Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Primate defensins

Key Points

  • Endogenous antimicrobial peptide molecules of less than 100 amino acids are an important component of innate immunity. The type and number of antimicrobial peptides varies from species to species. In humans and other primates, defensins (cationic antimicrobial peptides that are rich in cysteine residues) contribute to host defence against bacterial, fungal and viral infections.

  • Three families of defensins — α, β and θ — are found in primates. The α-defensins, which were first discovered in the 1960s but not sequenced until almost 20 years later, are most prominent in neutrophils and Paneth cells in the small intestine. β-defensins were initially identified in cattle. Later (in 1995) they were found in humans, and reported to protect the skin and the mucous membranes of the respiratory, genitourinary and gastrointestinal tracts. α- and β-defensins differ from each other in the spacing and pairing of their six conserved cysteines. θ-defensins were first identified in 1999 and are expressed only in PMNs and bone marrow in Old World monkeys, lesser apes and orangutans.

  • Unsurprisingly, some bacteria that infect humans can resist the antimicrobial activities of defensins. In Salmonella enterica serovar Typhimurium, the PhoP−PhoQ regulon controls the transcription of many genes involved in resistance to defensins and other antimicrobial molecules. Several factors that contribute to defensin resistance have been identified in Staphylococcus aureus, including MprF, a lysylphosphatidylglycerol synthase, which functions by decreasing the negative charge of the bacterial membrane, thereby decreasing binding of cationic defensins. Neisseria gonorrhoeae are naturally resistant to α-defensins.

  • The antimicrobial activity of defensins is mainly due to permeabilization of the target cell membrane. However, defensins also have a range of other important activities, including involvement in chemotaxis of monocytes, T cells and dendritic cells; the release of histamine from mast cells; opsonization; interaction with complement; and wound repair.

  • The antiviral properties of defensins are beginning to be studied more, and this research has led to the discovery that many α-defensins have lectin-like properties. The θ-defensins, the latest defensin family to be discovered, also have lectin-like properties and show broad-spectrum antiviral efficacy. The genes encoding these molecules (DEFT) are mutated α-defensin genes that arose in an Old World monkey. Humans, chimpanzees and gorillas do not express θ-defensin peptides because their DEFT genes acquired a mutation that introduced a premature stop codon into the signal sequence. A synthetic θ-defensin, retrocyclin 2, has activity against HIV-1 and HSV-2 and acts by inhibiting viral entry. The role of endogenous human α-defensins in resistance to HIV/AIDS is not yet clear.

Abstract

Defensins are endogenous, cysteine-rich antimicrobial peptides that contribute to host defence against bacterial, fungal and viral infections. There are three subfamilies of defensins in primates: α-defensins are most common in neutrophils and Paneth cells of the small intestine; β-defensins protect the skin and the mucous membranes of the respiratory, genitourinary and gastrointestinal tracts; and θ-defensins, which are expressed only in Old World monkeys, lesser apes and orangutans, are lectins with broad-spectrum antiviral efficacy. Here, their discovery and recent advances in understanding their properties and functions are described.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The antimicrobial mechanisms of polymorphonuclear leukocytes (PMNs).
Figure 2: The sequence and cysteine bonding of four human α-defensins (HNP-2, HNP-4, HD-5 and HD-6) and four human β-defensins (HBD-1–4).
Figure 3: The structures of two human defensins.
Figure 4: Two ways to handle an antimicrobial dodecapeptide.
Figure 5: Additional activities of defensins.

Similar content being viewed by others

References

  1. Ganz, T. et al. Defensins. Natural peptide antibiotics of human neutrophils. J. Clin. Invest 76, 1427–1435 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lehrer, R. I. & Ganz, T. Defensins of vertebrate animals. Curr. Opin. Immunol. 14, 96–102 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Zanetti, M., Gennaro, R. & Romeo, D. Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett. 374, 1–5 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Zanetti, M. Cathelicidins, multifunctional peptides of the innate immunity. J. Leukoc. Biol. 75, 39–48 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Rice, W. G. et al. Defensin-rich dense granules of human neutrophils. Blood 70, 757–765 (1987).

    CAS  PubMed  Google Scholar 

  6. Sorensen, O. E. et al. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 97, 3951–3959 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Sorensen, O., Arnljots, K., Cowland, J. B., Bainton, D. F. & Borregaard, N. The human antibacterial cathelicidin, hCAP-18, is synthesized in myelocytes and metamyelocytes and localized to specific granules in neutrophils. Blood 90, 2796–2803 (1997).

    CAS  PubMed  Google Scholar 

  8. Bainton, D. F. Distinct granule populations in human neutrophils and lysosomal organelles identified by immuno-electron microscopy. J. Immunol. Methods 232, 153–168 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Borregaard, N. et al. Human neutrophil granules and secretory vesicles. Eur. J. Haematol. 51, 187–198 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Selsted, M. E. et al. Purification, primary structures, and antibacterial activities of β-defensins, a new family of antimicrobial peptides from bovine neutrophils. J. Biol. Chem. 268, 6641–6648 (1993).

    CAS  PubMed  Google Scholar 

  11. Zarember, K. A. et al. Host defense functions of proteolytically processed and parent (unprocessed) cathelicidins of rabbit granulocytes. Infect. Immun. 70, 569–576 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Selsted, M. E., Brown, D. M., DeLange, R. J., Harwig, S. S. & Lehrer, R. I. Primary structures of six antimicrobial peptides of rabbit peritoneal neutrophils. J. Biol. Chem. 260, 4579–4584 (1985).

    CAS  PubMed  Google Scholar 

  13. Huttner, K. M., Lambeth, M. R., Burkin, H. R., Burkin, D. J. & Broad, T. E. Localization and genomic organization of sheep antimicrobial peptide genes. Gene 206, 85–91 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Bals, R. & Wilson, J. M. Cathelicidins—a family of multifunctional antimicrobial peptides. Cell. Mol. Life Sci. 60, 711–720 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Termen, S. et al. Phylogeny, processing and expression of the rat cathelicidin rCRAMP: a model for innate antimicrobial peptides. Cell. Mol. Life Sci. 60, 536–549 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Gallo, R. L. et al. Identification of CRAMP, a cathelin-related antimicrobial peptide expressed in the embryonic and adult mouse. J. Biol. Chem. 272, 13088–13093 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Eisenhauer, P., Harwig, S. S., Szklarek, D., Ganz, T. & Lehrer, R. I. Polymorphic expression of defensins in neutrophils from outbred rats. Infect. Immun. 58, 3899–3902 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Eisenhauer, P. B. et al. Purification and antimicrobial properties of three defensins from rat neutrophils. Infect. Immun. 57, 2021–2027 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Eisenhauer, P. B. & Lehrer, R. I. Mouse neutrophils lack defensins. Infect. Immun. 60, 3446–3447 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tang, Y. Q., Yuan, J., Miller, C. J. & Selsted, M. E. Isolation, characterization, cDNA cloning, and antimicrobial properties of two distinct subfamilies of α-defensins from rhesus macaque leukocytes. Infect. Immun. 67, 6139–6144 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao, C. et al. RL-37, an α-helical antimicrobial peptide of the rhesus monkey. Antimicrob. Agents Chemother. 45, 2695–2702 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cole, A. M. et al. Retrocyclin: a primate peptide that protects cells from infection by T- and M-tropic strains of HIV-1. Proc. Natl Acad. Sci. USA 99, 1813–1818 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Munk, C. et al. The θ-defensin, retrocyclin, inhibits HIV-1 entry. AIDS Res. Hum. Retroviruses 19, 875–881 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Yasin, B. et al. θ-defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry. J. Virol. 78, 5147–5156 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miles, A. M. et al. Nitric oxide synthase in circulating versus extravasated polymorphonuclear leukocytes. J. Leukoc. Biol. 58, 616–622 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Babior, B. M., Takeuchi, C., Ruedi, J., Gutierrez, A. & Wentworth, P. Jr. Investigating antibody-catalyzed ozone generation by human neutrophils. Proc. Natl Acad. Sci. USA 100, 3031–3034 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Alam, M. S. et al. Role of nitric oxide in host defense in murine salmonellosis as a function of its antibacterial and anti-apoptotic activities. Infect. Immun. 70, 3130–3142 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Levy, O. Antibiotic proteins of polymorphonuclear leukocytes. Eur. J. Haematol. 56, 263–277 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Cole, A. M. & Lehrer, R. I. Minidefensins: antimicrobial peptides with activity against HIV-1. Curr. Pharm. Des. 9, 1463–1473 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Cunliffe, R. N. α-defensins in the gastrointestinal tract. Mol. Immunol. 40, 463–467 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Durr, M. & Peschel, A. Chemokines meet defensins: the merging concepts of chemoattractants and antimicrobial peptides in host defense. Infect. Immun. 70, 6515–6517 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gallo, R. L. & Nizet, V. Endogenous production of antimicrobial peptides in innate immunity and human disease. Curr. Allergy Asthma Rep. 3, 402–409 (2003).

    Article  PubMed  Google Scholar 

  33. Skarnes, R. C. & Watson, D. W. Characterization of leukin: an antibacterial factor from leucocytes active against Gram-positive pathogens. J. Exp. Med. 104, 829–845 (1956).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Skarnes, R. C. Leukin, a bactericidal agent from rabbit polymorphonuclear leucocytes. Nature 216, 806–808 (1967).

    Article  CAS  PubMed  Google Scholar 

  35. Hirsch, J. G. Phagocytin: a bactericidal substance from polymorphonuclear leucocytes. J. Exp. Med. 103, 589–611 (1956).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hirsch, J. G. Further studies on preparation and properties of phagocytin. J. Exp. Med. 111, 323–337 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hirsch, J. G. & Cohn, Z. A. Degranulation of polymorphonuclear leucocytes following phagocytosis of microorganisms. J. Exp. Med. 112, 1005–1014 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Selsted, M. E., Harwig, S. S., Ganz, T., Schilling, J. W. & Lehrer, R. I. Primary structures of three human neutrophil defensins. J. Clin. Invest 76, 1436–1439 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ouellette, A. J. et al. Mouse Paneth cell defensins: primary structures and antibacterial activities of numerous cryptdin isoforms. Infect. Immun. 62, 5040–5047 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Huttner, K. M. & Ouellette, A. J. A family of defensin-like genes codes for diverse cysteine-rich peptides in mouse Paneth cells. Genomics 24, 99–109 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Selsted, M. E., Miller, S. I., Henschen, A. H. & Ouellette, A. J. Enteric defensins: antibiotic peptide components of intestinal host defense. J. Cell Biol. 118, 929–936 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. Jones, D. E. & Bevins, C. L. Defensin-6 mRNA in human Paneth cells: implications for antimicrobial peptides in host defense of the human bowel. FEBS Lett. 315, 187–192 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Jones, D. E. & Bevins, C. L. Paneth cells of the human small intestine express an antimicrobial peptide gene. J. Biol. Chem. 267, 23216–23225 (1992).

    CAS  PubMed  Google Scholar 

  44. Qu, X. D., Lloyd, K. C., Walsh, J. H. & Lehrer, R. I. Secretion of type II phospholipase A2 and cryptdin by rat small intestinal Paneth cells. Infect. Immun. 64, 5161–5165 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Porter, E. M., Bevins, C. L., Ghosh, D. & Ganz, T. The multifaceted Paneth cell. Cell. Mol. Life Sci. 59, 156–170 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. McManaman, J. L. & Bain, D. L. Structural and conformational analysis of the oxidase to dehydrogenase conversion of xanthine oxidoreductase. J. Biol. Chem. 277, 21261–21268 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Morita, Y. et al. Identification of xanthine dehydrogenase/xanthine oxidase as a rat Paneth cell zinc-binding protein. Biochim. Biophys. Acta 1540, 43–49 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Diamond, G. et al. Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA. Proc. Natl Acad. Sci. USA 88, 3952–3956 (1991).

    Article  CAS  PubMed  Google Scholar 

  49. Bensch, K. W., Raida, M., Magert, H. J., Schulz-Knappe, P. & Forssmann, W. G. hBD-1: a novel β-defensin from human plasma. FEBS Lett. 368, 331–335 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Garcia, J. R. et al. Human β-defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. FASEB J. 15, 1819–1821 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Harder, J., Bartels, J., Christophers, E. & Schroder, J. M. Isolation and characterization of human β-defensin-3, a novel human inducible peptide antibiotic. J. Biol. Chem. 276, 5707–5713 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Schroder, J. M. & Harder, J. Human β-defensin-2. Int. J. Biochem. Cell Biol. 31, 645–651 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Valore, E. V. et al. Human β-defensin-1: an antimicrobial peptide of urogenital tissues. J. Clin. Invest 101, 1633–1642 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Scheetz, T. et al. Genomics-based approaches to gene discovery in innate immunity. Immunol. Rev. 190, 137–145 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Schutte, B. C. et al. Discovery of five conserved β-defensin gene clusters using a computational search strategy. Proc. Natl Acad. Sci. USA 99, 2129–2133 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Yamaguchi, Y. et al. Identification of multiple novel epididymis-specific β-defensin isoforms in humans and mice. J. Immunol. 169, 2516–2523 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Liu, L., Zhao, C., Heng, H. H. & Ganz, T. The human β-defensin-1 and α-defensins are encoded by adjacent genes: two peptide families with differing disulfide topology share a common ancestry. Genomics 43, 316–320 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Bevins, C. L., Jones, D. E., Dutra, A., Schaffzin, J. & Muenke, M. Human enteric defensin genes: chromosomal map position and a model for possible evolutionary relationships. Genomics 31, 95–106 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Zhao, C. et al. Gallinacin-3, an inducible epithelial β-defensin in the chicken. Infect. Immun. 69, 2684–2691 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hill, C. P., Yee, J., Selsted, M. E. & Eisenberg, D. Crystal structure of defensin HNP-3, an amphiphilic dimer: mechanisms of membrane permeabilization. Science 251, 1481–1485 (1991).

    Article  CAS  PubMed  Google Scholar 

  61. Semple, C. A., Rolfe, M. & Dorin, J. R. Duplication and selection in the evolution of primate β-defensin genes. Genome Biol. 4, R31 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Morrison, G. M., Semple, C. A., Kilanowski, F. M., Hill, R. E. & Dorin, J. R. Signal sequence conservation and mature peptide divergence within subgroups of the murine β-defensin gene family. Mol. Biol. Evol. 20, 460–470 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Maxwell, A. I., Morrison, G. M. & Dorin, J. R. Rapid sequence divergence in mammalian β-defensins by adaptive evolution. Mol. Immunol. 40, 413–421 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Hughes, A. L. & Yeager, M. Coordinated amino acid changes in the evolution of mammalian defensins. J. Mol. Evol. 44, 675–682 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Hughes, A. L. Evolutionary diversification of the mammalian defensins. Cell. Mol. Life Sci. 56, 94–103 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Wu, E. R., Daniel, R. & Bateman, A. RK-2: a novel rabbit kidney defensin and its implications for renal host defense. Peptides 19, 793–799 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Valore, E. V. & Ganz, T. Posttranslational processing of defensins in immature human myeloid cells. Blood 79, 1538–1544 (1992).

    CAS  PubMed  Google Scholar 

  68. Leonova, L. et al. Circular minidefensins and post-translational generation of molecular diversity. J. Leukoc. Biol. 70, 461–464 (2001).

    CAS  PubMed  Google Scholar 

  69. Tang, Y. Q. et al. A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated α-defensins. Science 286, 498–502 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Tran, D. et al. Homodimeric θ-defensins from rhesus macaque leukocytes: isolation, synthesis, antimicrobial activities, and bacterial binding properties of the cyclic peptides. J. Biol. Chem. 277, 3079–3084 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Groisman, E. A., Parra-Lopez, C., Salcedo, M., Lipps, C. J. & Heffron, F. Resistance to host antimicrobial peptides is necessary for Salmonella virulence. Proc. Natl Acad. Sci. USA 89, 11939–11943 (1992).

    Article  CAS  PubMed  Google Scholar 

  72. Groisman, E. A. The pleiotropic two-component regulatory system PhoP–PhoQ. J. Bacteriol. 183, 1835–1842 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Miller, S. I., Pulkkinen, W. S., Selsted, M. E. & Mekalanos, J. J. Characterization of defensin resistance phenotypes associated with mutations in the phoP virulence regulon of Salmonella typhimurium. Infect. Immun. 58, 3706–3710 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Eisenhauer, P. B., Harwig, S. S. & Lehrer, R. I. Cryptdins: antimicrobial defensins of the murine small intestine. Infect. Immun. 60, 3556–3565 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Gunn, J. S. & Miller, S. I. PhoP–PhoQ activates transcription of pmrAB, encoding a two-component regulatory system involved in Salmonella typhimurium antimicrobial peptide resistance. J. Bacteriol. 178, 6857–6864 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kristian, S. A., Durr, M., Van Strijp, J. A., Neumeister, B. & Peschel, A. MprF-mediated lysinylation of phospholipids in Staphylococcus aureus leads to protection against oxygen-independent neutrophil killing. Infect. Immun. 71, 546–549 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Peschel, A. et al. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J. Biol. Chem. 274, 8405–8410 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Peschel, A. et al. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with L-lysine. J. Exp. Med. 193, 1067–1076 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Staubitz, P., Neumann, H., Schneider, T., Wiedemann, I. & Peschel, A. MprF-mediated biosynthesis of lysylphosphatidylglycerol, an important determinant in staphylococcal defensin resistance. FEMS Microbiol. Lett. 231, 67–71 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Koprivnjak, T., Peschel, A., Gelb, M. H., Liang, N. S. & Weiss, J. P. Role of charge properties of bacterial envelope in bactericidal action of human group IIA phospholipase A2 against Staphylococcus aureus. J. Biol. Chem. 277, 47636–47644 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Fischer, W. New Targets For New Antimicrobial Agents. (ed. R. Hakenbeck) 47–50 (Spektrum Akademischer, Heidelberg, Germany, 1997).

    Google Scholar 

  82. Poyart, C., Lamy, M. C., Boumaila, C., Fiedler, F. & Trieu-Cuot, P. Regulation of D-alanyl-lipoteichoic acid biosynthesis in Streptococcus agalactiae involves a novel two-component regulatory system. J. Bacteriol. 183, 6324–6334 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kokryakov, V. N. et al. Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett. 327, 231–236 (1993).

    Article  CAS  PubMed  Google Scholar 

  84. Nakamura, T. et al. Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). Isolation and chemical structure. J. Biol. Chem. 263, 16709–16713 (1988).

    CAS  PubMed  Google Scholar 

  85. Marrie, T. J., Harding, G. K. & Ronald, A. R. Anaerobic and aerobic urethral flora in healthy females. J. Clin. Microbiol. 8, 67–72 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Bowie, W. R. et al. Bacteriology of the urethra in normal men and men with non-gonococcal urethritis. J. Clin. Microbiol. 6, 482–488 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Curnutte, J. T. & Babior, B. M. Effects of anaerobiosis and inhibitors on O2 production by human granulocytes. Blood 45, 851–861 (1975).

    CAS  PubMed  Google Scholar 

  88. Qu, X. D., Harwig, S. S., Oren, A. M., Shafer, W. M. & Lehrer, R. I. Susceptibility of Neisseria gonorrhoeae to protegrins. Infect. Immun. 64, 1240–1245 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Goodhart, M. E., Ogden, J., Zaidi, A. A. & Kraus, S. J. Factors affecting the performance of smear and culture tests for the detection of Neisseria gonorrhoeae. Sex. Transm. Dis. 9, 63–69 (1982).

    Article  CAS  PubMed  Google Scholar 

  90. Shafer, W. M., Qu, X., Waring, A. J. & Lehrer, R. I. Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proc. Natl Acad. Sci. USA 95, 1829–1833 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Zhao, C., Wang, I. & Lehrer, R. I. Widespread expression of β-defensin hBD-1 in human secretory glands and epithelial cells. FEBS Lett. 396, 319–322 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. Schnapp, D., Reid, C. J. & Harris, A. Localization of expression of human β-defensin-1 in the pancreas and kidney. J. Pathol. 186, 99–103 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Hiratsuka, T. et al. Structural analysis of human β-defensin-1 and its significance in urinary tract infection. Nephron 85, 34–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Rubinstein, E. et al. Antibacterial activity of the pancreatic fluid. Gastroenterology 88, 927–932 (1985).

    Article  CAS  PubMed  Google Scholar 

  95. Huttner, K. M., Kozak, C. A. & Bevins, C. L. The mouse genome encodes a single homolog of the antimicrobial peptide human β-defensin 1. FEBS Lett. 413, 45–49 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Harder, J., Bartels, J., Christophers, E. & Schroder, J. M. A peptide antibiotic from human skin. Nature 387, 861 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Ong, P. Y. et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N. Engl. J. Med. 347, 1151–1160 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Nomura, I. et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J. Immunol. 171, 3262–3269 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Jia, H. P. et al. Discovery of new human β-defensins using a genomics-based approach. Gene 263, 211–218 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Claeys, S. et al. Human β-defensins and Toll-like receptors in the upper airway. Allergy 58, 748–753 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Garcia, J. R. et al. Identification of a novel, multifunctional β-defensin (human β-defensin 3) with specific antimicrobial activity. Its interaction with plasma membranes of Xenopus oocytes and the induction of macrophage chemoattraction. Cell Tissue Res. 306, 257–264 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Sahly, H. et al. Burkholderia is highly resistant to human β-defensin 3. Antimicrob. Agents Chemother. 47, 1739–1741 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Duits, L. A. et al. Inhibition of hBD-3, but not hBD-1 and hBD-2, mRNA expression by corticosteroids. Biochem. Biophys. Res. Commun. 280, 522–525 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. McDermott, A. M. et al. Defensin expression by the cornea: multiple signalling pathways mediate IL-1β stimulation of hBD-2 expression by human corneal epithelial cells. Invest. Ophthalmol. Vis. Sci. 44, 1859–1865 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Bissell, J. et al. Expression of β-defensins in gingival health and in periodontal disease. J. Oral Pathol. Med. 33, 278–285 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Proud, D., Sanders, S. P. & Wiehler, S. Human rhinovirus infection induces airway epithelial cell production of human β-defensin 2 both in vitro and in vivo. J. Immunol. 172, 4637–4645 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Duits, L. A. et al. Rhinovirus increases human β-defensin-2 and -3 mRNA expression in cultured bronchial epithelial cells. FEMS Immunol. Med. Microbiol. 38, 59–64 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Frohlich, O., Po, C. & Young, L. G. Organization of the human gene encoding the epididymis-specific EP2 protein variants and its relationship to defensin genes. Biol. Reprod. 64, 1072–1079 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Rodriguez-Jimenez, F. J. et al. Distribution of new human β-defensin genes clustered on chromosome 20 in functionally different segments of epididymis. Genomics 81, 175–183 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Yenugu, S., Hamil, K. G., Radhakrishnan, Y., French, F. S. & Hall, S. H. The androgen-regulated epididymal sperm-binding protein, human β-defensin 118 (DEFB118) (formerly ESC42), is an antimicrobial β-defensin. Endocrinology 145, 3165–3173 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Zaballos, A., Villares, R., Albar, J. P., Martinez, A. & Marquez, G. Identification on mouse chromosome 8 of new β-defensin genes with regionally specific expression in the male reproductive organ. J. Biol. Chem. 279, 12421–12426 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Com, E. et al. Expression of antimicrobial defensins in the male reproductive tract of rats, mice, and humans. Biol. Reprod. 68, 95–104 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Li, P. et al. An antimicrobial peptide gene found in the male reproductive system of rats. Science 291, 1783–1785 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Rao, J. et al. Cloning and characterization of a novel sperm-associated isoantigen (E-3) with defensin- and lectin-like motifs expressed in rat epididymis. Biol. Reprod. 68, 290–301 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Zhou, C. X. et al. An epididymis-specific β-defensin is important for the initiation of sperm maturation. Nature Cell Biol. 6, 458–464 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Fleischmann, J., Selsted, M. E. & Lehrer, R. I. Opsonic activity of MCP-1 and MCP-2, cationic peptides from rabbit alveolar macrophages. Diagn. Microbiol. Infect. Dis. 3, 233–242 (1985).

    Article  CAS  PubMed  Google Scholar 

  117. Fuse, N. et al. Purification and characterization of new anti-adrenocorticotropin rabbit neutrophil peptides (defensins). Eur. J. Biochem. 216, 653–659 (1993).

    Article  CAS  PubMed  Google Scholar 

  118. Ichinose, M. & Sawada, M. A flow cytometric assay reveals a suppression of phagocytosis by rabbit defensin NP-3A in mouse peritoneal macrophages. Microbiol. Immunol. 39, 365–367 (1995).

    Article  CAS  PubMed  Google Scholar 

  119. Tominaga, T. et al. Effects of corticostatin-I on rat adrenal cells in vitro. J. Endocrinol. 125, 287–292 (1990).

    Article  CAS  PubMed  Google Scholar 

  120. Zhu, Q., Bateman, A., Singh, A. & Solomon, S. Isolation and biological activity of corticostatic peptides (anti-ACTH). Endocr. Res. 15, 129–149 (1989).

    Article  CAS  PubMed  Google Scholar 

  121. Zhu, Q. Z., Singh, A. V., Bateman, A., Esch, F. & Solomon, S. The corticostatic (anti-ACTH) and cytotoxic activity of peptides isolated from fetal, adult and tumor-bearing lung. J. Steroid Biochem. 27, 1017–1022 (1987).

    Article  CAS  PubMed  Google Scholar 

  122. Zhu, Q. Z. et al. Isolation and structure of corticostatin peptides from rabbit fetal and adult lung. Proc. Natl Acad. Sci. USA 85, 592–596 (1988).

    Article  CAS  PubMed  Google Scholar 

  123. Shamova, O. V., Lesnikova, M. P., Kokriakov, V. N., Shkhinek, E. K. & Korneva, E. A. The action of defensins on the corticosterone level of the blood and on the immune response in stress. Biull. Eksp. Biol. Med. 115, 646–649 (1993).

    Article  CAS  PubMed  Google Scholar 

  124. Johnson, E. W., Blalock, J. E. & Smith, E. M. ACTH receptor-mediated induction of leukocyte cyclic AMP. Biochem. Biophys. Res. Commun. 157, 1205–1211 (1988).

    Article  CAS  PubMed  Google Scholar 

  125. Blalock, J. E. Propiomelanocortin and the immune–neuroendocrine connection. Ann. NY Acad. Sci. 885, 161–172 (1999).

    Article  CAS  PubMed  Google Scholar 

  126. Johnson, E. W., Hughes, T. K. Jr & Smith, E. M. ACTH receptor distribution and modulation among murine mononuclear leukocyte populations. J. Biol. Regul. Homeost. Agents 15, 156–162 (2001).

    CAS  PubMed  Google Scholar 

  127. Takeuchi, S., Kudo, T. & Takahashi, S. Molecular cloning of the chicken melanocortin 2 (ACTH)-receptor gene. Biochim. Biophys. Acta 1403, 102–108 (1998).

    Article  CAS  PubMed  Google Scholar 

  128. Clarke, B. L. Binding and processing of 125I-ACTH by isolated rat splenic lymphocytes. Biochem. Biophys. Res. Commun. 266, 542–546 (1999).

    Article  CAS  PubMed  Google Scholar 

  129. Tatro, J. B. Receptor biology of the melanocortins, a family of neuroimmunomodulatory peptides. Neuroimmunomodulation 3, 259–284 (1996).

    Article  CAS  PubMed  Google Scholar 

  130. Befus, A. D. et al. Neutrophil defensins induce histamine secretion from mast cells: mechanisms of action. J. Immunol. 163, 947–953 (1999).

    CAS  PubMed  Google Scholar 

  131. Niyonsaba, F., Someya, A., Hirata, M., Ogawa, H. & Nagaoka, I. Evaluation of the effects of peptide antibiotics human β-defensins-1/-2 and LL-37 on histamine release and prostaglandin D2 production from mast cells. Eur. J. Immunol. 31, 1066–1075 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Hook, W. A., Tsuji, S. & Siraganian, R. P. Magainin-2 releases histamine from rat mast cells. Proc. Soc. Exp. Biol. Med. 193, 50–55 (1990).

    Article  CAS  PubMed  Google Scholar 

  133. Cross, L. J. et al. Influence of α-helicity, amphipathicity and D-amino acid incorporation on the peptide-induced mast cell activation. Eur. J. Pharmacol. 291, 291–300 (1995).

    Article  CAS  PubMed  Google Scholar 

  134. Di Nardo, A., Vitiello, A. & Gallo, R. L. Cutting edge: mast cell antimicrobial activity is mediated by expression of cathelicidin antimicrobial peptide. J. Immunol. 170, 2274–2278 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Payne, V. & Kam, P. C. Mast cell tryptase: a review of its physiology and clinical significance. Anaesthesia 59, 695–703 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Boyce, J. A. Mast cells: beyond IgE. J. Allergy Clin. Immunol. 111, 24–32 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Huang, C. et al. Induction of a selective and persistent extravasation of neutrophils into the peritoneal cavity by tryptase mouse mast cell protease 6. J. Immunol. 160, 1910–1919 (1998).

    CAS  PubMed  Google Scholar 

  138. Panyutich, A. V., Szold, O., Poon, P. H., Tseng, Y. & Ganz, T. Identification of defensin binding to C1 complement. FEBS Lett. 356, 169–173 (1994).

    Article  CAS  PubMed  Google Scholar 

  139. Prohaszka, Z. et al. Defensins purified from human granulocytes bind C1q and activate the classical complement pathway like the transmembrane glycoprotein gp41 of HIV-1. Mol. Immunol. 34, 809–816 (1997).

    Article  CAS  PubMed  Google Scholar 

  140. van den Berg, R. H., Faber-Krol, M. C., van Wetering, S., Hiemstra, P. S. & Daha, M. R. Inhibition of activation of the classical pathway of complement by human neutrophil defensins. Blood 92, 3898–3903 (1998).

    CAS  PubMed  Google Scholar 

  141. Wang, W. et al. Activity of α- and θ-defensins against primary isolates of HIV-1. J. Immunol. 173, 515–520 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Dodds, A. W. Which came first, the lectin/classical pathway or the alternative pathway of complement? Immunobiology 205, 340–354 (2002).

    Article  CAS  PubMed  Google Scholar 

  143. Fujita, T. Evolution of the lectin–complement pathway and its role in innate immunity. Nature Rev. Immunol. 2, 346–353 (2002).

    Article  CAS  Google Scholar 

  144. Okrent, D. G., Lichtenstein, A. K. & Ganz, T. Direct cytotoxicity of polymorphonuclear leukocyte granule proteins to human lung-derived cells and endothelial cells. Am. Rev. Respir. Dis. 141, 179–185 (1990).

    Article  CAS  PubMed  Google Scholar 

  145. Lichtenstein, A. K., Ganz, T., Nguyen, T. M., Selsted, M. E. & Lehrer, R. I. Mechanism of target cytolysis by peptide defensins. Target cell metabolic activities, possibly involving endocytosis, are crucial for expression of cytotoxicity. J. Immunol. 140, 2686–2694 (1988).

    CAS  PubMed  Google Scholar 

  146. Lichtenstein, A., Ganz, T., Selsted, M. E. & Lehrer, R. I. In vitro tumor cell cytolysis mediated by peptide defensins of human and rabbit granulocytes. Blood 68, 1407–1410 (1986).

    CAS  PubMed  Google Scholar 

  147. Lehrer, R. I., Lichtenstein, A. K. & Ganz, T. Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu. Rev. Immunol. 11, 105–128 (1993).

    Article  CAS  PubMed  Google Scholar 

  148. Aarbiou, J. et al. Human neutrophil defensins induce lung epithelial cell proliferation in vitro. J. Leukoc. Biol. 72, 167–174 (2002).

    CAS  PubMed  Google Scholar 

  149. Aarbiou, J. et al. Neutrophil defensins enhance lung epithelial wound closure and mucin gene expression in vitro. Am. J. Respir. Cell Mol. Biol. 30, 193–201 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Kudriashov, B. A. et al. Effect of defensin on the process of healing of aseptic skin wound and on the permeability of blood vessels. Biull. Eksp. Biol. Med. 109, 391–393 (1990).

    CAS  PubMed  Google Scholar 

  151. Murphy, C. J., Foster, B. A., Mannis, M. J., Selsted, M. E. & Reid, T. W. Defensins are mitogenic for epithelial cells and fibroblasts. J. Cell Physiol. 155, 408–413 (1993).

    Article  CAS  PubMed  Google Scholar 

  152. Sorensen, O. E. et al. Wound healing and expression of antimicrobial peptides/polypeptides in human keratinocytes, a consequence of common growth factors. J. Immunol. 170, 5583–5589 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Panyutich, A. & Ganz, T. Activated α2-macroglobulin is a principal defensin-binding protein. Am. J. Respir. Cell Mol. Biol. 5, 101–106 (1991).

    Article  CAS  PubMed  Google Scholar 

  154. Panyutich, A. V., Hiemstra, P. S., van Wetering, S. & Ganz, T. Human neutrophil defensin and serpins form complexes and inactivate each other. Am. J. Respir. Cell Mol. Biol. 12, 351–357 (1995).

    Article  CAS  PubMed  Google Scholar 

  155. Nygaard, S. D., Ganz, T. & Peterson, M. W. Defensins reduce the barrier integrity of a cultured epithelial monolayer without cytotoxicity. Am. J. Respir. Cell Mol. Biol. 8, 193–200 (1993).

    Article  CAS  PubMed  Google Scholar 

  156. Territo, M. C., Ganz, T., Selsted, M. E. & Lehrer, R. Monocyte-chemotactic activity of defensins from human neutrophils. J. Clin. Invest. 84, 2017–2020 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yang, D., Chen, Q., Chertov, O. & Oppenheim, J. J. Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J. Leukoc. Biol. 68, 9–14 (2000).

    CAS  PubMed  Google Scholar 

  158. Yang, D., Biragyn, A., Kwak, L. W. & Oppenheim, J. J. Mammalian defensins in immunity: more than just microbicidal. Trends Immunol. 23, 291–296 (2002).

    Article  CAS  PubMed  Google Scholar 

  159. Yang, D. et al. β-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286, 525–528 (1999).

    Article  CAS  PubMed  Google Scholar 

  160. Niyonsaba, F., Ogawa, H. & Nagaoka, I. Human β-defensin-2 functions as a chemotactic agent for tumour necrosis factor-α-treated human neutrophils. Immunology 111, 273–281 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Biragyn, A. et al. Toll-like receptor 4-dependent activation of dendritic cells by β-defensin 2. Science 298, 1025–1029 (2002).

    Article  CAS  PubMed  Google Scholar 

  162. Niyonsaba, F., Iwabuchi, K., Matsuda, H., Ogawa, H. & Nagaoka, I. Epithelial cell-derived human β-defensin-2 acts as a chemotaxin for mast cells through a pertussis toxin-sensitive and phospholipase C-dependent pathway. Int. Immunol. 14, 421–426 (2002).

    Article  CAS  PubMed  Google Scholar 

  163. van Wetering, S. et al. Effect of defensins on interleukin-8 synthesis in airway epithelial cells. Am. J. Physiol. 272, L888–L896 (1997).

    CAS  PubMed  Google Scholar 

  164. van Wetering, S., Mannesse-Lazeroms, S. P., Van Sterkenburg, M. A. & Hiemstra, P. S. Neutrophil defensins stimulate the release of cytokines by airway epithelial cells: modulation by dexamethasone. Inflamm. Res. 51, 8–15 (2002).

    Article  CAS  PubMed  Google Scholar 

  165. Spencer, L. T. et al. Role of human neutrophil peptides in lung inflammation associated with α1-antitrypsin deficiency. Am. J. Physiol. Lung Cell. Mol. Physiol. 286, L514–L520 (2004).

    Article  CAS  PubMed  Google Scholar 

  166. Lin, P. W. et al. Paneth cell cryptdins act in vitro as apical paracrine regulators of the innate inflammatory response. J. Biol. Chem. 279, 19902–19907 (2004).

    Article  CAS  PubMed  Google Scholar 

  167. Cole, A. M. et al. Cutting edge: IFN-inducible ELR-CXC chemokines display defensin-like antimicrobial activity. J. Immunol. 167, 623–627 (2001).

    Article  CAS  PubMed  Google Scholar 

  168. Yang, D. et al. Many chemokines including CCL20/MIP-3α display antimicrobial activity. J. Leukoc. Biol. 74, 448–455 (2003).

    Article  CAS  PubMed  Google Scholar 

  169. Biragyn, A. et al. Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with non-immunogenic tumor antigens. J. Immunol. 167, 6644–6653 (2001).

    Article  CAS  PubMed  Google Scholar 

  170. Fomicheva, E. E., Pivanovich, I. I., Shamova, O. V. & Nemirovich-Danchenko, E. A. Glucocorticoid hormones in immunomodulating effect of defensins. Ross. Fiziol. Zh. Im I. M. Sechenova 88, 496–502 (2002).

    CAS  PubMed  Google Scholar 

  171. Brogden, K. A. et al. Defensin-induced adaptive immunity in mice and its potential in preventing periodontal disease. Oral Microbiol. Immunol. 18, 95–99 (2003).

    Article  CAS  PubMed  Google Scholar 

  172. Boyaka, P. N. & McGhee, J. R. Cytokines as adjuvants for the induction of mucosal immunity. Adv. Drug Deliv. Rev. 51, 71–79 (2001).

    Article  CAS  PubMed  Google Scholar 

  173. Oppenheim, J. J., Biragyn, A., Kwak, L. W. & Yang, D. Roles of antimicrobial peptides such as defensins in innate and adaptive immunity. Ann. Rheum. Dis. 62, S17–S21 (2003).

    Article  Google Scholar 

  174. Zhu, B. D., Feng, Y., Huang, N., Wu, Q. & Wang, B. Y. Mycobacterium bovis bacille Calmette–Guerin (BCG) enhances human β-defensin-1 gene transcription in human pulmonary gland epithelial cells. Acta Pharmacol. Sin. 24, 907–912 (2003).

    CAS  PubMed  Google Scholar 

  175. Lehrer, R. I., Daher, K., Ganz, T. & Selsted, M. E. Direct inactivation of viruses by MCP-1 and MCP-2, natural peptide antibiotics from rabbit leukocytes. J. Virol. 54, 467–472 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Daher, K. A., Selsted, M. E. & Lehrer, R. I. Direct inactivation of viruses by human granulocyte defensins. J. Virol. 60, 1068–1074 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Sinha, S., Cheshenko, N., Lehrer, R. I. & Herold, B. C. NP-1, a rabbit α-defensin, prevents the entry and intercellular spread of herpes simplex virus type 2. Antimicrob. Agents Chemother. 47, 494–500 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Cheshenko, N. & Herold, B. C. Glycoprotein B plays a predominant role in mediating herpes simplex virus type 2 attachment and is required for entry and cell-to-cell spread. J. Gen. Virol. 83, 2247–2255 (2002).

    Article  CAS  PubMed  Google Scholar 

  179. Spear, P. G., Shieh, M. T., Herold, B. C., WuDunn, D. & Koshy, T. I. Heparan sulfate glycosaminoglycans as primary cell surface receptors for herpes simplex virus. Adv. Exp. Med. Biol. 313, 341–353 (1992).

    Article  CAS  PubMed  Google Scholar 

  180. Wang, W., Cole, A. M., Hong, T., Waring, A. J. & Lehrer, R. I. Retrocyclin, an antiretroviral θ-defensin, is a lectin. J. Immunol. 170, 4708–4716 (2003).

    Article  CAS  PubMed  Google Scholar 

  181. Broekaert, W. F. et al. Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins. Biochemistry 31, 4308–4314 (1992).

    Article  CAS  PubMed  Google Scholar 

  182. Huang, R. H. et al. Two novel antifungal peptides distinct with a five-disulfide motif from the bark of Eucommia ulmoides Oliv. FEBS Lett. 521, 87–90 (2002).

    Article  CAS  PubMed  Google Scholar 

  183. Van Den Bergh, K. P. et al. Five disulfide bridges stabilize a hevein-type antimicrobial peptide from the bark of spindle tree (Euonymus europaeus L.). FEBS Lett. 530, 181–185 (2002).

    Article  CAS  PubMed  Google Scholar 

  184. Nielsen, K. K., Nielsen, J. E., Madrid, S. M. & Mikkelsen, J. D. Characterization of a new antifungal chitin-binding peptide from sugar beet leaves. Plant Physiol. 113, 83–91 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Iwanaga, S. et al. Role of hemocyte-derived granular components in invertebrate defense. Ann. NY Acad. Sci. 712, 102–116 (1994).

    Article  CAS  PubMed  Google Scholar 

  186. Saito, T. et al. A novel big defensin identified in horseshoe crab hemocytes: isolation, amino acid sequence, and antibacterial activity. J. Biochem. (Tokyo) 117, 1131–1137 (1995).

    Article  CAS  Google Scholar 

  187. Kawabata, S. et al. Tachycitin, a small granular component in horseshoe crab hemocytes, is an antimicrobial protein with chitin-binding activity. J. Biochem. (Tokyo) 120, 1253–1260 (1996).

    Article  CAS  Google Scholar 

  188. Kawabata, S. et al. cDNA cloning, tissue distribution, and subcellular localization of horseshoe crab big defensin. Biol. Chem. 378, 289–292 (1997).

    Article  CAS  PubMed  Google Scholar 

  189. Beisel, H. G., Kawabata, S., Iwanaga, S., Huber, R. & Bode, W. Tachylectin-2: crystal structure of a specific GlcNAc/GalNAc-binding lectin involved in the innate immunity host defense of the Japanese horseshoe crab Tachypleus tridentatus. EMBO J. 18, 2313–2322 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Zhang, X. L., Selsted, M. E. & Pardi, A. NMR studies of defensin antimicrobial peptides. 1. Resonance assignment and secondary structure determination of rabbit NP-2 and human HNP-1. Biochemistry 31, 11348–11356 (1992).

    Article  CAS  PubMed  Google Scholar 

  191. Hoover, D. M. et al. The structure of human macrophage inflammatory protein-3α/CCL20. Linking antimicrobial and CC chemokine receptor-6-binding activities with human β-defensins. J. Biol. Chem. 277, 37647–37654 (2002).

    Article  CAS  PubMed  Google Scholar 

  192. Nakashima, H., Yamamoto, N., Masuda, M. & Fujii, N. Defensins inhibit HIV replication in vitro. AIDS 7, 1129 (1993).

    Article  CAS  PubMed  Google Scholar 

  193. Zhang, L. et al. Contribution of human α-defensin 1, 2, and 3 to the anti-HIV-1 activity of CD8 antiviral factor. Science 298, 995–1000 (2002).

    Article  CAS  PubMed  Google Scholar 

  194. Mackewicz, C. E., Ortega, H. & Levy, J. A. Effect of cytokines on HIV replication in CD4+ lymphocytes: lack of identity with the CD8+ cell antiviral factor. Cell. Immunol. 153, 329–343 (1994).

    Article  CAS  PubMed  Google Scholar 

  195. Cohen, J. AIDS research. Mystery anti-HIV factor unmasked? Science 297, 2188 (2002).

    Article  CAS  PubMed  Google Scholar 

  196. Zhang, L., Lopez, P., He, T., Yu, W. & Ho, D. D. Retraction of an interpretation. Science 303, 467 (2004).

    Article  CAS  PubMed  Google Scholar 

  197. Vella, C. & Daniels, R. S. CD8+ T-cell-mediated non-cytolytic suppression of human immuno-deficiency viruses. Curr. Drug Targets Infect. Disord. 3, 97–113 (2003).

    Article  CAS  PubMed  Google Scholar 

  198. Chang, T. L., Francois, F., Mosoian, A. & Klotman, M. E. CAF-mediated human immunodeficiency virus (HIV) type 1 transcriptional inhibition is distinct from α-defensin-1 HIV inhibition. J. Virol. 77, 6777–6784 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Trabattoni, D. et al. Human α-defensin in HIV-exposed but uninfected individuals. J. Acquir. Immune. Defic. Syndr. 35, 455–463 (2004).

    Article  CAS  PubMed  Google Scholar 

  200. Mars, W. M. et al. Inheritance of unequal numbers of the genes encoding the human neutrophil defensins HP-1 and HP-3. J. Biol. Chem. 270, 30371–30376 (1995).

    Article  CAS  PubMed  Google Scholar 

  201. Hollox, E. J., Armour, J. A. & Barber, J. C. Extensive normal copy number variation of a β-defensin antimicrobial-gene cluster. Am. J. Hum. Genet. 73, 591–600 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. King, A. E., Fleming, D. C., Critchley, H. O. & Kelly, R. W. Differential expression of the natural antimicrobials, β-defensins 3 and 4, in human endometrium. J. Reprod. Immunol. 59, 1–16 (2003).

    Article  CAS  PubMed  Google Scholar 

  203. King, A. E., Critchley, H. O. & Kelly, R. W. Innate immune defences in the human endometrium. Reprod. Biol. Endocrinol. 1, 116 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Circo, R., Skerlavaj, B., Gennaro, R., Amoroso, A. & Zanetti, M. Structural and functional characterization of hBD-1(Ser35), a peptide deduced from a DEFB1 polymorphism. Biochem. Biophys. Res. Commun. 293, 586–592 (2002).

    Article  CAS  PubMed  Google Scholar 

  205. Matsushita, I. et al. Genetic variants of human β-defensin-1 and chronic obstructive pulmonary disease. Biochem. Biophys. Res. Commun. 291, 17–22 (2002).

    Article  CAS  PubMed  Google Scholar 

  206. Nguyen, T. X., Cole, A. M. & Lehrer, R. I. Evolution of primate θ-defensins: a serpentine path to a sweet tooth. Peptides 24, 1647–1654 (2003).

    Article  CAS  PubMed  Google Scholar 

  207. Trabi, M., Schirra, H. J. & Craik, D. J. Three-dimensional structure of RTD-1, a cyclic antimicrobial defensin from rhesus macaque leukocytes. Biochemistry 40, 4211–4221 (2001).

    Article  CAS  PubMed  Google Scholar 

  208. Weiss, T. M. et al. Two states of cyclic antimicrobial peptide RTD-1 in lipid bilayers. Biochemistry 41, 10070–10076 (2002).

    Article  CAS  PubMed  Google Scholar 

  209. Schibli, D. J. et al. The solution structures of the human β-defensins lead to a better understanding of the potent bactericidal activity of HBD3 against Staphylococcus aureus. J. Biol. Chem. 277, 8279–8289 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author holds over 20 patents on various antimicrobial peptides, including several on defensins. In line with university policy, these patents have been assigned to the University of California.

Supplementary information

Related links

Related links

DATABASES

Entrez

Burkholderia cepacia

DEFB4

DEFB103

DEFB104

Enterococcus faecalis

Escherichia coli

HBD-2

HIV-1

Klebsiella pneumoniae

mprF

Mycobacterium tuberculosis

Pseudomonas aeruginosa

Salmonella enterica serovar Typhimurium

Staphylococcus aureus

Streptococcus pneumoniae

SwissProt

hCAP-18/LL-37

iNOS

HBD-1

HBD-4

PhoP

PhoQ

TLR4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehrer, R. Primate defensins. Nat Rev Microbiol 2, 727–738 (2004). https://doi.org/10.1038/nrmicro976

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro976

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing