Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Using nanotechniques to explore microbial surfaces

Key Points

  • Microbial surfaces form a boundary between microbial cells and their external environment and, as well as this protective function, they actively participate in many cellular interactions. Although electron microscopy techniques have been used to study microbial surfaces to great effect, their use is limited by the fact that they cannot be used to examine specimens in aqueous solution. There was therefore a need to develop new techniques to probe the structure, properties and interactions of microbial surfaces at sub-nanometre resolution; atomic force microscopy (AFM) is one such technique.

  • Unlike conventional microscopy methods, AFM does not use an incident beam to generate an image. Instead, AFM directly measures the physical interaction between the sample and a sensitive probe, or tip. The sample can be moved in three dimensions relative to the tip by a piezoelectric system. The tip is attached to a cantilever, which functions as a small spring and the deflection of the cantilever due to the interaction between the tip and the sample is detected by a laser beam that is focused on the cantilever and reflected onto a photodiode.

  • There are several different operating modes for AFM, including contact mode and tapping mode, which is suitable for imaging 'soft' samples such as bacteria. In force spectroscopy, the forces acting on the instrument tip can be measured to piconewton sensitivity, and this mode can be used to probe the interaction forces between or within biological molecules.

  • There are many different applications for AFM imaging in microbiology research. For example, single membrane proteins can be visualized at sub-nanometre resolution and the surface of living cells can be observed directly as they grow or interact with enzymes. The use of the force spectroscopy mode opens a range of unique possibilities to probe cell-wall elasticity, map cell-surface charges, manipulate individual surface molecules and detect molecular-recognition events.

  • Since its inception in the mid-1980s, the instrumentation and methods of sample preparation for AFM have advanced greatly. The current limitations and technological issues associated with applying AFM to microbiology research are discussed.

Abstract

Our current understanding of microbial surfaces owes much to the development of electron microscopy techniques. Yet, a crucial limitation of electron microscopy is that it cannot be used to examine biological structures directly in aqueous solutions. In recent years, however, atomic force microscopy (AFM) has provided a range of new opportunities for viewing and manipulating microbial surfaces in their native environments. Examples of AFM-based analyses include visualizing conformational changes in single membrane proteins, the real-time observation of cell-surface dynamics, analysing the unfolding of cell-surface proteins and detecting individual cell-surface receptors. These analyses have contributed to our understanding of the structure–function relationships of cell surfaces and will hopefully allow new applications to be developed for AFM in medicine and biotechnology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The principles of atomic force microscopy.
Figure 2: Observing native membrane proteins at sub-nanometre resolution.
Figure 3: Visualizing conformational changes in membrane proteins.
Figure 4: Tracking cell surfaces in their native state.
Figure 5: Manipulation of single molecules.
Figure 6: Detection of molecular-recognition events at cell surfaces.

Similar content being viewed by others

References

  1. Beveridge, T. J. & Graham, L. L. Surface layers of bacteria. Microbiol. Rev. 55, 684–705 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Sleytr, U. B. & Beveridge, T. J. Bacterial S-layers. Trends Microbiol. 7, 253–260 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Beveridge, T. J. Structures of Gram-negative cell walls and their derived membrane vesicles. J. Bacteriol. 181, 4725–4733 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Matias, V. R. F., Al-Amoudi, A., Dubochet, J. & Beveridge, T. J. Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa. J. Bacteriol. 185, 6112–6118 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mozes, N., Handley, P. S., Busscher, H. J. & Rouxhet, P. G. Microbial Cell Surface Analysis: Structural and Physicochemical Methods. (VCH Publishers, New York, 1991).

    Google Scholar 

  6. Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  CAS  PubMed  Google Scholar 

  7. Morris, V. J., Kirby, A. R. & Gunning, A. P. Atomic Force Microscopy for Biologists (Imperial College Press, London, 1999).

    Book  Google Scholar 

  8. Jena, B. P. & Hörber, J. K. H. in Methods in Cell Biology Vol. 68, 33–50 (Academic Press, San Diego, 2002).

    Google Scholar 

  9. Butt, H. -J., Jaschke, M. & Ducker, W. Measuring surface forces in aqueous electrolyte solution with the atomic force microscope. Bioelectrochem. Bioenerg. 38, 191–201 (1995).

    Article  CAS  Google Scholar 

  10. Heinz, W. F. & Hoh, J. H. Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope. Trends Biotechnol. 17, 143–150 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Shao, Z., Mou, J., Czajkowsky, D. M., Yang, J. & Yuan, J. -Y. Biological atomic force microscopy: what is achieved and what is needed. Adv. Phys. 45, 1–86 (1996).

    Article  CAS  Google Scholar 

  12. Hansma, H. G. & Pietrasanta, L. Atomic force microscopy and other scanning probe microscopies. Curr. Opin. Chem. Biol. 2, 579–584 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Clausen-Schaumann, H., Seitz, M., Krautbauer, R. & Gaub, H. E. Force spectroscopy with single bio-molecules. Curr. Opin. Chem. Biol. 4, 524–530 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Engel, A. & Müller, D. J. Observing single biomolecules at work with the atomic force microscope. Nature Struct. Biol. 7, 715–718 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Fisher, T. E., Marszalek, P. E. & Fernandez, J. M. Stretching single molecules into novel conformations using the atomic force microscope. Nature Struct. Biol. 7, 719–724 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Hörber, J. K. H. & Miles, M. J. Scanning probe evolution in biology. Science 302, 1002–1005 (2003).

    Article  PubMed  Google Scholar 

  17. Karrasch, S., Hegerl, R., Hoh, J., Baumeister, W. & Engel, A. Atomic force microscopy produces faithful high-resolution images of protein surfaces in an aqueous environment. Proc. Natl Acad. Sci. USA 91, 836–838 (1994). Early work showing that high-resolution AFM images of native proteins correlate remarkably well with 3-D models determined by established structural methods.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pum, D. & Sleytr, U. B. Monomolecular reassembly of a crystalline bacterial cell surface layer (S-layer) on untreated and modified silicon surfaces. Supramol. Sci. 2, 193–197 (1995).

    Article  CAS  Google Scholar 

  19. Gyorvary, E. S., Stein, O., Pum, D. & Sleytr, U. B. Self-assembly and recrystallization of bacterial S-layer proteins at silicon supports imaged in real time by atomic force microscopy. J. Microsc. 212, 300–306 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Müller, D. J., Baumeister, W. & Engel, A. Conformational change of the hexagonally packed intermediate layer of Deinococcus radiodurans monitored by atomic force microscopy. J. Bacteriol. 178, 3025–3030 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Müller, D. J., Schabert, F. A., Büldt, G. & Engel, A. Imaging purple membranes in aqueous solutions at subnanometer resolution by atomic force microscopy. Biophys. J. 68, 1681–1686 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schabert, F. A., Henn, C. & Engel, A. Native Escherichia coli OmpF porin surfaces probed by atomic force microscopy. Science 268, 92–94 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Scheuring, S. et al. High resolution topographs of the Escherichia coli water channel aquaporin Z. EMBO J. 18, 4981–4987 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Müller, D. J. & Engel, A. Voltage and pH-induced channel closure of porin OmpF visualized by atomic force microscopy. J. Mol. Biol. 285, 1347–1351 (1999). Demonstrates how AFM can be applied to observe conformational changes in single membrane proteins.

    Article  PubMed  Google Scholar 

  25. Müller, D. J., Fotiadis, D. & Engel, A. Mapping flexible protein domains at subnanometer resolution with the AFM. FEBS Lett. 430, 105–111 (1998).

    Article  PubMed  Google Scholar 

  26. Ahimou, F., Touhami, A. & Dufrêne, Y. F. Real-time imaging of the surface topography of living yeast cells by atomic force microscopy. Yeast 20, 25–30 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Dufrêne, Y. F., Boonaert, C. J. P., Gerin, P. A., Asther, M. & Rouxhet, P. G. Direct probing of the surface ultrastructure and molecular interactions of dormant and germinating spores of Phanerochaete chrysosporium. J. Bacteriol. 181, 5350–5354 (1999). The surface of hydrated P. chrysosporium spores was viewed by AFM to a resolution of a few nanometres.

    PubMed  PubMed Central  Google Scholar 

  28. Crawford, S. A., Higgins, M. J., Mulvaney, P. & Wetherbee, R. Nanostructure of the diatom frustule as revealed by atomic force and scanning electron microscopy. J. Phycol. 37, 543–554 (2001).

    Article  Google Scholar 

  29. Schaer-Zammaretti, P. & Ubbink, J. Imaging of lactic acid bacteria with AFM — elasticity and adhesion maps and their relationship to biological and structural data. Ultramicroscopy 97, 199–208 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Chada, V. G. R., Sanstad, E. A., Wang, R. & Driks, A. Morphogenesis of Bacillus spore surfaces. J. Bacteriol. 185, 6255–6261 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Doktycz, M. J. et al. AFM imaging of bacteria in liquid media immobilized on gelatin coated mica surfaces. Ultramicroscopy 97, 209–216 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Touhami, A., Jericho, M. & Beveridge, T. J. Atomic force microscopy of cell growth and division in Staphylococcus aureus. J. Bacteriol. (in the press). A combination of AFM imaging of samples in aqueous solution and thin-section transmission electron microscopy was used to investigate the changes in the bacterial cell wall as the cells grow and divide.

  33. Yao, X. et al. Atomic force microscopy and theoretical considerations of surface properties and turgor pressures of bacteria. Colloids Surf. B Biointerfaces 23, 213–230 (2002).

    Article  CAS  Google Scholar 

  34. Kuznetsov, Y. G., Victoria, J. G., Robinson, W. E. & McPherson, A. Atomic force microscopy investigation of human immunodeficiency virus (HIV) and HIV-infected lymphocytes. J. Virol. 77, 11896–11909 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Malkin, A. J., McPherson, A. & Gershon, P. D. Structure of intracellular mature vaccinia virus visualized by in situ atomic force microscopy. J. Virol. 77, 6332–6340 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. van der Aa, B. C. et al. Stretching cell surface macromolecules by atomic force microscopy. Langmuir 17, 3116–3119 (2001). Shows how force spectroscopy can be applied to living cells to gain insights into the mechanical properties of surface polysaccharides.

    Article  CAS  Google Scholar 

  37. Xu, W. et al. Modeling and measuring the elastic properties of an archaeal surface, the sheath of Methanospirillum hungatei, and the implication for methane production. J. Bacteriol. 178, 3106–3112 (1996). A pioneering work that uses AFM to quantitatively measure the elastic properties of a bacterial sheath in relation to its function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yao, X., Jericho, M., Pink, D. & Beveridge, T. Thickness and elasticity of Gram-negative murein sacculi measured by atomic force microscopy. J. Bacteriol. 181, 6865–6875 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Arnoldi, M. et al. Bacterial turgor pressure can be measured by atomic force microscopy. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62, 1034–1044 (2000).

    CAS  PubMed  Google Scholar 

  40. Touhami, A., Nysten, B. & Dufrêne, Y. F. Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy. Langmuir 19, 4539–4543 (2003).

    Article  CAS  Google Scholar 

  41. Ahimou, F., Denis, F. A., Touhami, A. & Dufrêne, Y. F. Probing microbial cell surface charges by atomic force microscopy. Langmuir 18, 9937–9941 (2002).

    Article  CAS  Google Scholar 

  42. Dufrêne, Y. F. Direct characterization of the physicochemical properties of fungal spores using functionalized AFM probes. Biophys. J. 78, 3286–3291 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fotiadis, D., Scheuring, S., Müller, S. A., Engel, A. & Müller, D. J. Imaging and manipulation of biological structures with the AFM. Micron 33, 385–397 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Abu-Lail, N. I. & Camesano, T. A. Polysaccharide properties probed with atomic force microscopy. J. Microsc. 212, 217–238 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Rief, M., Oesterhelt, F., Heymann, B. & Gaub, H. E. Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275, 1295–1297 (1997). Pioneering study demonstrating how the AFM tip can be used in the force spectroscopy mode to pull on single macromolecules, providing new insights into their mechanical and conformational properties.

    Article  CAS  PubMed  Google Scholar 

  46. Marszalek, P. E., Oberhauser, A. F., Pang, Y. P. & Fernandez, J. M. Polysaccharide elasticity governed by chair–boat transitions of the glucopyranose ring. Nature 396, 661–664 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Abu-Lail, N. I. & Camesano, T. A. Elasticity of Pseudomonas putida KT2442 surface polymers probed with single-molecule force microscopy. Langmuir 18, 4071–4081 (2002). Bacterial cell-surface macromolecules were stretched to learn about their elastic behaviour.

    Article  CAS  Google Scholar 

  48. Camesano, T. A. & Abu-Lail, N. I. Heterogeneity in bacterial surface polysaccharides, probed on a single-molecule basis. Biomacromolecules 3, 661–667 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Müller, D. J., Baumeister, W. & Engel, A. Controlled unzipping of a bacterial surface layer with atomic force microscopy. Proc. Natl Acad. Sci. USA 96, 13170–13174 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Oesterhelt, F. et al. Unfolding pathways of individual bacteriorhodopsins. Science 288, 143–146 (2000). References 49 and 50 are outstanding papers showing how the combination of AFM imaging and single-molecule force spectroscopy allows researchers to subject membrane proteins to controlled manipulation, thereby providing details of their unfolding pathways and of the forces that anchor them to the membrane.

    Article  CAS  PubMed  Google Scholar 

  51. Scheuring, S. et al. Charting and unzipping the surface layer of Corynebacterium glutamicum with the atomic force microscope. Mol. Microbiol. 44, 675–684 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Touhami, A., Hoffmann, B., Vasella, A., Denis, F. A. & Dufrêne, Y. F. Aggregation of yeast cells: direct measurement of discrete lectin–carbohydrate interactions. Microbiology 149, 2873–2878 (2003). Biologically modified tips are used to measure the receptor–ligand interaction forces that mediate the aggregation of yeast cells.

    Article  CAS  PubMed  Google Scholar 

  53. Benoit, M., Gabriel, D., Gerisch, G. & Gaub, H. E. Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nature Cell Biol. 2, 313–317 (2000). Presents a powerful method for probing cell–cell interactions at the single-molecule level. Uses genetic controls to demonstrate single unbinding events of adhesion proteins.

    Article  CAS  PubMed  Google Scholar 

  54. Pethe, K. et al. Characterization of the heparin-binding site of the mycobacterial heparin-binding hemagglutinin adhesin. J. Biol. Chem. USA 275, 14273–14280 (2000).

    Article  CAS  Google Scholar 

  55. Braga, P. C. & Ricci, D. Atomic force microscopy: application to investigation of Escherichia coli morphology before and after exposure to cefodizime. Antimicrob. Agents Chemother. 42, 18–22 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kuznetsov, Y. G. et al. Atomic force microscopy investigation of fibroblasts infected with wild-type and mutant murine leukemia virus (MuLV). Biophys. J. 83, 3665–3674 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Beech, I. B., Smith, J. R., Steele, A. A., Penegar, I. & Campbell, S. A. The use of atomic force microscopy for studying interactions of bacterial biofilms with surfaces. Colloids Surf. B Biointerfaces 23, 231–247 (2002).

    Article  CAS  Google Scholar 

  58. Forsythe, J. H., Maurice, P. A. & Hersman, L. E. Attachment of a Pseudomonas sp. to Fe(III)-(hydr)oxide surfaces. Geomicrobiology 15, 293–308 (1998).

    Article  CAS  Google Scholar 

  59. Fritz, J. et al. Translating biomolecular recognition into nanomechanics. Science 288, 316–318 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Müller, D. J., Amrein, M. & Engel, A. Adsorption of biological molecules to a solid support for scanning probe microscopy. J. Struct. Biol. 119, 172–188 (1997).

    Article  PubMed  Google Scholar 

  61. Gad, M. & Ikai, A. Method for immobilizing microbial cells on gel surface for dynamic AFM studies. Biophys. J. 69, 2226–2233 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kasas, S. & Ikai, A. A method for anchoring round shaped cells for atomic force microscope imaging. Biophys. J. 68, 1678–1680 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Frisbie, C. D., Rozsnyai, L. F., Noy, A., Wrighton, M. S. & Lieber, C. M. Functional group imaging by chemical force microscopy. Science 265, 2071–2074 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. Hinterdorfer, P., Baumgartner, W., Gruber, H. J., Schilcher, K. & Schindler, H. Detection and localization of individual antibody–antigen recognition events by atomic force microscopy. Proc. Natl Acad. Sci. USA 93, 3477–3481 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Grandbois, M., Dettmann, W., Benoit, M. & Gaub, H. E. Affinity imaging of red blood cells using an atomic force microscope. J. Histochem. Cytochem. 48, 719–724 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Florin, E. -L., Moy, V. T. & Gaub, H. E. Adhesion forces between individual ligand–receptor pairs. Science 264, 415–417 (1994).

    Article  CAS  PubMed  Google Scholar 

  67. Lee, G. U., Chrisey, L. A. & Colton, R. J. Direct measurement of the forces between complementary strands of DNA. Science 266, 771–773 (1994).

    Article  CAS  PubMed  Google Scholar 

  68. Touhami, A., Hoffmann, B., Vasella, A., Denis, F. & Dufrêne, Y. F. Probing specific lectin–carbohydrate interactions using atomic force microscopy imaging and force measurements. Langmuir 19, 1745–1751 (2003).

    Article  CAS  Google Scholar 

  69. Lower, S. K., Hochella, M. F. & Beveridge, T. J. Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and α-FeOOH. Science 292, 1360–1363 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Bowen, W. R., Lovitt, R. W. & Wright, C. J. Atomic force microscopy study of the adhesion of Saccharomyces cerevisiae. J. Coll. Interf. Sci. 237, 54–61 (2001).

    Article  CAS  Google Scholar 

  71. Razatos, A., Ong, Y. -L., Sharma, M. M. & Georgiou, G. Molecular determinants of bacterial adhesion monitored by atomic force microscopy. Proc. Natl Acad. Sci. USA 95, 11059–11064 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tamayo, J., Humphris, A. D. L., Owen, R. J. & Miles, M. J. High-Q dynamic force microscopy in liquid and its application to living cells. Biophys. J. 81, 526–537 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Viani, M. B. et al. Probing protein–protein interactions in real time. Nature Struct. Biol. 7, 644–647 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Ando, T., Kodera, N., Takai, E., Maruyama, D., Saito, K. & Toda, A. A high-speed atomic force microscope for studying biological macromolecules. Proc. Natl Acad. Sci. USA 98, 12468–12472 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Humphris, A. D. L., Hobbs, J. K. & Miles, M. J. Ultrahigh-speed scanning near-field optical microscopy capable of over 100 frames per second. Appl. Phys. Lett. 83, 6–8 (2003).

    Article  CAS  Google Scholar 

  76. Wong, S. S., Joselevich, E., Woolley, A. T., Cheung, C. L. & Lieber, C. M. Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 394, 52–55 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is a research associate of the Belgian National Foundation for Scientific Research (FNRS). The support of the FNRS, the Université catholique de Louvain (Special Fund for Research), the Federal Office for Scientific, Technical and Cultural Affairs (Inter-university Poles of Attraction Programme) and the Research Department of Communauté Française de Belgique (Concerted Research Action) is gratefully acknowledged. He thanks nanobiotechnology researchers both in his laboratory and worldwide for sharing exciting experiments and discussions.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez

Corynebacterium glutamicum

Deinococcus radiodurans

Dictyostelium discoideum

Escherichia coli

Halobacterium salinarium

Mycobacterium tuberculosis

Phanerochaete chrysosporium

Pseudomonas aeruginosa

Pseudomonas putida

Saccharomyces cerevisiae

Staphylococcus aureus

SwissProt

OmpF

FURTHER INFORMATION

Encyclopedia of Life Sciences

Atomic force microscopy

Scanning probe microscopy

Yves Dufrêne's laboratory

Glossary

CRYO-ELECTRON MICROSCOPY

An electron microscopy technique in which the sample is frozen to protect it during imaging.

ATOMIC FORCE MICROSCOPY

(AFM). A relatively new form of microscopy in which a sharp tip is scanned over the surface of a sample, while sensing the interaction force between the tip and the sample. Because AFM does not rely on an incident beam, as in electron or light microscopy, the specimen can be directly observed at high resolution in aqueous solution.

FORCE SPECTROSCOPY

A form of AFM in which the force acting on the tip is measured with piconewton (10−12 N) sensitivity as the tip is pushed towards the sample then retracted from it.

S-LAYERS

Two-dimensional arrays of protein or glycoprotein subunits with a molecular mass between 40,000 and 200,000 Daltons that are common constituents of bacterial cell walls.

HPI

The hexagonally packed intermediate (HPI) layer from Deinococcus radiodurans is an S-layer and was amongst the first S-layer systems to be viewed by AFM at submolecular resolution.

PORIN

A membrane protein that allows the passage of small molecules such as glucose through the membrane.

CANTILEVER

AFM tips are mounted on cantilever beams or triangles, which are typically made of silicon or silicon nitride, that behave like springs. Using Hooke's law, the magnitude of the tip–sample force is proportional to the deflection of the cantilever.

PIEZOELECTRIC CERAMICS

Materials that expand or contract when subjected to a potential difference.

MICROFABRICATION

A range of techniques that are derived from the techniques used in microelectronics to make integrated circuits and which are used to make AFM tips and cantilevers.

DEFLECTION

The vertical bending of the AFM cantilever resulting from the tip–sample interaction force.

BACTERIORHODOPSIN

A light-driven proton pump that is packed into a two-dimensional crystal lattice — known as the purple membrane — and integrated into the plasma membrane of Halobacterium salinarium.

SEPTAL ANNULUS

A structure formed during cell division that corresponds to the growth of wall material into the cytoplasm.

YOUNG'S MODULUS

Young's modulus, or the tensile elastic modulus, is a parameter that reflects the resistance of a material to elongation. The higher the Young's modulus, the larger the force needed to deform the material.

MUREIN SACCULI

Murein sacculus is the term used to refer to the net-like peptidoglycan layer that is found in the cell wall of bacteria.

BUD SCAR

The process by which S. cerevisiae proliferates is known as budding. A ring of chitin is formed between the mother cell and the daughter cell (or bud) and once the bud has been pinched off, a mark is left on the surface of the mother cell that is known as the bud scar. Chitin is the main constituent of the bud scar.

ISOELECTRIC POINT

The isoelectric point (or pI) of a protein is the pH at which the protein has an equal number of positive and negative charges.

FLOCCULATION

A process involving the aggregation of microbial cells. In beer-brewing, yeast flocculation occurs spontaneously near the end of fermentation, thereby providing an easy method to dispose of the cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dufrêne, Y. Using nanotechniques to explore microbial surfaces. Nat Rev Microbiol 2, 451–460 (2004). https://doi.org/10.1038/nrmicro905

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro905

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing