsen, P. Maximal polar growth depends on the polarisome component AgSpa2 in the filamentous fungus A. gossypii. Mol. Biol. Cell 14, 4140–4154 (2004).

    Article  Google Scholar 

  50. Sagot, I., Klee, S. K. & Pellman, D. Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nature Cell Biol. 4, 42–50 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Dong, Y., Pruyne, D. & Bretscher, A. Formin-dependent actin assembly is regulated by distinct modes of Rho signaling in yeast. J. Cell Biol. 161, 1081–1092 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li, R. Bee1, a yeast protein with homology to Wiscott–Aldrich syndrome protein, is critical for the assembly of cortical actin cytoskeleton. J. Cell Biol. 136, 649–658 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Walther, A. & Wendland, J. Polarized hyphal growth in Candida albicans requires the Wiskott–Aldrich syndrome protein homolog Wal1p. Euk. Cell 3, 471–482 (2004).

    Article  CAS  Google Scholar 

  54. Walther, A. & Wendland, J. Septation and cytokinesis in fungi. Fungal Genet. Biol. 40, 187–196 (2003).

    Article  PubMed  Google Scholar 

  55. Kadota, J., Yamamoto, T., Yoshiuchi, S., Bi, E. & Tanaka, K. Septin ring assembly requires concerted action of polarisome components, a PAK kinase Cla4p, and the actin cytoskeleton in Saccharomyces cerevisiae. Mol. Biol. Cell 15, 5329–5345 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Longtine, M. S. et al. The septins: roles in cytokinesis and other processes. Curr. Opin. Cell Biol. 8, 106–119 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Wendland, J. Analysis of the landmark protein Bud3 of Ashbya gossypii reveals a novel role in septum construction. EMBO Rep. 4, 200–204 (2003). This study demonstrates different roles for Bud3 homologues in S. cerevisiae and A. gossypii.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wendland, J. & Philippsen, P. An IQGAP-related protein, encoded by AgCYK1, is required for septation in the filamentous fungus Ashbya gossypii. Fungal Genet. Biol. 37, 81–88 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Osman, M. A., Konopka, J. B. & Cerione, R. A. Iqg1p links spatial and secretion landmarks to polarity and cytokinesis. J. Cell Biol. 159, 601–611 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dobbelaere, J. & Barral, Y. Spatial coordination of cytokinetic events by compartmentalization of the cell cortex. Science 305, 393–396 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Dietrich, F. S. et al. The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304, 304–307 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Brachat, S. et al. Reinvestigation of the Saccharomyces cerevisiae genome annotation by comparison to the genome of a related fungus: Ashbya gossypii. Genome Biol. 4, R45 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kellis, M., Birren, B. W. & Landers, E. S. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428, 617–624 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Colman-Lerner, A., Chin, T. E. & Brent, R. Yeast Cbk1 and Mob2 activate daughter-specific genetic programs to induce asymmetric cell fates. Cell 107, 739–750 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Takaya, N., Yamazaki, D., Horiuchi, H., Ohta, A. & Takagi, M. Cloning and characterization of a chitinase-encoding gene (chiA) from Aspergillus nidulans, disruption of which decreases germination frequency and hyphal growth. Biosci. Biotechnol. Biochem. 62, 60–65 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Baggett, J. J., D'Aquino, K. E. & Wendland, B. The Sla2p talin domain plays a role in endocytosis in Saccharomyces cerevisiae. Genetics 165, 1661–1674 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Gourlay, C. W. et al. An interaction between Sla1p and Sla2p plays a role in regulating actin dynamics and endocytosis in budding yeast. J. Cell Sci. 116, 2551–2564 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Butler, G. et al. Evolution of the MAT locus and its Ho endonuclease in yeast species. Proc. Natl Acad. Sci. USA 101, 1632–1637 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Seo, J. A., Han, K. H. & Yu, J. H. The gprA and gprB genes encode putative G protein-coupled receptors required for self-fertilization in A. nidulans. Mol. Microbiol. 53, 1611–1623 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Altmann-Johl, R. & Philippsen, P. AgTHR4, a new selection marker for transformation of the filamentous fungus Ashbya gossypii, maps in a four-gene cluster that is conserved between A. gossypii and Saccharomyces cerevisiae. Mol. Gen. Genet. 250, 69–80 (1996).

    CAS  PubMed  Google Scholar 

  71. Wendland, J. Eigenschaften linearer und zirkulärer DNA–Moleküle im filamentösen Pilz Ashbya gossypii. Diploma thesis, Univ. Giessen, Germany (1993).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the members of the Wendland and Philippsen labs for stimulating discussions. Research on A. gossypii in J.W.'s laboratory is supported by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Wendland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Jürgen Wendland's laboratory

A. gossypii genome

A. gossypii Genome Database

Saccharomyces Genome Database

Glossary

STIGMATOMYCOSIS

A fungal infection resulting in wet, slimy kernels. It is transmitted by insect mouthparts that penetrate the kernel.

ISOTROPIC GROWTH PHASE

Non-polarized growth over the entire cell surface during spore germination.

SPORANGIUM

Cell or organ that produces or contains spores.

SYNNEMA/-TA

Erect hyphae that are grouped together. Conidia might be formed along the length of the synnema or just at its apex.

BIOTROPHIC PHASE

The pathogen invades host tissue without killing host cells and feeds on living cells.

SPITZENKÖRPER

A phase-dark, usually spherical body that is found in growing hyphal tips, and represents an accumulation of secretory vesicles — also known as the vesicle supply centre.

POLARISOME

Protein complex that consists, in S. cerevisiae, of the formin Bni1, Spa2, Bud6 and Pea2, and is involved in organization of the actin cytoskeleton and required for polarized cell growth.

CORTICAL CUES

Membrane-associated proteins that function as landmarks to direct protein complexes that are required for the establishment of cell polarity.

SYNTENY

Evolutionary conservation of gene order (including their transcriptional orientation) between two loci.

CONIDIOPHORE

Structure that bears and generates the conidiospores.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wendland, J., Walther, A. Ashbya gossypii: a model for fungal developmental biology. Nat Rev Microbiol 3, 421–429 (2005). https://doi.org/10.1038/nrmicro1148

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1148

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing