Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Life and death in peripheral T cells

Key Points

  • T cells can die by several mechanisms: by extrinsic cell-death-receptor- and caspase-dependent apoptosis, by intrinsic mitochondria- and caspase-dependent apoptosis, or by caspase-independent cell death, for example by the activation of cathepsins.

  • T-cell survival is influenced through triggering of the T-cell receptor (TCR) and co-stimulatory molecules (including CD28) and adhesion molecules, as well as through cytokines, such as interleukin-2 (IL-2), IL-13 and IL-15.

  • The extrinsic apoptotic pathway is triggered by signals emanating from the cell-surface death receptors triggered by cell-death-receptor ligands, such as tumour-necrosis factor (TNF), CD95 ligand (CD95L; also known as FASL) and TNF-related apoptosis-inducing ligand (TRAIL). Upon stimulation of cell-death receptors a large protein complex is formed proximal to the cell membrane, known as the death-inducing signalling complex (DISC). The CD95 DISC consists of oligomerized (probably trimerized) CD95, the death-domain-containing adaptor molecule FAS-associated death domain (FADD), two isoforms of pro-caspase-8, pro-caspase-10 and the cellular caspase-8 (FLICE)-like inhibitory protein (cFLIP) proteins.

  • cFLIP acts at the DISC as an inhibitor of cell-death-receptor signalling, and has an important role in determining life and death of T cells. Here, we discuss diverse and new cFLIP molecules, cFLIP splice variants and cleavage products. cFLIP proteins have various functions; they influence the extrinsic cell-death-receptor-mediated pathway and inhibit apoptosis at the DISC. In addition, cFLIP cleavage products, such as p22-FLIP, also activate nuclear factor-κB (NF-κB), which leads to proliferation.

  • Haematopoietic progenitor kinase 1 (HPK1) regulates T-cell life and death by activating or suppressing NF-κB. Conversion of full-length HPK1 by caspase-3 cleavage during expansion of peripheral T cells leads to inhibition of NF-κB and sensitization towards cell death.

Abstract

During the course of an immune response, antigen-reactive T cells clonally expand and then are removed by apoptosis to maintain immune homeostasis. Life and death of T cells is determined by multiple factors, such as T-cell receptor triggering, co-stimulation or cytokine signalling, and by molecules, such as caspase-8 (FLICE)-like inhibitory protein (FLIP) and haematopoietic progenitor kinase 1 (HPK1), which regulate the nuclear factor-κB (NF-κB) pathway. Here, we discuss the concepts of activation-induced cell death (AICD) and activated cell-autonomous death (ACAD) in the regulation of life and death in T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Life and death of T cells.
Figure 2: CD95 DISC and activation of pro-caspase-8 at the CD95 DISC.
Figure 3: Intrinsic apoptotic pathway in T cells.
Figure 4: Overview of cFLIP isoforms and cleavage products.
Figure 5: Regulation of NF-κB activation by cFLIP.
Figure 6: The role of HPK1 and HPK1-C in the regulation of AICD.

Similar content being viewed by others

References

  1. Palmer, E. Negative selection — clearing out the bad apples from the T-cell repertoire. Nature Rev. Immunol. 3, 383–391 (2003).

    CAS  Google Scholar 

  2. Strasser, A. & Pellegrini, M. T-lymphocyte death during shutdown of an immune response. Trends Immunol. 25, 610–615 (2004).

    CAS  PubMed  Google Scholar 

  3. Krueger, A., Fas, S. C., Baumann, S. & Krammer, P. H. The role of CD95 in the regulation of peripheral T-cell apoptosis. Immunol. Rev. 193, 58–69 (2003).

    CAS  PubMed  Google Scholar 

  4. Arnold, R., Brenner, D., Becker, M., Frey, C. & Krammer, P. H. How T lymphocytes switch between life and death. Eur. J. Immunol. 36, 1654–1658 (2006).

    CAS  PubMed  Google Scholar 

  5. Kroemer, G. & Jaattela, M. Lysosomes and autophagy in cell death control. Nature Rev. Cancer 5, 886–897 (2005).

    CAS  Google Scholar 

  6. Hildeman, D. A., Zhu, Y. N., Mitchell, T. C., Kappler, J. & Marrack, P. Molecular mechanisms of activated T cell death in vivo. Curr. Opin. Immunol. 14, 354–359 (2002).

    CAS  PubMed  Google Scholar 

  7. Krammer, P. H. CD95's deadly mission in the immune system. Nature 407, 789–795 (2000).

    CAS  PubMed  Google Scholar 

  8. Lavrik, I., Golks, A. & Krammer, P. H. Death receptor signaling. J. Cell Sci. 118, 265–267 (2005).

    CAS  PubMed  Google Scholar 

  9. Lavrik, I. N., Golks, A. & Krammer, P. H. Caspases: pharmacological manipulation of cell death. J. Clin. Invest. 115, 2665–2672 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Thornberry, N. A. & Lazebnik, Y. Caspases: enemies within. Science 281, 1312–1316 (1998).

    CAS  PubMed  Google Scholar 

  11. Igney, F. H. & Krammer, P. H. Immune escape of tumors: apoptosis resistance and tumor counterattack. J. Leukoc. Biol. 71, 907–920 (2002).

    CAS  PubMed  Google Scholar 

  12. Ashkenazi, A. & Dixit, V. M. Death receptors: signaling and modulation. Science 281, 1305–1308 (1998).

    CAS  PubMed  Google Scholar 

  13. Tartaglia, L. A., Ayres, T. M., Wong, G. H. W. & Goeddel, D. V. A novel domain within the 55 kd TNF receptor signals cell death. Cell 74, 845–853 (1993).

    CAS  PubMed  Google Scholar 

  14. Kischkel, F. C. et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14, 5579–88 (1995). This paper describes the biochemical characterization of the DISC formed following CD95 stimulation.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Peter, M. E. & Krammer, P. H. The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ. 10, 26–35 (2003).

    CAS  PubMed  Google Scholar 

  16. Sandu, C. et al. FADD self-association is required for stable interaction with an activated death receptor. Cell Death Differ. 13, 2052–2061 (2006).

    CAS  PubMed  Google Scholar 

  17. Boatright, K. M. et al. A unified model for apical caspase activation. Mol. Cell 11, 529–41 (2003).

    CAS  PubMed  Google Scholar 

  18. Chang, D. W., Xing, Z., Capacio, V. L., Peter, M. E. & Yang, X. Interdimer processing mechanism of procaspase-8 activation. EMBO J. 22, 4132–4142 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Muzio, M., Stockwell, B. R., Stennicke, H. R., Salvesen, G. S. & Dixit, V. M. An induced proximity model for caspase-8 activation. J. Biol. Chem. 273, 2926–2930 (1998).

    CAS  PubMed  Google Scholar 

  20. Medema, J. P. et al. FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J. 16, 2794–2804 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sprick, M. R. et al. Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD-dependent manner but can not functionally substitute caspase-8. EMBO J. 21, 4520–4530 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kischkel, F. C. et al. Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J. Biol. Chem. 276, 46639–46646 (2001).

    CAS  PubMed  Google Scholar 

  23. Scaffidi, C. et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17, 1675–1687 (1998). This paper provides a description of the Type I and Type II signalling phenomena, which demonstrates that Type I cells are characterized by large amounts of the CD95 DISC in contrast to Type II cells, which are characterized by reduced DISC formation.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Korsmeyer, S. J. et al. Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ. 7, 1166–1173 (2000).

    CAS  PubMed  Google Scholar 

  25. Rodriguez, I., Matsuura, K., Ody, C., Nagata, S. & Vassalli, P. Systemic injection of a tripeptide inhibits the intracellular activation of CPP32-like proteases in vivo and fully protects mice against Fas-mediated fulminant liver destruction and death. J. Exp. Med. 184, 2067–2072 (1996).

    CAS  PubMed  Google Scholar 

  26. Wei, M. C. et al. Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Algeciras-Schimnich, A., Griffith, T. S., Lynch, D. H. & Paya, C. V. Cell cycle-dependent regulation of FLIP levels and susceptibility to Fas-mediated apoptosis. J. Immunol. 162, 5205–5211 (1999).

    CAS  PubMed  Google Scholar 

  28. Refaeli, Y., Van Parijs, L., London, C. A., Tschopp, J. & Abbas, A. K. Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis. Immunity 8, 615–623 (1998).

    CAS  PubMed  Google Scholar 

  29. Schmitz, I. et al. Resistance of short term activated T cells to CD95-mediated apoptosis correlates with de novo protein synthesis of c-FLIPshort . J. Immunol. 172, 2194–2200 (2004).

    CAS  PubMed  Google Scholar 

  30. Bentele, M. et al. Mathematical modeling reveals threshold mechanism in CD95-induced apoptosis. J. Cell Biol. 166, 839–851 (2004). This is the first study of CD95 signalling by a systems biology approach. This study shows that the concentration of cFLIP at the DISC determines cell life and death decisions.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Schmitz, I. et al. An IL-2-dependent switch between CD95 signaling pathways sensitizes primary human T cells toward CD95-mediated activation-induced cell death. J. Immunol. 171, 2930–2936 (2003).

    CAS  PubMed  Google Scholar 

  32. Kirchhoff, S., Muller, W. W., Krueger, A., Schmitz, I. & Krammer, P. H. TCR-mediated up-regulation of c-FLIPshort correlates with resistance toward CD95-mediated apoptosis by blocking death-inducing signaling complex activity. J. Immunol. 165, 6293–6300 (2000).

    CAS  PubMed  Google Scholar 

  33. Barnhart, B. C. et al. CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells. EMBO J. 23, 3175–3185 (2004). This paper demonstrates multiple CD95-mediated survival activities.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Desbarats, J. et al. Fas engagement induces neurite growth through ERK activation and p35 upregulation. Nature Cell Biol. 5, 118–125 (2003).

    CAS  PubMed  Google Scholar 

  35. Legembre, P. et al. Induction of apoptosis and activation of NF-κB by CD95 require different signalling thresholds. EMBO Reports 5, 1084–1089 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Peter, M. E., Legembre, P. & Barnhart, B. C. Does CD95 have tumor promoting activities? Biochim. Biophys. Acta 1755, 25–36 (2005).

    CAS  PubMed  Google Scholar 

  37. Zuliani, C. et al. Control of neuronal branching by the death receptor CD95 (Fas/Apo-1). Cell Death Differ. 13, 31–40 (2006).

    CAS  PubMed  Google Scholar 

  38. Kataoka, T. et al. The caspase-8 inhibitor FLIP promotes activation of NF-κB and Erk signaling pathways. Curr. Biology 10, 640–648 (2000). This report describes the transduction of NF-κB and ERK signals through theirassociation with cFLIP.

    CAS  Google Scholar 

  39. Kreuz, S. et al. NFκB activation by Fas is mediated through FADD, caspase-8, and RIP and is inhibited by FLIP. J. Cell Biol. 166, 369–380 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Siegmund, D. et al. Fas-associated death domain protein (FADD) and caspase-8 mediate up-regulation of c-Fos by Fas ligand and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) via a FLICE inhibitory protein (FLIP)-regulated pathway. J. Biol. Chem. 276, 32585–32590 (2001).

    CAS  PubMed  Google Scholar 

  41. Budd, R. C., Yeh, W. C. & Tschopp, J. cFLIP regulation of lymphocyte activation and development. Nature Rev. Immunol. 6, 196–204 (2006).

    CAS  Google Scholar 

  42. Legembre, P., Barnhart, B. C. & Peter, M. E. The relevance of NF-κB for CD95 signaling in tumor cells. Cell Cycle 3, 1235–1239 (2004).

    CAS  PubMed  Google Scholar 

  43. Erlacher, M. et al. BH3-only proteins Puma and Bim are rate-limiting for γ-radiation- and glucocorticoid-induced apoptosis of lymphoid cells in vivo. Blood 106, 4131–4138 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kroemer, G., Galluzzi, L. & Brenner, C. Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87, 99–163 (2007).

    CAS  PubMed  Google Scholar 

  45. Strasser, A. The role of BH3-only proteins in the immune system. Nature Rev. Immunol. 5, 189–200 (2005).

    CAS  Google Scholar 

  46. Van Parijs, L. et al. Uncoupling IL-2 signals that regulate T cell proliferation, survival, and Fas-mediated activation-induced cell death. Immunity 11, 281–288 (1999).

    CAS  PubMed  Google Scholar 

  47. Mercep, M., Weissmann, A., Frank, S., Klausner, R. & Ashwell, J. Activation-driven programmed cell death and T cell receptor ζη expression. Science 246, 1162–1165 (1989).

    CAS  PubMed  Google Scholar 

  48. Shi, Y., Sahai, B. M. & Green, D. R. Cyclosporin A inhibits activation-induced cell death in T-cell hybridomas and thymocytes. Nature 339, 625–626 (1989).

    CAS  PubMed  Google Scholar 

  49. Dhein, J., Walczak, H., Baumler, C., Debatin, K. M. & Krammer, P. H. Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature 373, 438–441 (1995). This paper shows that TCR reactivated T cells can die by CD95L-mediated autocrine suicide (apoptosis of the cells that produce CD95L) or by fratricide (apoptosis mediated in neighbouring cells by CD95L).

    CAS  PubMed  Google Scholar 

  50. Trauth, B. et al. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245, 301–305 (1989).

    CAS  PubMed  Google Scholar 

  51. Sytwu, H. K., Liblau, R. S. & McDevitt, H. O. The roles of Fas/APO-1 (CD95) and TNF in antigen-induced programmed cell death in T cell receptor transgenic mice. Immunity 5, 17–30 (1996).

    CAS  PubMed  Google Scholar 

  52. Janssen, E. M. et al. CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death. Nature 434, 88–93 (2005).

    CAS  PubMed  Google Scholar 

  53. Lamhamedi-Cherradi, S. E., Zheng, S. J., Maguschak, K. A., Peschon, J. & Chen, Y. H. Defective thymocyte apoptosis and accelerated autoimmune diseases in TRAIL−/− mice. Nature Immunol. 4, 255–260 (2003).

    CAS  Google Scholar 

  54. Martínez-Lorenzo, M. J. et al. Involvement of APO2 ligand TRAIL in activation-induced death of Jurkat and human peripheral blood T cells. Eur. J. Immunol. 28, 2714–2725 (1998).

    PubMed  Google Scholar 

  55. Devadas, S. et al. Granzyme B is critical for T cell receptor-induced cell death of type 2 helper T cells. Immunity 25, 237–247 (2006).

    CAS  PubMed  Google Scholar 

  56. Green, D. R., Droin, N. & Pinkoski, M. Activation-induced cell death in T cells. Immunol. Rev. 193, 70–81 (2003).

    CAS  PubMed  Google Scholar 

  57. Lenardo, M. J. lnterleukin-2 programs mouse αβ T lymphocytes for apoptosis. Nature 353, 858–861 (1991).

    CAS  PubMed  Google Scholar 

  58. Baumann, S. et al. Glucocorticoids inhibit activation-induced cell death (AICD) via direct DNA-dependent repression of the CD95 ligand gene by a glucocorticoid receptor dimer. Blood 106, 617–625 (2005).

    CAS  PubMed  Google Scholar 

  59. Gülow, K. et al. HIV-1 Trans-activator of transcription substitutes for oxidative signaling in activation-induced T cell death. J. Immunol. 174, 5249–5260 (2005).

    PubMed  Google Scholar 

  60. Li-Weber, M. & Krammer, P. H. Function and regulation of the CD95 (APO-1/Fas) ligand in the immune system. Sem. Immunol. 15, 145–157 (2003).

    CAS  Google Scholar 

  61. Kaminski, M., Kiessling, M., Suess, D., Krammer, P. H. & Gülow, K. Novel role for mitochondria: protein kinase Cθ-dependent oxidative signalling organelles in activation induced T cell death. Mol. Cell. Biol. 27, 3625–3639 (2007). This paper describes that activation-induced T-cell death requires both a calcium and a redox signal for CD95L-mediated apoptosis. The molecular pathway of the redox signal involving PKCθ and complex I is detailed.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Rieux-Laucat, F., Le Deist, F. & Fischer, A. Autoimmune lymphoproliferative syndromes: genetic defects of apoptosis pathways. Cell Death Differ. 10, 124–133 (2003).

    CAS  PubMed  Google Scholar 

  63. Takahashi, T. et al. Generalized lymphoproliferative disease in mice, caused by a point mutation in the fas ligand. Cell 76, 969–976 (1994).

    CAS  PubMed  Google Scholar 

  64. Watanabe-Fukunaga, R., Brannan, C. I., Copeland, N. G., Jenkins, N. A. & Nagata, S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356, 314–317 (1992).

    CAS  PubMed  Google Scholar 

  65. Hao, Z., Hampel, B., Yagita, H. & Rajewsky, K. T cell-specific ablation of Fas leads to Fas ligand-mediated lymphocyte depletion and inflammatory pulmonary fibrosis. J. Exp. Med. 199, 1355–1365 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Fritzsching, B. et al. Naive regulatory T cells: a novel subpopulation defined by resistance toward CD95L-mediated cell death. Blood 108, 3371–3378 (2006).

    CAS  PubMed  Google Scholar 

  67. Fritzsching, B. et al. Cutting edge: In contrast to effector T cells, CD4+CD25+ FoxP3+ regulatory T cells are highly susceptible to CD95 ligand- but not to TCR-mediated cell death. J. Immunol. 175, 32–36 (2005).

    CAS  PubMed  Google Scholar 

  68. Hildeman, D. A. et al. Activated T cell death in vivo mediated by proapoptotic Bcl-2 family member Bim. Immunity 16, 759–767 (2002). This paper shows that BIM is a central regulator of ACAD in T cells.

    CAS  PubMed  Google Scholar 

  69. You, H. et al. FOXO3a-dependent regulation of Puma in response to cytokine/growth factor withdrawal. J. Exp. Med. 203, 1657–1663 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sandalova, E., Wei, C. H., Masucci, M. G. & Levitsky, V. Regulation of expression of Bcl-2 protein family member Bim by T cell receptor triggering. Proc. Natl Acad. Sci. USA 101, 3011–3016 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Willis, S. N. et al. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315, 856–859 (2007).

    CAS  PubMed  Google Scholar 

  72. Canté-Barrett, K., Gallo, E. M., Winslow, M. M. & Crabtree, G. R. Thymocyte negative selection is mediated by protein kinase C- and Ca2+-dependent transcriptional induction of Bim. J. Immunol. 176, 2299–2306 (2006).

    PubMed  Google Scholar 

  73. Zhong, F., Davis, M. C., McColl, K. S. & Distelhorst, C. W. Bcl-2 differentially regulates Ca2+ signals according to the strength of T cell receptor activation. J. Cell Biol. 172, 127–137 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Turk, V., Turk, B. & Turk, D. Lysosomal cysteine proteases: facts and opportunities. EMBO J. 20, 4629–4633 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lord, S. J., Rajotte, R. V., Korbutt, G. S. & Bleackley, R. C. Granzyme B: a natural born killer. Immunol. Rev. 193, 31–38 (2003).

    CAS  PubMed  Google Scholar 

  76. Bidere, N. et al. Cathepsin D triggers Bax activation, resulting in selective apoptosis-inducing factor (AIF) relocation in T lymphocytes entering the early commitment phase to apoptosis. J. Biol. Chem. 278, 31401–31411 (2003).

    CAS  PubMed  Google Scholar 

  77. Boya, P. et al. Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. J. Exp. Med. 197, 1323–1334 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Deiss, L. P., Galinka, H., Berissi, H., Cohen, O. & Kimchi, A. Cathepsin D protease mediates programmed cell death induced by interferon-γ, Fas/APO-1 and TNF-α. EMBO J. 15, 3861–3870 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, D., Muller, N., McPherson, K. G. & Reichardt, H. M. Glucocorticoids engage different signal transduction pathways to induce apoptosis in thymocytes and mature T cells. J. Immunol. 176, 1695–1702 (2006).

    CAS  PubMed  Google Scholar 

  80. Krueger, A., Schmitz, I., Baumann, S., Krammer, P. H. & Kirchhoff, S. Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex. J. Biol. Chem. 276, 20633–20640 (2001).

    CAS  PubMed  Google Scholar 

  81. Thome, M. & Tschopp, J. Regulation of lymphocyte proliferation and death by flip. Nature Rev. Immunol. 1, 50–58 (2001).

    CAS  Google Scholar 

  82. Golks, A., Brenner, D., Fritsch, C., Krammer, P. H. & Lavrik, I. N. c-FLIPR, a new regulator of death receptor-induced apoptosis. J. Biol. Chem. 280, 14507–14513 (2005). This paper provides a description of a new third isoform of cFLIP, cFLIP R , isolated from Raji cells. Here, cFLIP R is shown to possess anti-apoptotic properties similar to the anti-apoptotic properties of cFLIP s.

    CAS  PubMed  Google Scholar 

  83. Scaffidi, C. et al. Differential modulation of apoptosis sensitivity in CD95 type I and type II cells. J. Biol. Chem. 274, 22532–22538 (1999).

    CAS  PubMed  Google Scholar 

  84. Micheau, O. et al. The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J. Biol. Chem. 277, 45162–45171 (2002).

    CAS  PubMed  Google Scholar 

  85. Chang, D. W. et al. c-FLIPL is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J. 21, 3704–3714 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Golks, A., Brenner, D., Krammer, P. H. & Lavrik, I. N. The c-FLIP NH2 terminus (p22-FLIP) induces NF-κB activation. J. Exp. Med. 203, 1295–1305 (2006). This paper reports that a cleavage product of cFLIP (p22-FLIP) induces NF-κB acitvation by direct binding to the IKK complex.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Karin, M. & Lin, A. NF-κB at the crossroads of life and death. Nature Immunol. 3, 221–227 (2002).

    CAS  Google Scholar 

  88. Ruland, J. & Mak, T. W. From antigen to activation: specific signal transduction pathways linking antigen receptors to NF-κB. Sem. Immunol. 15, 177–183 (2003).

    CAS  Google Scholar 

  89. Ghosh, S. & Karin, M. Missing pieces in the NF-κB puzzle. Cell 109, S81–S96 (2002).

    CAS  PubMed  Google Scholar 

  90. Hayden, M. S. & Ghosh, S. Signaling to NF-κB. Genes Dev. 18, 2195–2224 (2004).

    CAS  PubMed  Google Scholar 

  91. Scheidereit, C. IκB kinase complexes: gateways to NF-κB activation and transcription. Oncogene 25, 6685–6705 (2006).

    CAS  PubMed  Google Scholar 

  92. Weil, R. & Israel, A. Deciphering the pathway from the TCR to NF-κB. Cell Death Differ. 13, 826–833 (2006).

    CAS  PubMed  Google Scholar 

  93. Lens, S. M. et al. The caspase 8 inhibitor c-FLIPL modulates T-cell receptor-induced proliferation but not activation-induced cell death of lymphocytes. Mol. Cell. Biol. 22, 5419–33 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Dohrman, A. et al. Cellular FLIP (Long Form) Regulates CD8+ T cell activation through caspase-8-dependent NF-κB activation. J. Immunol. 174, 5270–5278 (2005).

    CAS  PubMed  Google Scholar 

  95. Zhang, N. & He, Y. W. An essential role for c-FLIP in the efficient development of mature T lymphocytes. J. Exp. Med. 202, 395–404 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Chau, H. et al. Cellular FLICE-inhibitory protein is required for T cell survival and cycling. J. Exp. Med. 202, 405–413 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Chaudhary, P. M. et al. Activation of the NF-κB pathway by caspase 8 and its homologs. Oncogene 19, 4451–4460 (2000).

    CAS  PubMed  Google Scholar 

  98. Hu, W. H., Johnson, H. & Shu, H. B. Activation of NF-κB by FADD, Casper, and caspase-8. J. Biol. Chem. 275, 10838–10844 (2000).

    CAS  PubMed  Google Scholar 

  99. Kataoka, T. & Tschopp, J. N-terminal fragment of c-FLIPL processed by caspase 8 specifically interacts with TRAF2 and induces activation of the NF-κB signaling pathway. Mol. Cell. Biol. 24, 2627–2636 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Alam, A., Cohen, L. Y., Aouad, S. & Sekaly, R. P. Early activation of caspases during T lymphocyte stimulation results in selective substrate cleavage in nonapoptotic cells. J. Exp. Med. 190, 1879–1890 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Kennedy, N. J., Kataoka, T., Tschopp, J. & Budd, R. C. Caspase activation is required for T cell proliferation. J. Exp. Med. 190, 1891–1896 (1999). This paper reports the requirement of caspase activation for T-cell proliferation.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Chun, H. J. et al. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 419, 395–399 (2002).

    CAS  PubMed  Google Scholar 

  103. Salmena, L. et al. Essential role for caspase 8 in T-cell homeostasis and T-cell-mediated immunity. Genes Dev. 17, 883–895 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Su, H. et al. Requirement for caspase-8 in NF-κB activation by antigen receptor. Science 307, 1465–1468 (2005).

    CAS  PubMed  Google Scholar 

  105. Thome, M. CARMA1, BCL-10 and MALT1 in lymphocyte development and activation. Nature Rev. Immunol. 4, 348–359 (2004).

    CAS  Google Scholar 

  106. Hassa, P. O., Covic, M., Hasan, S., Imhof, R. & Hottiger, M. O. The enzymatic and DNA binding activity of PARP-1 are not required for NF-κB coactivator function. J. Biol. Chem. 276, 45588–45597 (2001).

    CAS  PubMed  Google Scholar 

  107. Yang, J. Y. & Widmann, C. Antiapoptotic signaling generated by caspase-induced cleavage of RasGAP. Mol. Cell. Biol. 21, 5346–5358 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Kerstan, A. & Hunig, T. Cutting edge: distinct TCR- and CD28-derived signals regulate CD95L, Bcl-xL, and the survival of primary T cells. J. Immunol. 172, 1341–1345 (2004).

    CAS  PubMed  Google Scholar 

  109. Noel, P. J., Boise, L. H., Green, J. M. & Thompson, C. B. CD28 costimulation prevents cell death during primary T cell activation. J. Immunol. 157, 636–642 (1996).

    CAS  PubMed  Google Scholar 

  110. Brenner, D., Golks, A., Kiefer, F., Krammer, P. H. & Arnold, R. Activation or suppression of NFκB by HPK1 determines sensitivity to activation-induced cell death. EMBO J. 24, 4279–4290 (2005). This report describes HPK1 as a regulator of life or death of T cells depending on the presence of full length or caspase-3-cleaved HPK1.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Mittal, A., Papa, S., Franzoso, G. & Sen, R. NF-κB-dependent regulation of the timing of activation-induced cell death of T lymphocytes. J. Immunol. 176, 2183–2189 (2006).

    CAS  PubMed  Google Scholar 

  112. Shishodia, S. & Aggarwal, B. B. Guggulsterone inhibits NF-κB and IκBα kinase activation, suppresses expression of anti-apoptotic gene products, and enhances apoptosis. J. Biol. Chem. 279, 47148–47158 (2004).

    CAS  PubMed  Google Scholar 

  113. Campbell, K. J., Rocha, S. & Perkins, N. D. Active repression of antiapoptotic gene expression by ReIA(p65) NF-κB. Mol. Cell 13, 853–865 (2004).

    CAS  PubMed  Google Scholar 

  114. Kamata, H. et al. Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120, 649–661 (2005).

    CAS  PubMed  Google Scholar 

  115. Pham, C. G. et al. Ferritin heavy chain upregulation by NF-κB inhibits TNFα-induced apoptosis by suppressing reactive oxygen species. Cell 119, 529–542 (2004).

    CAS  PubMed  Google Scholar 

  116. Hildeman, D. A. et al. Control of Bcl-2 expression by reactive oxygen species. Proc. Natl Acad. Sci. USA 100, 15035–15040 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Wan, Y. S. Y. & DeGregori, J. The survival of antigen-stimulated T cells requires NFκB-mediated inhibition of p73 expression. Immunity 18, 331–342 (2003).

    CAS  PubMed  Google Scholar 

  118. Lissy, N. A., Davis, P. K., Irwin, M., Kaelin, W. G. & Dowdy, S. F. A common E2F-1 and p73 pathway mediates cell death induced by TCR activation. Nature 407, 642–645 (2000).

    CAS  PubMed  Google Scholar 

  119. Arnold, R., Liou, J., Drexler, H. C. A., Weiss, A. & Kiefer, F. Caspase-mediated cleavage of hematopoietic progenitor kinase 1 (HPK1) converts an activator of NFκB into an inhibitor of NFκB. J. Biol. Chem. 276, 14675–14684 (2001).

    CAS  PubMed  Google Scholar 

  120. Lamkanfi, M., Festjens, N., Declercq, W., Berghe, T. V. & Vandenabeele, P. Caspases in cell survival, proliferation and differentiation. Cell Death Differ. 14, 44–55 (2006).

    PubMed  Google Scholar 

  121. Misra, R. S. et al. Effector CD4+ T cells generate intermediate caspase activity and cleavage of caspase-8 substrates. J. Immunol. 174, 3999–4009 (2005).

    CAS  PubMed  Google Scholar 

  122. Golks, A. et al. The role of CAP3 in CD95 signaling: new insights into the mechanism of procaspase-8 activation. Cell Death Differ. 13, 489–498 (2006).

    CAS  PubMed  Google Scholar 

  123. Fas, S. C. et al. In vitro generated human memory-like T cells are CD95 type II cells and resistant towards CD95-mediated apoptosis. Eur. J. Immunol. 36, 2894–2903 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Suri-Payer, A. Golks, D. Brenner, K. Gülow and B. Kyewski for critical reading and comments, H. Sauter for excellent secretarial work, the Deutsche Krebshilfe, the Wilhelm Sander Stiftung, the SFB 405 and the Tumourzentrum Heidelberg/Mannheim for supporting our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter H. Krammer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Peter Krammer's homepage

Glossary

Cathepsins

Proteases that are mostly located in lysosomes and lysosome-like organelles and can be divided into cysteine, aspartate and serine cathepsin subgroups according to their active-site amino acid.

Activation-induced cell death

(AICD). A process in which activated Tcell-receptor-restimulated T cells undergo cell death after engagement of cell-death receptors, such as CD95 or the tumour-necrosis factor receptor (TNFR), or after exposure to reactive oxygen species (ROS).

Caspases

A family of cytosolic proteases that contain a cysteine residue in the active site and that cleave their substrate after an aspartic-acid residue. Initiator caspases are typically activated in response to particular stimuli: for example, caspase-8 is activated after cell-death-receptor ligation, caspase-9 after apoptosome activation, and caspase-2 after DNA damage. Effector caspases (such as caspase-3, caspase-6 and caspase-7) are activated by initiator caspases and are particularly important for the ordered dismantling of vital cellular structures.

Zymogen

The inactive precursor of a protease. The zymogen contains an amino-terminal pro-domain that keeps the protease in an inactive state. The removal of the pro-domain by another protease or by autoproteolysis leads to a conformational change that exposes the active site.

Death domain

(DD). 80–100 residue long motifs involved in the transduction of the apoptotic signal. The DD superfamily consists of the DD subfamily itself, the death-effector domain (DED) subfamily and the caspase recruitment domain (CARD) subfamily.

Apoptosome

A complex that forms when cytochrome c is released from mitochondria and interacts with the cytosolic protein apoptotic-protease-activating factor 1 (APAF1), which in turn recruits pro-caspase-9. In the presence of ATP, this interaction results in the allosteric activation of caspase9 and of downstream effectors, caspase-3, caspase-6 and caspase-7.

'Helpless' CD8+ T cells

A distinct subset of CD8+ T cells that have undergone activation without additional stimulation ('help') by CD4+ T cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krammer, P., Arnold, R. & Lavrik, I. Life and death in peripheral T cells. Nat Rev Immunol 7, 532–542 (2007). https://doi.org/10.1038/nri2115

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2115

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing