Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tularaemia: bioterrorism defence renews interest in Francisella tularensis

Key Points

  • Tularaemia is a highly infectious pathogen that is capable of causing a fatal disease, notably with doses that contain as few as 25 colony-forming units. This has made the organism that causes tularaemia, Francisella tularensis, attractive for use in biological weapons programmes.

  • Although a live vaccine strain has been used for many decades to immunize several thousand individuals, this vaccine is not licensed and is unlikely to prove licensable given current regulatory constraints. There is a need to develop a safe and licensable vaccine to protect against tularemia, particularly the pneumonic form of the disease.

  • F. tularensis is an intracellular pathogen that multiplies within macrophages and amoebae, resulting in high titres of bacteria. However, little is known about the mechanisms that this bacterium uses to adapt to and exploit the intracellular environment.

  • The epidemiology and geographical incidence of F. tularensis, and the typical clinical features of the disease — which can depend on the route of infection — are reviewed here.

  • The availability of genome sequence data for the vaccine strain and a virulent isolate of F. tularensis should facilitate development of a new vaccine. However, progress is still hampered by a lack of genetic tools for F. tularensis.

  • Approaches to develop a new vaccine might involve the identification of a specific subunit for use in a vaccine, or the production of a live attenuated strain. However, subunits must be delivered in a suitable conformation to induce a protective immune response.

Abstract

Francisella tularensis is a highly infectious aerosolizable intracellular pathogen that is capable of causing a debilitating or fatal disease with doses as low as 25 colony-forming units. There is no licensed vaccine available. Since the 1950s there has been concern that F. tularensis could be used as a biological threat agent, and it has received renewed attention recently owing to concerns about bioterrorism. The International Conference on Tularaemia in 2003 attracted more than 200 delegates, twice the number of participants as previous meetings. This is a reflection of the increased funding of research on this pathogen, particularly in the United States.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Features of Francisella tularensis.
Figure 2: Worldwide incidence map of the four main Francisella subspecies.
Figure 3: A tularaemia lesion on the dorsal skin of the right-hand, caused by the bacterium Francisella tularensis (1963).
Figure 4: The intracellular lifestyle of F. tularensis.

Similar content being viewed by others

References

  1. Harris, S. Japanese biological warfare research on humans: a case study of microbiology and ethics. Ann. NY Acad. Sci. 666, 21–52 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Dennis, D. T. et al. Tularemia as a biological weapon — medical and public health management. JAMA 285, 2763–2773 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Alibek, K. Biohazard (Random House, New York, 1999).

    Google Scholar 

  4. World Health Organization. Health Aspects of Chemical and Biological Weapons (WHO, Geneva, 1970).

  5. Riley, R. L. Aerial dissemination of pulmonary tuberculosis. Am. Rev. Tuberc. 76, 931–941 (1957).

    CAS  PubMed  Google Scholar 

  6. Ellis, J., Oyston, P. C. F., Green, M. & Titball, R. W. Tularemia. Clin. Microbiol. Rev. 15, 631–646 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Titball, R. W. & Sjostedt, A. Francisella tularensis: an overview. ASM News 69, 558 (2003).

    Google Scholar 

  8. Titball, R. W., Johansson, A. & Forsman, M. Will the enigma of Francisella tularensis virulence soon be solved? Trends Microbiol. 11, 118–123 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Dorofe'ev, K. A. Classification of the causative agent of tularemia. Symp. Res. Works Inst. Epidemiol. Mikrobiol. Chita. 1, 170–180 (1947).

    Google Scholar 

  10. Broekhuijsen, M. et al. Genome-wide DNA microarray analysis of Francisella tularensis strains demonstrates extensive genetic conservation within the species but identifies regions that are unique to the highly virulent F. tularensis subsp tularensis. J. Clin. Microbiol. 41, 2924–2931 (2003). First (and so far only) comparative genomics publication on F. tularensis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thomas, R. et al. Discrimination of human pathogenic subspecies of Francisella tularensis by using restriction fragment length polymorphism. J. Clin. Microbiol. 41, 50–57 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Prior, R. G. et al. Preliminary analysis and annotation of the partial genome sequence of Francisella tularensis strain Schu 4. J. Appl. Microbiol. 91, 614–620 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Morner, T. The ecology of tularemia. Rev. Sci. Tech. 11, 1123–1130 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Tärnvik, A., Sandström, G. & Sjöstedt, A. Epidemiological analysis of tularemia in Sweden 1931–1993. FEMS Immunol. Med. Microbiol. 13, 201–204 (1996).

    Article  PubMed  Google Scholar 

  15. Helvaci, S., Gedikoglu, S., Akalin, H. & Oral, H. B. Tularemia in Bursa, Turkey: 205 cases in ten years. Eur. J. Epidemiol. 16, 271–276 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Berdal, B. P. et al. Field detection of Francisella tularensis. Scand. J. Infect. Dis. 32, 287–291 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. de Tuesta, A. M. D. et al. An epidemic outbreak of tularemia in the province of Cuenca linked with crab-fish handling. Rev. Clin. Esp. 201, 385–389 (2001).

    Article  Google Scholar 

  18. Abd, H., Johansson, T., Golovliov, I., Sandstrom, G. & Forsman, M. Survival and growth of Francisella tularensis in Acanthamoeba castellanii. Appl. Environ. Microbiol. 69, 600–606 (2003). First demonstration of the ability of F. tularensis to grow in amoebae.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lauriano, C. M. et al. MglA regulates transcription of virulence factors necessary for Francisella tularensis intraamoebae and intramacrophage survival. Proc. Natl Acad. Sci. USA 101, 4246–4249 (2004). Showed a connection between the virulence mechanisms required for F. tularensis survival in eukaryotic cells and amoebae.

    Article  CAS  PubMed  Google Scholar 

  20. CDC. Tularemia — United States, 1990–2000. MMWR Morb. Mortal. Wkly Rep. 51, 181–184 (2002).

  21. Whipp, M. J. et al. Characterization of a novicida-like subspecies of Francisella tularensis isolated in Australia. J. Med. Microbiol. 52, 839–842 (2003). First isolation of Francisella in Australia, indicating that the geographical range of the organism might be much larger than previously indicated.

    Article  PubMed  Google Scholar 

  22. Hopla, C. E. The ecology of tularemia. Adv. Vet. Sci. Comp. Med. 18, 25–53 (1974).

    CAS  PubMed  Google Scholar 

  23. Sjöstedt, A. in Bergey's Manual of Systematic Bacteriology. (ed. Brenner, D. J.) (Springer, 2004).

    Google Scholar 

  24. Olsufev, N. G. Results and perspectives of the study of natural foci of tularemia in USSR. Med. Parazitol. (Mosk) 46, 273–82 (1977) (in Russian).

    CAS  Google Scholar 

  25. Morner, T. The ecology of tularemia. Rev. Sci. Tech. 11, 1123–1130 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Quijada, S. G. et al. Tularemia: study of 27 patients. Med. Clin. 119, 455–457 (2002).

    Article  Google Scholar 

  27. Eliasson, H. et al. The 2000 tularemia outbreak: a case-control study of risk factors in disease-endemic and emergent areas, Sweden. Emerg. Infect. Dis. 8, 956–960 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Olin, G. Occurrence and mode of transmission of tularemia in Sweden. Acta Microbiol. Scand. 19, 220–247 (1942).

    Article  Google Scholar 

  29. Hubalek, Z. & Halouzka, J. Mosquitoes (Diptera: Culicidae), in contrast to ticks (Acari: Ixodidae), do not carry Francisella tularensis in a natural focus of tularemia in the Czech Republic. J. Med. Entomol. 34, 660–663 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Olsufiev, N. G. in Human Diseases With Natural Foci (ed. Pavlovsky, Y. N.) 219–281 (Foreign Languages Publishing House, Moscow, 1966).

    Google Scholar 

  31. Boyce, J. M. Recent trends in the epidemiology of tularemia in the United States. J. Infect. Dis. 131, 197–199 (1975).

    Article  CAS  PubMed  Google Scholar 

  32. Christenson, B. An outbreak of tularemia in the northern part of central Sweden. Scand. J. Infect. Dis. 16, 285–290 (1984).

    Article  CAS  PubMed  Google Scholar 

  33. Evans, M. E., Gregory, D. W., Schaffner, W. & McGee, Z. A. Tularemia: a 30-year experience with 88 cases. Medicine (Baltimore) 64, 251–269 (1985).

    Article  CAS  Google Scholar 

  34. Tärnvik, A. & Berglund, L. Tularaemia. Eur. Respir. J. 21, 361–373 (2003).

    Article  PubMed  Google Scholar 

  35. Kavanaugh, C. N. Tularemia. A consideration of one hundred and twenty-three cases, with observations at autopsy in one. Arch. Intern. Med. 55, 61–85 (1935).

    Article  Google Scholar 

  36. Dahlstrand, S., Ringertz, O. & Zetterberg, B. Airborne tularemia in Sweden. Scand. J. Infect. Dis. 3, 7–16 (1971).

    Article  CAS  PubMed  Google Scholar 

  37. Dienst, J., F. T. Tularemia — a perusal of three hundred thirty-nine cases. J. La State Med. Soc. 115, 114–127 (1963).

    PubMed  Google Scholar 

  38. Anthony, L. S. D., Burke, R. D. & Nano, F. E. Growth of Francisella spp. in rodent macrophages. Infect. Immun. 59, 3291–3296 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lofgren, S., Tarnvik, A., Bloom, G. D. & Sjoberg, W. Phagocytosis and killing of Francisella tularensis by human polymorphonuclear leukocytes. Infect. Immun. 39, 715–720 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lofgren, S., Tarnvik, A., Thore, M. & Carlsson, J. A wild and an attenuated strain of Francisella tularensis differ in susceptibility to hypochlorous acid — a possible explanation of their different handling by polymorphonuclear leukocytes. Infect. Immun. 43, 730–734 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Fortier, A. H. et al. Life and death of an intracellular pathogen: Francisella tularensis and the macrophage. Immunol. Serol. 349–361 (1994).

  42. Reilly, T. J., Baron, G. S., Nano, F. E. & Kuhlenschmidt, M. S. Characterization and sequencing of a respiratory burst-inhibiting acid phosphatase from Francisella tularensis. J. Biol. Chem. 271, 10973–10983 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Baron, G. S., Reilly, T. J. & Nano, F. E. The respiratory burst-inhibiting acid phosphatase AcpA is not essential for the intramacrophage growth or virulence of Francisella novicida. FEMS Microbiol. Lett. 176, 85–90 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Fortier, A. H. et al. Growth of Francisella tularensis LVS in macrophages: the acidic intracellular compartment provides essential iron required for growth. Infect. Immun. 63, 1478–1483 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ley, V., Robbins, E. S., Nussenzweig, V. & Andrews, N. W. The exit of Trypanosoma cruzi from the phagosome is inhibited by raising the pH of acidic compartments. J. Exp. Med. 171, 401–413 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Clemens, D. L., Lee, B. -Y. & Horowitz, M. A. Virulent and avirulent strains of Francisella tularensis prevent acidification and maturation of their phagosomes and escape into the cytoplasm in human macrophages. Infect. Immun. 72, 3204–3217 (2004). Added greatly to the understanding of the intracellular events during infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fortier, A. H., Polsinelli, T., Green, S. J. & Nacy, C. A. Activation of macrophages for destruction of Francisella tularensis: identification of cytokines, effector cells and effector molecules. Infect. Immun. 60, 817–825 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Polsinelli, T., Meltzer, M. S. & Fortier, A. H. Nitric oxide-independent killing of Francisella tularensis by IFN-γ-stimulated murine alveolar macrophages. J. Immunol. 153, 1238–1245 (1994).

    CAS  PubMed  Google Scholar 

  49. Anthony, L. S. D., Morrissey, P. J. & Nano, F. E. Growth inhibition of Francisella tularensis live vaccine strain by IFNγ-activated macrophages is mediated by reactive nitrogen intermediates derived from L-arginine metabolism. J. Immunol. 148, 1829–1834 (1992).

    CAS  PubMed  Google Scholar 

  50. Elkins, K. L., Cowley, S. C. & Bosio, C. M. Innate and adaptive immune responses to an intracellular bacterium, Francisella tularensis live vaccine strain. Microbes Infect. 5, 135–142 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Golovliov, I., Baranov, V., Krocova, Z., Kovarova, H. & Sjostedt, A. An attenuated strain of the facultative intracellular bacterium Francisella tularensis can escape the phagosome of monocytic cells. Infect. Immun. 71, 5940–5950 (2003). Provided a novel view of the intracellular survival strategy of F. tularensis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Berger, K. H. & Isberg, R. R. 2 distinct defects in intracellular growth complemented by a single genetic-locus in Legionella pneumophila. Mol. Microbiol. 7, 7–19 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. Zamboni, D. S., McGrath, S., Rabinovitch, M. & Roy, C. R. Coxiella burnetii express type IV secretion system proteins that function similarly to components of the Legionella pneumophila Dot/Icm system. Mol. Microbiol. 49, 965–976 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Zusman, T., Yerushalmi, G. & Segal, G. Functional similarities between the icm/dot pathogenesis systems of Coxiella burnetii and Legionella pneumophila. Infect. Immun. 71, 3714–3723 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lai, X. H., Golovliov, I. & Sjostedt, A. Francisella tularensis induces cytopathogenicity and apoptosis in murine macrophages via a mechanism that requires intracellular bacterial multiplication. Infect. Immun. 69, 4691–4694 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lai, X. H. & Sjostedt, A. Delineation of the molecular mechanisms of Francisella tularensis-induced apoptosis in murine macrophages. Infect. Immun. 71, 4642–4646 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gao, L. Y. & Kwaik, Y. A. The modulation of host cell apoptosis by intracellular bacterial pathogens. Trends Microbiol. 8, 306–313 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Abd, H., Johansson, T., Golovliov, I., Sandstrom, G. & Forsman, M. Survival and growth of Francisella tularensis in Acanthamoeba castellanii. Appl. Environ. Microbiol. 69, 600–606 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Forestal, C. A. et al. Francisella tularensis selectively induces proinflammatory changes in endothelial cells. J. Immunol. 171, 2563–2570 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Golovliov, I., Ericsson, M., Sandstrom, G., Tarnvik, A. & Sjostedt, A. Identification of proteins of Francisella tularensis induced during growth in macrophages and cloning of the gene encoding a prominently induced 23-kilodalton protein. Infect. Immun. 65, 2183–2189 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Telepnev, M., Golovliov, I., Grundstrom, T., Tarnvik, A. & Sjostedt, A. Francisella tularensis inhibits Toll-like receptor-mediated activation of intracellular signalling and secretion of TNF-α and IL-1 from murine macrophages. Cell. Microbiol. 5, 41–51 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Gray, C. G., Cowley, S. C., Cheung, K. K. M. & Nano, F. E. The identification of five genetic loci of Francisella novicida associated with intracellular growth. FEMS Microbiol. Lett. 215, 53–56 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Harb, O. S., Gao, L. Y. & Abu Kwaik, Y. From protozoa to mammalian cells: a new paradigm in the life cycle of intracellular bacterial pathogens. Environ. Microbiol. 2, 251–265 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Nano, F. E. et al. A Francisella tularensis pathogenicity island required for intramacrophage growth. J. Bacteriol. 186, 6430–6436 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Anthony, L. S. D., Cowley, S. C., Mdluli, K. E. & Nano, F. E. Isolation of a Francisella tularensis mutant that is sensitive to serum and oxidative killing and is avirulent in mice: correlation with the loss of MinD homologue expression. FEMS Microbiol. Lett. 124, 157–166 (1994).

    Article  CAS  PubMed  Google Scholar 

  66. Sandstrom, G., Lofgren, S. & Tarnvik, A. A capsule-deficient mutant of Francisella tularensis LVS exhibits enhanced sensitivity to killing by serum but diminished sensitivity to killing by polymorphonuclear leukocytes. Infect. Immun. 56, 1194–1202 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Sorokin, V. M., Pavlov, V. M. & Prozorova, L. A. Francisella tularensis resistance to bactericidal action of normal human serum. FEMS Immunol. Med. Microbiol. 13, 249–252 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Prior, J. L. et al. Characterization of the O antigen gene cluster and structural analysis of the O antigen of Francisella tularensis subsp tularensis. J. Med. Microbiol. 52, 845–851 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Vinogradov, E., Conlan, W. J., Gunn, J. S. & Perry, M. B. Characterization of the lipopolysaccharide O-antigen of Francisella novicida (U112). Carbohydr. Res. 339, 649–654 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. McDonald, M. K., Cowley, S. C. & Nano, F. E. Temperature-sensitive lesions in the Francisella novicida valA gene cloned into an Escherichia coli msbA lpxK mutant affecting deoxycholate resistance and lipopolysaccharide assembly at the restrictive temperature. J. Bacteriol. 179, 7638–7643 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mdluli, K. E. et al. Serum sensitive mutation of Francisella novicida association with an ABC transporter gene. Microbiology 140, 3309–3318 (1994).

    Article  CAS  PubMed  Google Scholar 

  72. Sandstrom, G., Sjostedt, A., Johansson, T., Kuoppa, K. & Williams, J. C. Immunogenicity and toxicity of lipopolysaccharide from Francisella tularensis LVS. FEMS Microbiol. Immunol. 5, 201–210 (1992).

    Article  CAS  PubMed  Google Scholar 

  73. Eigelsbach, H. T., Braun, W. & Herring, R. D. Studies on the variation of Bacterium tularense. J. Bacteriol. 61, 557–569 (1951).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Cowley, S. C., Myltseva, S. V. & Nano, F. E. Phase variation in Francisella tularensis affecting intracellular growth, lipopolysaccharide antigenicity and nitric oxide production. Mol. Microbiol. 20, 867–874 (1996). Describes an unusual antigenic switch that might contribute to the pathogenicity of F. tularensis.

    Article  CAS  PubMed  Google Scholar 

  75. Lauriano, C. M., Barker, J. R., Nano, F. E., Arulanandarn, B. P. & Klose, K. E. Allelic exchange in Francisella tularensis using PCR products. FEMS Microbiol. Lett. 229, 195–202 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Gil, H., Benach, J. L. & Thanassi, D. G. Presence of pili on the surface of Francisella tularensis. Infect. Immun. 72, 3042–3047 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Craig, L., Pique, M. E. & Tainer, J. A. Type IV pilus structure and bacterial pathogenicity. Nature Rev. Microbiol. 2, 363–378 (2004).

    Article  CAS  Google Scholar 

  78. Ancuta, P., Pedron, T., Girard, R., Sandstrom, G. & Chaby, R. Inability of Francisella tularensis lipopolysaccharide to mimic or to antagonize the induction of cell activation by endotoxins. Infect. Immun. 64, 2041–2046 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Golovliov, I., Kuoppa, K., Sjostedt, A., Tarnvik, A. & Sandstrom, G. Cytokine expression in the liver of mice infected with a highly virulent strain of Francisella tularensis. FEMS Immunol. Med. Microbiol. 13, 239–244 (1996).

    Article  CAS  PubMed  Google Scholar 

  80. Golovliov, I., Sandstrom, G., Ericsson, M., Sjostedt, A. & Tarnvik, A. Cytokine expression in the liver during the early phase of murine tularemia. Infect. Immun. 63, 534–538 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Elkins, K. L., Leiby, D. A., Winegar, R. K., Nacy, C. A. & Fortier, A. H. Rapid generation of specific protective immunity to Francisella tularensis. Infect. Immun. 60, 4571–4577 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Elkins, K. L., Rhinehart-Jones, T., Nacy, C. A., Winegar, R. K. & Fortier, A. H. T-cell-independent resistance to infection and generation of immunity to Francisella tularensis. Infect. Immun. 61, 823–829 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Conlan, J. W., Sjostedt, A. & North, R. J. CD4+ and CD8+ T-cell-dependent and -independent host defence mechanisms can operate to control and resolve primary and secondary Francisella tularensis LVS infection in mice. Infect. Immun. 62, 5603–5607 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Yee, D., Rhinehart-Jones, T. R. & Elkins, K. L. Loss of either CD4+ or CD8+ T cells does not affect the magnitude of protective immunity to an intracellular pathogen, Francisella tularensis strain LVS. J. Immunol. 157, 5042–5048 (1996).

    CAS  PubMed  Google Scholar 

  85. Fulop, M., Mastroeni, P., Green, M. & Titball, R. W. Role of antibody to lipopolysaccharide in protection against low- and high-virulence strains of Francisella tularensis. Vaccine 19, 4465–4472 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Sumida, T. et al. Predominant expansion of V γ 9/V δ2 T cells in a tularemia patient. Infect. Immun. 60, 2554–2558 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kroca, M., Tarnvik, A. & Sjostedt, A. The proportion of circulating γδ T cells increases after the first week of onset of tularaemia and remains elevated for more than a year. Clin. Exp. Immunol. 120, 280–284 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Eigelsbach, H. T., Hornick, R. B. & Tulis, J. J. Recent studies on live tularemia vaccine. Med. Ann. Dist. Columbia 36, 282–286 (1967).

    CAS  PubMed  Google Scholar 

  89. Burke, D. S. Immunization against tularemia: analysis of the effectiveness of live Francisella tularensis vaccine in prevention of laboratory acquired tularemia. J. Infect. Dis. 135, 55–60 (1977).

    Article  CAS  PubMed  Google Scholar 

  90. Karlsson, J. et al. Sequencing of the Francisella tularensis strain Schu 4 genome reveals the shikimate and purine metabolic pathways, targets for the construction of a rationally attenuated auxotrophic vaccine. Microb. Comp. Genomics 5, 25–39 (2000). Preliminary analysis of the first genome sequence of F. tularensis.

    Article  CAS  PubMed  Google Scholar 

  91. Tarnvik, A. Nature of protective immunity to Francisella tularensis. Rev. Infect. Dis. 11, 440–451 (1989).

    Article  CAS  PubMed  Google Scholar 

  92. Fulop, M., Manchee, R. & Titball, R. Role of two outer membrane antigens in the induction of protective immunity against Francisella tularensis strains of different virulence. FEMS Immunol. Med. Microbiol. 13, 245–247 (1996).

    Article  CAS  PubMed  Google Scholar 

  93. Conlan, J. W., Shen, H., Webb, A. & Perry, M. B. Mice vaccinated with the O-antigen of Francisella tularensis LVS lipopolysaccharide conjugated to bovine serum albumin develop varying degrees of protective immunity against systemic or aerosol challenge with virulent type A and type B strains of the pathogen. Vaccine 20, 3465–3471 (2002). References 85 and 93 show the prerequisites for protection differ between low- and high-virulence strains of F. tularensis

    Article  CAS  PubMed  Google Scholar 

  94. Titball, R. W. & Oyston, P. C. F. A vaccine for tularaemia. Expert Opin. Biol. Ther. 3, 1–9 (2003).

    Article  Google Scholar 

  95. Bevanger, L., Maeland, J. A. & Naess, A. I. Agglutinins and antibodies to Francisella tularensis outer membrane antigens in the early diagnosis of disease during an outbreak of Tularemia. J. Clin. Microbiol. 26, 433–437 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Havlasova, J. et al. Mapping of immunoreactive antigens of Francisella tularensis live vaccine strain. Proteomics 2, 857–867 (2002). First description of the proteome of F. tularensis.

    Article  CAS  PubMed  Google Scholar 

  97. Ericsson, M., Kroca, M., Johansson, T., Sjostedt, A. & Tarnvik, A. Long-lasting recall response of CD4+ and CD8+ αβ T cells, but not γδ T cells, to heat shock proteins of Francisella tularensis. Scand. J. Infect. Dis. 33, 145–152 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Sjostedt, A., Sandstrom, G. & Tarnvik, A. Several membrane polypeptides of the live vaccine strain Francisella tularensis LVS stimulate T cells from naturally infected individuals. J. Clin. Microbiol. 28, 43–48 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Sjostedt, A., Sandstrom, G. & Tarnvik, A. Humoral and cell-mediated-immunity in mice to a 17-kilodalton lipoprotein of Francisella tularensis expressed by Salmonella typhimurium. Infect. Immun. 60, 2855–2862 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Ikaheimo, I., Syrjala, H., Karhukorpi, J., Schildt, R. & Koskela, M. In vitro antibiotic susceptibility of Francisella tularensis isolated from humans and animals. J. Antimicrob. Chemother. 46, 287–290 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Enderlin, G., Morales, L., Jacobs, R. F. & Cross, J. T. Streptomycin and alternative agents for the treatment of tularemia: review of the literature. Clin. Infect. Dis. 19, 42–47 (1994).

    Article  CAS  PubMed  Google Scholar 

  102. Johansson, A., Urich, S. K., Chu, M. C., Sjöstedt, A. & Tärnvik, A. In vitro susceptibility to quinolones of Francisella tularensis subspecies tularensis. Scand. J. Infect. Dis. 34, 327–330 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Johansson, A., Berglund, L., Gothefors, L., Sjostedt, A. & Tarnvik, A. Ciprofloxacin for treatment of tularemia in children. Pediatr. Infect. Dis. J. 19, 449–453 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Perez-Castrillon, J. L., Bachiller-Luque, P., Martin-Luquero, M., Mena-Martin, F. J. & Herreros, V. Tularemia epidemic in northwestern Spain: clinical description and therapeutic response. Clin.Infect. Dis. 33, 573–6 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Petersen, J. M. et al. Laboratory analysis of tularemia in wild-trapped, commercially traded prairie dogs, Texas, 2002. Emerg. Infect. Dis. 10, 419–425 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Avashia, S. B. et al. First reported prairie dog-to-human tularemia transmission, Texas, 2002. Emerg. Infect. Dis. 10, 483–486 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Feldman, K. A. et al. An outbreak of primary pneumonic tularemia on Martha's Vineyard. N. Engl J. Med. 345, 1601–1606 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Feldman, K. A. et al. Tularemia on Martha's Vineyard: seroprevalence and occupational risk. Emerg. Infect. Dis. 9, 350–354 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Chien, M. et al. The genomic sequence of the accidental pathogen Legionella pneumophila. Science. 305, 1966–1968 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Lindgren, H. et al. Factors affecting the escape of Francisella tularensis from the phagolysosome. J. Med. Microbiol. 53, 953–958 (2004).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra C.F. Oyston.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Infectious Disease Information

tularemia

FURTHER INFORMATION

LVS genome sequence

SchuS4 genome sequence

Legionella pneumophila genome sequence

1972 Convention on the prohibition of the development, production and stockpiling of bacteriological (biological) and toxin weapons and their destruction

Glossary

ENZOOTIC

Relating to a zoonotic infection, usually used in the context of a geographical area.

ZOONOSIS

An infection that is transmitted between lower vertebrates and humans.

LAGOMORPH

Any placental mammal with furred feet and two pairs of upper incisors that are specialized for gnawing, such as hares, rabbits and pikas.

SUPPURATION

The formation or discharge of pus. An abscess is a localized area of suppuration.

MACROPHAGE

A cell of the mononuclear phagocyte system that is responsible for phagocytosis of foreign material.

PHAGOSOME

A vesicle that is formed by invagination of plasma membranes during endocytosis. Vesicles containing lysozyme then fuse with the phagosome to degrade engulfed material.

CYTOKINES

Small proteins that are important for immunity and inflammation and that act on effector cells of the immune system.

OTOTOXICITY

Having a toxic effect on the structures of the ear, especially on its nerve supply.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oyston, P., Sjöstedt, A. & Titball, R. Tularaemia: bioterrorism defence renews interest in Francisella tularensis. Nat Rev Microbiol 2, 967–978 (2004). https://doi.org/10.1038/nrmicro1045

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1045

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing