Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Precise hit: adeno-associated virus in gene targeting

Key Points

  • Gene targeting of chromosomal sequences by homologous recombination is a powerful method for gene correction that can eliminate dominant mutations causing genetic disease. In mammalian cells, this process is inefficient and much effort is directed towards improving the targeting frequency of conventional plasmid systems, which is only 10−6.

  • The discovery that recombinant adeno-associated virus (rAAV) can introduce precise, site-specific modification in the mammalian genome with a frequency of 1% constituted a major breakthrough in the gene-targeting field.

  • This review discusses the unique features of the rAAV system that are responsible for the high targeting efficiency as well as its successful application in gene therapy.

  • Along with the ability to infect multiple cell types from several different species, rAAV can introduce different types of modifications with high fidelity in both exogenously introduced target genes and endogenous genes.

  • The single-stranded viral genome with inverted terminal repeats is a distinct feature of rAAV that probably mediates the recognition of the genome by appropriate cellular factors and its ability to recombine with homologous sequences in the host genome.

  • On the basis of current knowledge, we propose a mechanism of homologous recombination of the rAAV with the chromosomal target.

  • Understanding the mechanism of rAAV-mediated targeting will improve our ability to manipulate the cellular pathways governing this phenomenon and broaden the scope for practical applications.

Abstract

Vectors based on the adeno-associated virus (AAV) have attracted much attention as potent gene-delivery vehicles, mainly because of the persistence of this non-pathogenic virus in the host cell and its sustainable therapeutic gene expression. However, virus infection can be accompanied by potentially mutagenic random vector integration into the genome. A novel approach to AAV-mediated gene therapy based on gene targeting through homologous recombination allows efficient, high-fidelity, non-mutagenic gene repair in a host cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biology of wild-type and recombinant adeno-associated virus.
Figure 2: Gene targeting with rAAV vectors.
Figure 3: Molecular mechanism of rAAV-mediated gene targeting.

Similar content being viewed by others

References

  1. Baum, C. et al. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 101, 2099–2114 (2003).

    CAS  PubMed  Google Scholar 

  2. Lu, Y. Recombinant adeno-associated virus as delivery vector for gene therapy — a review. Stem Cells Dev. 13, 133–145 (2004).

    CAS  PubMed  Google Scholar 

  3. McCarty, D. M., Young, S. M. Jr. & Samulski, R. J. Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu. Rev. Genet. 38, 819–845 (2004).

    CAS  PubMed  Google Scholar 

  4. Hacein-Bey-Abina, S. et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 348, 255–256 (2003).

    PubMed  Google Scholar 

  5. Thomas, K. R. & Capecchi, M. R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512 (1987).

    CAS  PubMed  Google Scholar 

  6. Deng, C. & Capecchi, M. R. Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol. Cell. Biol. 12, 3365–3371 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Jasin, M. Chromosome breaks and genomic instability. Cancer Invest. 18, 78–86 (2000).

    CAS  PubMed  Google Scholar 

  8. Torres, R. M. & Kühn, R. Laboratory Protocols for Conditional Gene Targeting (Oxford Uninversity Press, Oxford, 1997).

    Google Scholar 

  9. McClarrinon, M. et al. In vivo studies of gene expression via transient transgenesis using lipid-DNA delivery. DNA Cell Biol. 18, 533–547 (1999).

    CAS  PubMed  Google Scholar 

  10. Xiang, J. J. et al. IONP-PLL: a novel non-viral vector for efficient gene delivery. J. Gene Med. 5, 803–817 (2003).

    CAS  PubMed  Google Scholar 

  11. Rouet, P., Smih, F. & Jasin, M. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc. Natl Acad. Sci. USA 91, 6064–6068 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Brenneman, M., Gimble, F. S. & Wilson, J. H. Stimulation of intrachromosomal homologous recombination in human cells by electroporation with site-specific endonucleases. Proc. Natl Acad. Sci. USA 93, 3608–3612 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bibikova, M. et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol. Cell. Biol. 21, 289–297 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Porteus, M. H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science 300, 763 (2003).

    PubMed  Google Scholar 

  15. Bibikova, M., Beumer, K., Trautman, J. K. & Carroll, D. Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764 (2003).

    CAS  PubMed  Google Scholar 

  16. Epinat, J. C. et al. A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res. 31, 2952–2962 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Fujita, A., Sakagami, K., Kanegae, Y., Saito, I. & Kobayashi, I. Gene targeting with a replication-defective adenovirus vector. J. Virol. 69, 6180–6190 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Thevenot, E. et al. Targeting conditional gene modification into the serotonin neurons of the dorsal raphe nucleus by viral delivery of the Cre recombinase. Mol. Cell. Neurosci. 24, 139–147 (2003).

    CAS  PubMed  Google Scholar 

  19. Russell, D. W. & Hirata, R. K. Human gene targeting by viral vectors. Nature Genet. 18, 325–330 (1998). The seminal paper that first showed high frequencies of gene targeting by rAAV.

    CAS  PubMed  Google Scholar 

  20. Flierl, A., Chen, Y., Coskun, P. E., Samulski, R. J. & Wallace, D. C. Adeno-associated virus-mediated gene transfer of the heart/muscle adenine nucleotide translocator (ANT) in mouse. Gene Ther. 12, 570–578 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bertran, J. et al. Recombinant adeno-associated virus-mediated high-efficiency, transient expression of the murine cationic amino acid transporter (ecotropic retroviral receptor) permits stable transduction of human HeLa cells by ecotropic retroviral vectors. J. Virol. 70, 6759–6766 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakai, H., Storm, T. A. & Kay, M. A. Recruitment of single-stranded recombinant adeno-associated virus vector genomes and intermolecular recombination are responsible for stable transduction of liver in vivo. J. Virol. 74, 9451–9463 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nakai, H. et al. Extrachromosomal recombinant adeno-associated virus vector genomes are primarily responsible for stable liver transduction in vivo. J. Virol. 75, 6969–6976 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Nakai, H. et al. AAV serotype 2 vectors preferentially integrate into active genes in mice. Nature Genet. 34, 297–302 (2003).

    CAS  PubMed  Google Scholar 

  25. Nakai, H. et al. Large-scale molecular characterization of adeno-associated virus vector integration in mouse liver. J. Virol. 79, 3606–3614 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Miller, D. G., Rutledge, E. A. & Russell, D. W. Chromosomal effects of adeno-associated virus vector integration. Nature Genet. 30, 147–148 (2002).

    CAS  PubMed  Google Scholar 

  27. Linden, R. M., Ward, P., Giraud, C., Winocour, E. & Berns, K. I. Site-specific integration by adeno-associated virus. Proc. Natl Acad. Sci. USA 93, 11288–11294 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Samulski, R. J. et al. Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J. 10, 3941–3950 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kotin, R. M., Linden, R. M. & Berns, K. I. Characterization of a preferred site on human chromosome 19q for integration of adeno-associated virus DNA by non-homologous recombination. EMBO J. 11, 5071–5078 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Schmidt, M., Afione, S. & Kotin, R. M. Adeno-associated virus type 2 Rep78 induces apoptosis through caspase activation independently of p53. J. Virol. 74, 9441–9450 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tan, M., Qing, K., Zhou, S., Yoder, M. C. & Srivastava, A. Adeno-associated virus 2-mediated transduction and erythroid lineage-restricted long-term expression of the human β-globin gene in hematopoietic cells from homozygous β-thalassemic mice. Mol. Ther. 3, 940–946 (2001).

    CAS  PubMed  Google Scholar 

  32. Muzyczka, N. Use of adeno-associated virus as a general transduction vector for mammalian cells. Curr. Top. Microbiol. Immunol. 158, 97–129 (1992).

    CAS  PubMed  Google Scholar 

  33. Duan, D. et al. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. J. Virol. 72, 8568–8577 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yan, Z., Zhang, Y., Duan, D. & Engelhardt, J. F. Trans-splicing vectors expand the utility of adeno-associated virus for gene therapy. Proc. Natl. Acad. Sci. USA 97, 6716–6721 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Duan, D., Yue, Y. & Engelhardt, J. F. Expanding AAV packaging capacity with trans-splicing or overlapping vectors: a quantitative comparison. Mol. Ther. 4, 383–391 (2001).

    CAS  PubMed  Google Scholar 

  36. Goncalves, M. A., Pau, M. G., de Vries, A. A. & Valerio, D. Generation of a high-capacity hybrid vector: packaging of recombinant adenoassociated virus replicative intermediates in adenovirus capsids overcomes the limited cloning capacity of adenoassociated virus vectors. Virology 288, 236–246 (2001).

    CAS  PubMed  Google Scholar 

  37. Chao, H., Sun, L., Bruce, A., Xiao, X. & Walsh, C. E. Expression of human factor VIII by splicing between dimerized AAV vectors. Mol. Ther. 5, 716–722 (2002).

    CAS  PubMed  Google Scholar 

  38. Reich, S. J. et al. Efficient trans-splicing in the retina expands the utility of adeno-associated virus as a vector for gene therapy. Hum. Gene Ther. 14, 37–44 (2003).

    CAS  PubMed  Google Scholar 

  39. Ellis, J. & Bernstein, A. Gene targeting with retroviral vectors: recombination by gene conversion into regions of nonhomology. Mol. Cell. Biol. 9, 1621–1627 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu, X. et al. Targeted correction of single-base-pair mutations with adeno-associated virus vectors under nonselective conditions. J. Virol. 78, 4165–4175 (2004). Compared gene targeting between the HEK293 cell line and primary mouse fibroblasts, revealing the importance of the natural AAV host. Narrowed down the occurrence of targeting to the S phase of the cell cycle.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Qing, K. et al. Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nature Med. 5, 71–77 (1999).

    CAS  PubMed  Google Scholar 

  42. Hansen, J., Qing, K., Kwon, H. J., Mah, C. & Srivastava, A. Impaired intracellular trafficking of adeno-associated virus type 2 vectors limits efficient transduction of murine fibroblasts. J. Virol. 74, 992–996 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hendrie, P. C., Hirata, R. K. & Russell, D. W. Chromosomal integration and homologous gene targeting by replication-incompetent vectors based on the autonomous parvovirus minute virus of mice. J. Virol. 77, 13136–13145 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hirata, R. K. & Russell, D. W. Design and packaging of adeno-associated virus gene targeting vectors. J. Virol. 74, 4612–4620 (2000). This study attempts to define the minimal stretch of homology necessary for efficient targeting and proves the importance of single-stranded rather than double-stranded vector genomes.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Russell, D. W., Miller, A. D. & Alexander, I. E. Adeno-associated virus vectors preferentially transduce cells in S phase. Proc. Natl Acad. Sci. USA 91, 8915–8919 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Miller, D. G., Petek, L. M. & Russell, D. W. Adeno-associated virus vectors integrate at chromosome breakage sites. Nature Genet. 36, 767–773 (2004).

    CAS  PubMed  Google Scholar 

  47. Alexander, I. E., Russell, D. W. & Miller, A. D. DNA-damaging agents greatly increase the transduction of nondividing cells by adeno-associated virus vectors. J. Virol. 68, 8282–8287 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Russell, D. W., Alexander, I. E. & Miller, A. D. DNA synthesis and topoisomerase inhibitors increase transduction by adeno-associated virus vectors. Proc. Natl Acad. Sci. USA 92, 5719–5723 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Trobridge, G., Hirata, R. K. & Russell, D. W. Gene targeting by adeno-associated virus vectors is cell-cycle dependent. Hum. Gene Ther. 16, 522–526 (2005).

    CAS  PubMed  Google Scholar 

  50. Saleh-Gohari, N. & Helleday, T. Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res. 32, 3683–3688 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yamamoto, A. et al. Cell cycle-dependent expression of the mouse Rad51 gene in proliferating cells. Mol. Gen. Genet. 251, 1–12 (1996).

    CAS  PubMed  Google Scholar 

  52. Chen, F. et al. Cell cycle-dependent protein expression of mammalian homologs of yeast DNA double-strand break repair genes Rad51 and Rad52. Mutat. Res. 384, 205–211 (1997).

    CAS  PubMed  Google Scholar 

  53. Hinz, J. M., Yamada, N. A., Salazar, E. P., Tebbs, R. S. & Thompson, L. H. Influence of double-strand-break repair pathways on radiosensitivity throughout the cell cycle in CHO cells. DNA Repair (Amst.) 4, 782–792 (2005).

    CAS  Google Scholar 

  54. Inoue, N., Hirata, R. K. & Russell, D. W. High-fidelity correction of mutations at multiple chromosomal positions by adeno-associated virus vectors. J. Virol. 73, 7376–7380 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Brown, P. O. Integration of retroviral DNA. Curr. Top. Microbiol. Immunol. 157, 19–48 (1990).

    CAS  PubMed  Google Scholar 

  56. Inoue, N., Dong, R., Hirata, R. K. & Russell, D. W. Introduction of single base substitutions at homologous chromosomal sequences by adeno-associated virus vectors. Mol. Ther. 3, 526–530 (2001). Expands the types of mutation introduced by rAAV targeting vectors to single nucleotide substitutions, indicating the involvement of base-excision repair in the process.

    CAS  PubMed  Google Scholar 

  57. Hirata, R., Chamberlain, J., Dong, R. & Russell, D. W. Targeted transgene insertion into human chromosomes by adeno-associated virus vectors. Nature Biotechnol. 20, 735–738 (2002). Pilot study showing high frequency of ex vivo targeted disruption of a dominant negative allele of the COL1A1 gene that causes OI.

    CAS  Google Scholar 

  58. Smih, F., Rouet, P., Romanienko, P. J. & Jasin, M. Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells. Nucleic Acids Res. 23, 5012–5019 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sargent, R. G., Brenneman, M. A. & Wilson, J. H. Repair of site-specific double-strand breaks in a mammalian chromosome by homologous and illegitimate recombination. Mol. Cell. Biol. 17, 267–277 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Taghian, D. G. & Nickoloff, J. A. Chromosomal double-strand breaks induce gene conversion at high frequency in mammalian cells. Mol. Cell. Biol. 17, 6386–6393 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Essers, J. et al. Disruption of mouse RAD54 reduces ionizing radiation resistance and homologous recombination. Cell 89, 195–204 (1997).

    CAS  PubMed  Google Scholar 

  62. Rijkers, T. et al. Targeted inactivation of mouse RAD52 reduces homologous recombination but not resistance to ionizing radiation. Mol. Cell. Biol. 18, 6423–6429 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Miller, D. G., Petek, L. M. & Russell, D. W. Human gene targeting by adeno-associated virus vectors is enhanced by DNA double-strand breaks. Mol. Cell. Biol. 23, 3550–3557 (2003). This study shows the augmentation of gene-targeting frequencies by the introduction of a DSB in the genomic target.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Porteus, M. H., Cathomen, T., Weitzman, M. D. & Baltimore, D. Efficient gene targeting mediated by adeno-associated virus and DNA double-strand breaks. Mol. Cell. Biol. 23, 3558–3565 (2003). Published back-to-back with reference 63, this study confirmed the enhancement of gene targeting by DSBs in live cells by monitoring GFP repair.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hauck, B., Zhao, W., High, K. & Xiao, W. Intracellular viral processing, not single-stranded DNA accumulation, is crucial for recombinant adeno-associated virus transduction. J. Virol. 78, 13678–13686 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Yang, H., Li, Q., Fan, J., Holloman, W. K. & Pavletich, N. P. The BRCA2 homologue Brh2 nucleates RAD51 filament formation at a dsDNA–ssDNA junction. Nature 433, 653–657 (2005).

    CAS  PubMed  Google Scholar 

  67. Forget, A. L., Bennett, B. T. & Knight, K. L. Xrcc3 is recruited to DNA double strand breaks early and independent of Rad51. J. Cell. Biochem. 93, 429–436 (2004).

    CAS  PubMed  Google Scholar 

  68. Liu, Y., Masson, J. Y., Shah, R., O'Regan, P. & West, S. C. RAD51C is required for Holliday junction processing in mammalian cells. Science 303, 243–246 (2004).

    CAS  PubMed  Google Scholar 

  69. Johnson, R. D. & Jasin, M. Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J. 19, 3398–3407 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Johnson, R. D. & Jasin, M. Double-strand-break-induced homologous recombination in mammalian cells. Biochem. Soc. Trans. 29, 196–201 (2001).

    CAS  PubMed  Google Scholar 

  71. White, S. J. et al. Targeted gene delivery to vascular tissue in vivo by tropism-modified adeno-associated virus vectors. Circulation 109, 513–519 (2004).

    CAS  PubMed  Google Scholar 

  72. Ried, M. U., Girod, A., Leike, K., Buning, H. & Hallek, M. Adeno-associated virus capsids displaying immunoglobulin-binding domains permit antibody-mediated vector retargeting to specific cell surface receptors. J. Virol. 76, 4559–4566 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kohli, M., Rago, C., Lengauer, C., Kinzler, K. W. & Vogelstein, B. Facile methods for generating human somatic cell gene knockouts using recombinant adeno-associated viruses. Nucleic Acids Res. 32, e3 (2004).

    PubMed  PubMed Central  Google Scholar 

  74. Cummins, J. M. et al. Tumour suppression: disruption of HAUSP gene stabilizes p53. Nature 428, 1 p following 486 (2004).

    Google Scholar 

  75. Cummins, J. M. et al. X-linked inhibitor of apoptosis protein (XIAP) is a nonredundant modulator of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in human cancer cells. Cancer Res. 64, 3006–3008 (2004).

    CAS  PubMed  Google Scholar 

  76. Samuels, Y. et al. Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 7, 561–573 (2005).

    CAS  PubMed  Google Scholar 

  77. Goncalves, M. A. et al. Transfer of the full-length dystrophin-coding sequence into muscle cells by a dual high-capacity hybrid viral vector with site-specific integration ability. J. Virol. 79, 3146–3162 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. During, M. J., Kaplitt, M. G., Stern, M. B. & Eidelberg, D. Subthalamic GAD gene transfer in Parkinson disease patients who are candidates for deep brain stimulation. Hum. Gene Ther. 12, 1589–1591 (2001).

    CAS  PubMed  Google Scholar 

  79. Song, S. et al. Recombinant adeno-associated virus-mediated α-1 antitrypsin gene therapy prevents type I diabetes in NOD mice. Gene Ther. 11, 181–186 (2004).

    CAS  PubMed  Google Scholar 

  80. Manno, C. S. et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 101, 2963–2972 (2003).

    CAS  PubMed  Google Scholar 

  81. Flotte, T. R. et al. Phase I trial of intranasal and endobronchial administration of a recombinant adeno-associated virus serotype 2 (rAAV2)-CFTR vector in adult cystic fibrosis patients: a two-part clinical study. Hum. Gene Ther. 14, 1079–1088 (2003).

    CAS  PubMed  Google Scholar 

  82. Chamberlain, J. R. et al. Gene targeting in stem cells from individuals with osteogenesis imperfecta. Science 303, 1198–1201 (2004). The closest to 'the clinic' that gene therapy with rAAV targeting vectors has reached to date.

    CAS  PubMed  Google Scholar 

  83. Baksh, D., Song, L. & Tuan, R. S. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J. Cell. Mol. Med. 8, 301–316 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Mallucci, G. & Collinge, J. Rational targeting for prion therapeutics. Nature Rev. Neurosci. 6, 23–34 (2005).

    CAS  Google Scholar 

  85. Hirata, R. K. et al. Efficient PRNP gene targeting in bovine fibroblasts by adeno-associated virus vectors. Cloning Stem Cells 6, 31–36 (2004). Shows the potential of the rAAV gene-targeting approach to generate cattle resistant to the prion disease BSE.

    CAS  PubMed  Google Scholar 

  86. Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J. & Stahl, F. W. The double-strand-break repair model for recombination. Cell 33, 25–35 (1983).

    CAS  PubMed  Google Scholar 

  87. Krogh, B. O. & Symington, L. S. Recombination proteins in yeast. Annu. Rev. Genet. 38, 233–271 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr R. M. Linden for discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Jessberger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Entrez

AAV2

COL1A1

MUM

PRNP

Saccharomyces cerevisiae

Swiss-Prot

Artemis

ATM kinase

BRCA2

DNA ligase IV

ERCC1

KU70

KU86

MBS85

MRE11

NBS1

RAD50

RAD51

RAD51C

RAD52

RAD54B

RAD54L

RPA

XPF

XRCC3

XRCC4

CDC Infectious Disease Information

BSE

FURTHER INFORMATION

Rolf Jessberger's homepage

Glossary

VECTORS

Nucleic-acid sequences derived from bacterial plasmids or viruses, used for delivery of exogenous DNA or RNA into cells.

TRANSGENE

Artificially reconstituted gene, which can be expressed either pre- or post-integration into the genome; often encodes a therapeutic or a marker gene.

SILENCING

In this context, complete or partial shut-off of transgene expression owing to factors acting at the locus of vector integration and/or the structure of the locus.

HOMOLOGOUS RECOMBINATION

(HR). Substitution (reciprocal exchange or replacement) of a segment of DNA by another that is identical (homologous). Occurs naturally during meiotic recombination and DNA repair.

NON-HOMOLOGOUS END JOINING

(NHEJ). Process of joining two broken DNA ends on the basis of limited or no homology between two DNA molecules, which can result in incorrect recovery of the sequence of a broken DNA molecule. Also functions to create genetic diversity during immune development.

ISOGENIC

Genetically identical (except for sex).

TRANSDUCTION

In this context, equivalent to infection with a virus used as a gene-therapy vector.

EPISOME

Non-integrated, circular, double-stranded DNA molecule with the capacity to integrate into the chromosome of the host cell.

TRANS-SPLICING

A reconstruction of a larger transcript by joining the 5′ and 3′ portions of a transcript from two independent viruses (co-adminstered to the same tissue) that have formed intermolecular concatemers.

MULTIPLICITY OF INFECTION

Synonym of virus load, the number of viral particles or infectious units per infected cell. Usually represented by the number of viral genomes — gcp/cell (genome-containing particles per cell) or TU/cell (transducing units per cell).

ETOPOSIDE

A chemical agent that blocks topoisomerase and therefore introduces random DNA breaks, which results in S-phase arrest.

HYDROXYUREA

Causes depletion of the dNTP pool by inhibition of ribonucleotide reductase and thereby stalls DNA replication. Removal of hydroxyurea might stimulate viral second-strand synthesis.

TYPE I COLLAGEN

The most abundant protein in vertebrates, and a constituent of the extracellular matrix in the connective tissue of bone, skin, tendon, ligament and dentine. It is produced and secreted mostly by fibroblasts and osteoblasts.

GENE CONVERSION

A non-reciprocal transfer of genetic information.

OSTEOGENESIS IMPERFECTA

The most common and the mildest form of a group of rare disorders affecting the connective tissue, which are characterized by fragile bones that fracture easily (brittle bones).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasileva, A., Jessberger, R. Precise hit: adeno-associated virus in gene targeting. Nat Rev Microbiol 3, 837–847 (2005). https://doi.org/10.1038/nrmicro1266

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1266

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing