Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune evasion by Kaposi's sarcoma-associated herpesvirus

Key Points

  • Kaposi's sarcoma associated herpesvirus (KSHV) establishes persistent infection in its host and is associated with the development of Kaposi's sarcoma, as well as several lymphoproliferative disorders.

  • To persist in its host, KSHV devotes a considerable amount of its coding potential to encode for proteins that alter both innate and adaptive immune responses.

  • Most of these immunomodulatory genes have been acquired during evolution through molecular piracy. Some are homologous to cytokines, interferon-regulatory factors, complement regulatory proteins, whereas others are homologous to host proteins with unknown function.

  • Animal models represent important systems for the study of KSHV immune evasion, as KSHV replicates poorly in tissue culture and has a narrow host range. These animal models include the mouse herpesvirus 68 and the rhesus monkey rhadinovirus.

Abstract

To efficiently establish a persistent infection, Kaposi's sarcoma-associated herpesvirus (KSHV; also known as HHV8) dedicates a large amount of its coding potential to produce proteins that antagonize the immune system of its host. These viral immunomodulators interfere with both the innate and adaptive immune responses and most of them are homologous to cellular proteins, suggesting that they have been pirated from the host during viral evolution. In this Review, I present recent advances in the understanding of immune evasion by KSHV, with a particular focus on the virally encoded modulators of immune responses that are unique to this virus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: KSHV genome map.
Figure 2: Inhibition of the type I interferon pathway by KSHV.
Figure 3: Ubiquitylation and degradation of MHC class I molecules by the MIR proteins.

Similar content being viewed by others

References

  1. Whitby, D. & Boshoff, C. Kaposi's sarcoma herpesvirus as a new paradigm for virus-induced oncogenesis. Curr. Opin. Oncol. 10, 405–412 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Staskus, K. A. et al. Kaposi's sarcoma-associated herpesvirus gene expression in endothelial (spindle) tumor cells. J. Virol. 71, 715–719 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Decker, L. L. et al. The Kaposi sarcoma-associated herpesvirus (KSHV) is present as an intact latent genome in KS tissue but replicates in the peripheral blood mononuclear cells of KS patients. J. Exp. Med. 184, 283–288 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Zhong, W., Wang, H., Herndier, B. & Ganem, D. Restricted expression of Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genes in Kaposi sarcoma. Proc. Natl Acad. Sci. USA 93, 6641–6646 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Martro, E. et al. Evidence for both lytic replication and tightly regulated human herpesvirus 8 latency in circulating mononuclear cells, with virus loads frequently below common thresholds of detection. J. Virol. 78, 11707–11714 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ballestas, M. E., Chatis, P. A. & Kaye, K. M. Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284, 641–644 (1999). This report is the first to show that primary effusion lymphoma cells harbour latent KSHV genomes and that LANA tether these genomes to the host DNA during cellular division. For a long period of time, PEL cells were the only cell type in which KSHV replication could be studied.

    Article  CAS  PubMed  Google Scholar 

  7. Levitskaya, J. et al. Inhibition of antigen processing by the internal repeat region of the Epstein–Barr virus nuclear antigen-1. Nature 375, 685–688 (1995). This report is the first to describe that EBNA1, a protein encoded by the EBV during latency, escapes degradation by the proteasome, presumably to prevent recognition of EBV-infected cells by CTLs.

    Article  CAS  PubMed  Google Scholar 

  8. Yin, Y., Manoury, B. & Fahraeus, R. Self-inhibition of synthesis and antigen presentation by Epstein–Barr virus-encoded EBNA1. Science 301, 1371–1374 (2003). This report is the first to show that EBNA1, in addition to preventing its degradation (reference 7), also regulates its translation presumably to lower the amount of viral peptides that can be presented to T cells.

    Article  CAS  PubMed  Google Scholar 

  9. Zaldumbide, A., Ossevoort, M., Wiertz, E. J. & Hoeben, R. C. In cis inhibition of antigen processing by the latency-associated nuclear antigen I of Kaposi sarcoma Herpes virus. Mol. Immunol. 44, 1352–1360 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Bennett, N. J., May, J. S. & Stevenson, P. G. Gamma-herpesvirus latency requires T cell evasion during episome maintenance. PLoS Biol. 3, e120 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Woodberry, T. et al. Impact of Kaposi sarcoma-associated herpesvirus (KSHV) burden and HIV coinfection on the detection of T cell responses to KSHV ORF73 and ORF65 proteins. J. Infect. Dis. 192, 622–629 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Bihl, F. et al. Lytic and latent antigens of the human gammaherpesviruses KSHV and EBV induce T cell responses with similar functional properties and memory phenotypes. J. Virol. 28 February 2007 (doi:10.1128/JVI.02509-06).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guihot, A. et al. Low T cell responses to human herpesvirus 8 in patients with AIDS-related and classic Kaposi sarcoma. J. Infect. Dis. 194, 1078–1088 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Djerbi, M. et al. The inhibitor of death receptor signaling, FLICE-inhibitory protein defines a new class of tumor progression factors. J. Exp. Med. 190, 1025–1032 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chugh, P. et al. Constitutive NF-κB activation, normal Fas-induced apoptosis, and increased incidence of lymphoma in human herpes virus 8 K13 transgenic mice. Proc. Natl Acad. Sci. USA 102, 12885–12890 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chaudhary, P. M., Jasmin, A., Eby, M. T. & Hood, L. Modulation of the NF-κB pathway by virally encoded death effector domains-containing proteins. Oncogene 18, 5738–5746 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Guasparri, I., Wu, H. & Cesarman, E. The KSHV oncoprotein vFLIP contains a TRAF-interacting motif and requires TRAF2 and TRAF3 for signalling. EMBO Rep. 7, 114–119 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Guasparri, I., Keller, S. A. & Cesarman, E. KSHV vFLIP is essential for the survival of infected lymphoma cells. J. Exp. Med. 199, 993–1003 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Godfrey, A., Anderson, J., Papanastasiou, A., Takeuchi, Y. & Boshoff, C. Inhibiting primary effusion lymphoma by lentiviral vectors encoding short hairpin RNA. Blood 105, 2510–2518 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Pfeffer, S. et al. Identification of microRNAs of the herpesvirus family. Nature Methods 2, 269–276 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Cai, X. & Cullen, B. R. Transcriptional origin of Kaposi's sarcoma-associated herpesvirus microRNAs. J. Virol. 80, 2234–2242 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cai, X. et al. Kaposi's sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc. Natl Acad. Sci. USA 102, 5570–5575 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pearce, M., Matsumura, S. & Wilson, A. C. Transcripts encoding K12, v-FLIP, v-cyclin, and the microRNA cluster of Kaposi's sarcoma-associated herpesvirus originate from a common promoter. J. Virol. 79, 14457–14464 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Samols, M. A., Hu, J., Skalsky, R. L. & Renne, R. Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi's sarcoma-associated herpesvirus. J. Virol. 79, 9301–9305 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Grundhoff, A., Sullivan, C. S. & Ganem, D. A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA 12, 733–750 (2006). References 20–25 describe the identification of miRNAs in KSHV. These miRNAs are expressed during latency and might allow the virus to modify its host environment without increasing recognition by CTLs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fowler, P. & Efstathiou, S. Vaccine potential of a murine gammaherpesvirus-68 mutant deficient for ORF73. J. Gen. Virol. 85, 609–613 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Tibbetts, S. A., McClellan, J. S., Gangappa, S., Speck, S. H. & Virgin, H. W. 4th. Effective vaccination against long-term gammaherpesvirus latency. J. Virol. 77, 2522–2529 (2003). References 26–27 describe the use of a latency-deficient virus as a potential vaccine against gammaherpesviruses. No other strategies have been successful at preventing persistent infection by gammaherpesviruses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moore, P. S., Boshoff, C., Weiss, R. A. & Chang, Y. Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science 274, 1739–1744 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Nicholas, J. et al. Kaposi's sarcoma-associated human herpesvirus-8 encodes homologues of macrophage inflammatory protein-1 and interleukin-6. Nature Med. 3, 287–292 (1997). References 28 and 29 were the first to show that KSHV encoded a functional homologue of IL-6. This protein is believed to be important for the development of many KSHV-related diseases.

    Article  CAS  PubMed  Google Scholar 

  30. Sozzani, S. et al. The viral chemokine macrophage inflammatory protein-II is a selective Th2 chemoattractant. Blood 92, 4036–4039 (1998).

    CAS  PubMed  Google Scholar 

  31. Dairaghi, D. J., Fan, R. A., McMaster, B. E., Hanley, M. R. & Schall, T. J. HHV8-encoded vMIP-I selectively engages chemokine receptor CCR8. Agonist and antagonist profiles of viral chemokines. J. Biol. Chem. 274, 21569–21574 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Stine, J. T. et al. KSHV-encoded CC chemokine vMIP-III is a CCR4 agonist, stimulates angiogenesis, and selectively chemoattracts TH2 cells. Blood 95, 1151–1157 (2000).

    CAS  PubMed  Google Scholar 

  33. Iellem, A. et al. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4+CD25+ regulatory T cells. J. Exp. Med. 194, 847–853 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kledal, T. N. et al. A broad-spectrum chemokine antagonist encoded by Kaposi's sarcoma-associated herpesvirus. Science 277, 1656–1659 (1997). This report is the first to show that KSHV-encoded chemokines were effective at binding a broad spectrum of chemokine receptors. This led to the idea that KSHV might regulate the balance between T H 1 and T H 2 cells.

    Article  CAS  PubMed  Google Scholar 

  35. Weber, K. S. et al. Selective recruitment of Th2-type cells and evasion from a cytotoxic immune response mediated by viral macrophage inhibitory protein-II. Eur. J. Immunol. 31, 2458–2466 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Chen, S. et al. In vivo inhibition of CC and CX3C chemokine-induced leukocyte infiltration and attenuation of glomerulonephritis in Wistar–Kyoto (WKY) rats by vMIP-II. J. Exp. Med. 188, 193–198 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Parravicini, C. et al. Differential viral protein expression in Kaposi's sarcoma-associated herpesvirus-infected diseases: Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. Am. J. Pathol. 156, 743–749 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mark, L. et al. The Kaposi's sarcoma-associated herpesvirus complement control protein mimics human molecular mechanisms for inhibition of the complement system. J. Biol. Chem. 279, 45093–45101 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Staskus, K. A. et al. Cellular tropism and viral interleukin-6 expression distinguish human herpesvirus 8 involvement in Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. J. Virol. 73, 4181–4187 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Brousset, P., Cesarman, E., Meggetto, F., Lamant, L. & Delsol, G. Colocalization of the viral interleukin-6 with latent nuclear antigen-1 of human herpesvirus-8 in endothelial spindle cells of Kaposi's sarcoma and lymphoid cells of multicentric Castleman's disease. Hum. Pathol. 32, 95–100 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Cannon, J. S. et al. Heterogeneity of viral IL-6 expression in HHV-8-associated diseases. J. Infect. Dis. 180, 824–828 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Nicholas, J. et al. A single 13-kilobase divergent locus in the Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genome contains nine open reading frames that are homologous to or related to cellular proteins. J. Virol. 71, 1963–1974 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Jones, K. D. et al. Involvement of interleukin-10 (IL-10) and viral IL-6 in the spontaneous growth of Kaposi's sarcoma herpesvirus-associated infected primary effusion lymphoma cells. Blood 94, 2871–2879 (1999).

    CAS  PubMed  Google Scholar 

  44. Aoki, Y. et al. Angiogenesis and hematopoiesis induced by Kaposi's sarcoma-associated herpesvirus-encoded interleukin-6. Blood 93, 4034–4043 (1999).

    CAS  PubMed  Google Scholar 

  45. Wan, X., Wang, H. & Nicholas, J. Human herpesvirus 8 interleukin-6 (vIL-6) signals through gp130 but has structural and receptor-binding properties distinct from those of human IL-6. J. Virol. 73, 8268–8278 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chatterjee, M., Osborne, J., Bestetti, G., Chang, Y. & Moore, P. S. Viral IL-6-induced cell proliferation and immune evasion of interferon activity. Science 298, 1432–1435 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Molden, J., Chang, Y., You, Y., Moore, P. S. & Goldsmith, M. A. A Kaposi's sarcoma-associated herpesvirus-encoded cytokine homolog (vIL-6) activates signaling through the shared gp130 receptor subunit. J. Biol. Chem. 272, 19625–19631 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Boulanger, M. J. et al. Molecular mechanisms for viral mimicry of a human cytokine: activation of gp130 by HHV-8 interleukin-6. J. Mol. Biol. 335, 641–654 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Hu, F. & Nicholas, J. Signal transduction by human herpesvirus 8 viral interleukin-6 (vIL-6) is modulated by the nonsignaling gp80 subunit of the IL-6 receptor complex and is distinct from signaling induced by human IL-6. J. Virol. 80, 10874–10878 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fielding, C. A. et al. Viral IL-6 blocks neutrophil infiltration during acute inflammation. J. Immunol. 175, 4024–4029 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Diehl, S. & Rincon, M. The two faces of IL-6 on Th1/Th2 differentiation. Mol. Immunol. 39, 531–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Foster-Cuevas, M., Wright, G. J., Puklavec, M. J., Brown, M. H. & Barclay, A. N. Human herpesvirus 8 K14 protein mimics CD200 in down-regulating macrophage activation through CD200 receptor. J. Virol. 78, 7667–7676 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chung, Y. H., Means, R. E., Choi, J. K., Lee, B. S. & Jung, J. U. Kaposi's sarcoma-associated herpesvirus OX2 glycoprotein activates myeloid-lineage cells to induce inflammatory cytokine production. J. Virol. 76, 4688–4698 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shiratori, I. et al. Down-regulation of basophil function by human CD200 and human herpesvirus-8 CD200. J. Immunol. 175, 4441–4449 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Rezaee, S. A., Gracie, J. A., McInnes, I. B. & Blackbourn, D. J. Inhibition of neutrophil function by the Kaposi's sarcoma-associated herpesvirus vOX2 protein. AIDS 19, 1907–1910 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Spiller, O. B. et al. Complement regulation by Kaposi's sarcoma-associated herpesvirus ORF4 protein. J. Virol. 77, 592–599 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Spiller, O. B., Blackbourn, D. J., Mark, L., Proctor, D. G. & Blom, A. M. Functional activity of the complement regulator encoded by Kaposi's sarcoma-associated herpesvirus. J. Biol. Chem. 278, 9283–9289 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Spiller, O. B. et al. Dissecting the regions of virion-associated Kaposi's sarcoma-associated herpesvirus complement control protein required for complement regulation and cell binding. J. Virol. 80, 4068–4078 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bechtel, J. T., Winant, R. C. & Ganem, D. Host and viral proteins in the virion of Kaposi's sarcoma-associated herpesvirus. J. Virol. 79, 4952–4964 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhu, F. X., Chong, J. M., Wu, L. & Yuan, Y. Virion proteins of Kaposi's sarcoma-associated herpesvirus. J. Virol. 79, 800–811 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kapadia, S. B., Levine, B., Speck, S. H. & Virgin, H. W. 4th. Critical role of complement and viral evasion of complement in acute, persistent, and latent gamma-herpesvirus infection. Immunity 17, 143–155 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Neipel, F., Albrecht, J. C. & Fleckenstein, B. Cell-homologous genes in the Kaposi's sarcoma-associated rhadinovirus human herpesvirus 8: determinants of its pathogenicity? J. Virol. 71, 4187–4192 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Cunningham, C., Barnard, S., Blackbourn, D. J. & Davison, A. J. Transcription mapping of human herpesvirus 8 genes encoding viral interferon regulatory factors. J. Gen. Virol. 84, 1471–1483 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Jenner, R. G., Alba, M. M., Boshoff, C. & Kellam, P. Kaposi's sarcoma-associated herpesvirus latent and lytic gene expression as revealed by DNA arrays. J. Virol. 75, 891–902 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dittmer, D. P. Transcription profile of Kaposi's sarcoma-associated herpesvirus in primary Kaposi's sarcoma lesions as determined by real-time PCR arrays. Cancer Res. 63, 2010–2015 (2003).

    CAS  PubMed  Google Scholar 

  66. Fakhari, F. D. & Dittmer, D. P. Charting latency transcripts in Kaposi's sarcoma-associated herpesvirus by whole-genome real-time quantitative PCR. J. Virol. 76, 6213–6223 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rivas, C., Thlick, A. E., Parravicini, C., Moore, P. S. & Chang, Y. Kaposi's sarcoma-associated herpesvirus LANA2 is a B-cell-specific latent viral protein that inhibits p53. J. Virol. 75, 429–438 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lin, R. et al. HHV-8 encoded vIRF-1 represses the interferon antiviral response by blocking IRF-3 recruitment of the CBP/p300 coactivators. Oncogene 20, 800–811 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Fuld, S., Cunningham, C., Klucher, K., Davison, A. J. & Blackbourn, D. J. Inhibition of interferon signaling by the Kaposi's sarcoma-associated herpesvirus full-length viral interferon regulatory factor 2 protein. J. Virol. 80, 3092–3097 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Burysek, L., Yeow, W. S. & Pitha, P. M. Unique properties of a second human herpesvirus 8-encoded interferon regulatory factor (vIRF-2). J. Hum. Virol. 2, 19–32 (1999).

    CAS  PubMed  Google Scholar 

  71. Lubyova, B. & Pitha, P. M. Characterization of a novel human herpesvirus 8-encoded protein, vIRF-3, that shows homology to viral and cellular interferon regulatory factors. J. Virol. 74, 8194–8201 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lubyova, B., Kellum, M. J., Frisancho, A. J. & Pitha, P. M. Kaposi's sarcoma-associated herpesvirus-encoded vIRF-3 stimulates the transcriptional activity of cellular IRF-3 and IRF-7. J. Biol. Chem. 279, 7643–7654 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Lagos, D. et al. Kaposi sarcoma herpesvirus-encoded vFLIP and vIRF1 regulate antigen presentation in lymphatic endothelial cells. Blood 109, 1550–1558 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Gao, S. J. et al. KSHV ORF K9 (vIRF) is an oncogene which inhibits the interferon signaling pathway. Oncogene 15, 1979–1985 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Li, M. et al. Kaposi's sarcoma-associated herpesvirus viral interferon regulatory factor. J. Virol. 72, 5433–5440 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Nakamura, H., Li, M., Zarycki, J. & Jung, J. U. Inhibition of p53 tumor suppressor by viral interferon regulatory factor. J. Virol. 75, 7572–7582 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Seo, T., Park, J., Lee, D., Hwang, S. G. & Choe, J. Viral interferon regulatory factor 1 of Kaposi's sarcoma-associated herpesvirus binds to p53 and represses p53-dependent transcription and apoptosis. J. Virol. 75, 6193–6198 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shin, Y. C. et al. Inhibition of the ATM/p53 signal transduction pathway by Kaposi's sarcoma-associated herpesvirus interferon regulatory factor 1. J. Virol. 80, 2257–2266 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhu, F. X., King, S. M., Smith, E. J., Levy, D. E. & Yuan, Y. A Kaposi's sarcoma-associated herpesviral protein inhibits virus-mediated induction of type I interferon by blocking IRF-7 phosphorylation and nuclear accumulation. Proc. Natl Acad. Sci. USA 99, 5573–5578 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yu, Y., Wang, S. E. & Hayward, G. S. The KSHV immediate-early transcription factor RTA encodes ubiquitin E3 ligase activity that targets IRF7 for proteosome-mediated degradation. Immunity 22, 59–70 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Zhu, F. X. & Yuan, Y. The ORF45 protein of Kaposi's sarcoma-associated herpesvirus is associated with purified virions. J. Virol. 77, 4221–4230 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang, J. et al. Modulation of human herpesvirus 8/Kaposi's sarcoma-associated herpesvirus replication and transcription activator transactivation by interferon regulatory factor 7. J. Virol. 79, 2420–2431 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jia, Q. et al. Murine gammaherpesvirus 68 open reading frame 45 plays an essential role during the immediate-early phase of viral replication. J. Virol. 79, 5129–5141 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Coscoy, L. & Ganem, D. Kaposi's sarcoma-associated herpesvirus encodes two proteins that block cell surface display of MHC class I chains by enhancing their endocytosis. Proc. Natl Acad. Sci. USA 97, 8051–8056 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Boname, J. M. & Stevenson, P. G. MHC class I ubiquitination by a viral PHD/LAP finger protein. Immunity 15, 627–636 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Haque, M. et al. Major histocompatibility complex class I molecules are down-regulated at the cell surface by the K5 protein encoded by Kaposi's sarcoma-associated herpesvirus/human herpesvirus-8. J. Gen. Virol. 82, 1175–1180 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Ishido, S., Wang, C., Lee, B. S., Cohen, G. B. & Jung, J. U. Downregulation of major histocompatibility complex class I molecules by Kaposi's sarcoma-associated herpesvirus K3 and K5 proteins. J. Virol. 74, 5300–5309 (2000). References 84, 85 and 87 describe the identification of MIR1 and MIR2, two KSHV proteins that downregulate the expression of MHC class I molecules. These proteins represent the prototype of a new family of E3 ubiquitin ligases (described in reference 94).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Taylor, J. L., Bennett, H. N., Snyder, B. A., Moore, P. S. & Chang, Y. Transcriptional analysis of latent and inducible Kaposi's sarcoma-associated herpesvirus transcripts in the K4 to K7 region. J. Virol. 79, 15099–15106 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tomescu, C., Law, W. K. & Kedes, D. H. Surface downregulation of major histocompatibility complex class I, PE-CAM, and ICAM-1 following de novo infection of endothelial cells with Kaposi's sarcoma-associated herpesvirus. J. Virol. 77, 9669–9684 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sanchez, D. J., Coscoy, L. & Ganem, D. Functional organization of MIR2, a novel viral regulator of selective endocytosis. J. Biol. Chem. 277, 6124–6130 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Coscoy, L., Sanchez, D. J. & Ganem, D. A novel class of herpesvirus-encoded membrane-bound E3 ubiquitin ligases regulates endocytosis of proteins involved in immune recognition. J. Cell. Biol. 155, 1265–1273 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hewitt, E. W. et al. Ubiquitylation of MHC class I by the K3 viral protein signals internalization and TSG101-dependent degradation. EMBO J. 21, 2418–2429 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lorenzo, M. E., Jung, J. U. & Ploegh, H. L. Kaposi's sarcoma-associated herpesvirus K3 utilizes the ubiquitin-proteasome system in routing class major histocompatibility complexes to late endocytic compartments. J. Virol. 76, 5522–5531 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fruh, K., Bartee, E., Gouveia, K. & Mansouri, M. Immune evasion by a novel family of viral PHD/LAP-finger proteins of gamma-2 herpesviruses and poxviruses. Virus Res. 88, 55–69 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Mansouri, M. et al. The PHD/LAP-domain protein M153R of myxomavirus is a ubiquitin ligase that induces the rapid internalization and lysosomal destruction of CD4. J. Virol. 77, 1427–1440 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Means, R. E., Ishido, S., Alvarez, X. & Jung, J. U. Multiple endocytic trafficking pathways of MHC class I molecules induced by a Herpesvirus protein. EMBO J. 21, 1638–1649 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Duncan, L. M. et al. Lysine-63-linked ubiquitination is required for endolysosomal degradation of class I molecules. EMBO J. 25, 1635–1645 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Li, Q., Means, R., Lang, S. & Jung, J. U. Downregulation of γ interferon receptor 1 by Kaposi's sarcoma-associated herpesvirus K3 and K5. J. Virol. 81, 2117–2127 (2007). This report is the first to show that viruses can downregulate CD1d, probably to escape recognition by NKT cells.

    Article  CAS  PubMed  Google Scholar 

  99. Mansouri, M. et al. Kaposi sarcoma herpesvirus K5 removes CD31/PECAM from endothelial cells. Blood 108, 1932–1940 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bartee, E., McCormack, A. & Fruh, K. Quantitative membrane proteomics reveals new cellular targets of viral immune modulators. PLoS Pathog. 2, e107 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Georgopoulos, N. T., Proffitt, J. L. & Blair, G. E. Transcriptional regulation of the major histocompatibility complex (MHC) class I heavy chain, TAP1 and LMP2 genes by the human papillomavirus (HPV) type 6b, 16 and 18 E7 oncoproteins. Oncogene 19, 4930–4935 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Sanchez, D. J., Gumperz, J. E. & Ganem, D. Regulation of CD1d expression and function by a herpesvirus infection. J. Clin. Invest. 115, 1369–1378 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cho, S. et al. Impaired cell surface expression of human CD1d by the formation of an HIV-1 Nef/CD1d complex. Virology 337, 242–252 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Webb, T. J. et al. Inhibition of CD1d1-mediated antigen presentation by the vaccinia virus B1R and H5R molecules. Eur. J. Immunol. 36, 2595–2600 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Yuan, W., Dasgupta, A. & Cresswell, P. Herpes simplex virus evades natural killer T cell recognition by suppressing CD1d recycling. Nature Immunol. 7, 835–842 (2006).

    Article  CAS  Google Scholar 

  106. Wang, Q. J. et al. Primary human herpesvirus 8 infection generates a broadly specific CD8+ T-cell response to viral lytic cycle proteins. Blood 97, 2366–2373 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Sun, R. et al. Kinetics of Kaposi's sarcoma-associated herpesvirus gene expression. J. Virol. 73, 2232–2242 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Paulose-Murphy, M. et al. Transcription program of human herpesvirus 8 (kaposi's sarcoma-associated herpesvirus). J. Virol. 75, 4843–4853 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ishido, S. et al. Inhibition of natural killer cell-mediated cytotoxicity by Kaposi's sarcoma-associated herpesvirus K5 protein. Immunity 13, 365–374 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Rodriguez-Pinto, D. B cells as antigen presenting cells. Cell Immunol. 238, 67–75 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Glaunsinger, B. & Ganem, D. Lytic KSHV infection inhibits host gene expression by accelerating global mRNA turnover. Mol. Cell 13, 713–723 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Pentcheva-Hoang, T., Egen, J. G., Wojnoonski, K. & Allison, J. P. B7-1 and B7-2 selectively recruit CTLA-4 and CD28 to the immunological synapse. Immunity 21, 401–413 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Monini, P. et al. α interferon inhibits human herpesvirus 8 (HHV-8) reactivation in primary effusion lymphoma cells and reduces HHV-8 load in cultured peripheral blood mononuclear cells. J. Virol. 73, 4029–4041 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhou, F. C. et al. Efficient infection by a recombinant Kaposi's sarcoma-associated herpesvirus cloned in a bacterial artificial chromosome: application for genetic analysis. J. Virol. 76, 6185–6196 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bechtel, J. T., Liang, Y., Hvidding, J. & Ganem, D. Host range of Kaposi's sarcoma-associated herpesvirus in cultured cells. J. Virol. 77, 6474–6481 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lagunoff, M. et al. De novo infection and serial transmission of Kaposi's sarcoma-associated herpesvirus in cultured endothelial cells. J. Virol. 76, 2440–2408 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Dourmishev, L. A., Dourmishev, A. L., Palmeri, D., Schwartz, R. A. & Lukac, D. M. Molecular genetics of Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8) epidemiology and pathogenesis. Microbiol. Mol. Biol. Rev. 67, 175–212 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gaidano, G. et al. Establishment of AIDS-related lymphoma cell lines from lymphomatous effusions. Leukemia 10, 1237–1240 (1996).

    CAS  PubMed  Google Scholar 

  119. Bartee, E., Mansouri, M., Hovey Nerenberg, B. T., Gouveia, K. & Fruh, K. Downregulation of major histocompatibility complex class I by human ubiquitin ligases related to viral immune evasion proteins. J. Virol. 78, 1109–1120 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Goto, E. et al. c-MIR, a human E3 ubiquitin ligase, is a functional homolog of herpesvirus proteins MIR1 and MIR2 and has similar activity. J. Biol. Chem. 278, 14657–14668 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Ohmura-Hoshino, M. et al. Inhibition of MHC class II expression and immune responses by c-MIR. J. Immunol. 177, 341–354 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Matsuki, Y. et al. Novel regulation of MHC class II function in B cells. EMBO J. 26, 846–854 (2007). This report is the first one to show that MARCH-I, a human homologue of the KSHV-encoded MIR1 and MIR2, regulates the expression of MHC class II molecules by B cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Cadwell, K. & Coscoy, L. Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase. Science 309, 127–130 (2005). This report is the first to show that E3 ubiquitin ligases, such as the KSHV-encoded MIR1, can ubiquitylate their substrate on cysteine residues. This observation broadens the number of potential substrates that can be targeted by ubiquitylation.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to Nadine Jarousse for discussions and insights, as well as Brian Sullivan for editorial assistance. The laboratory is supported by grants from the National Cancer Institute, the National Institute of Allergy and Infectious diseases and the Pew Scholars Program in the Biological Sciences.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Glossary

Kaposi's sarcoma

A tumour of endothelial-cell origin that is found most frequently in immunosuppressed patients, particularly in HIV-infected individuals. KSHV has been implicated as a co-factor in the formation of Kaposi's sarcoma.

Gammaherpesviruses

One of the three subtypes of herpesviruses. Gammaherpesviruses are lymphotropic and several such viruses are known to have cellular transforming and oncogenic properties.

MicroRNAs

(miRNAs). Small, RNA molecules that regulate the expression of genes by binding to the 3′-untranslated regions (3′-UTR) of specific mRNAs.

Glomerulonephritis

An inflammation of the kidney glomeruli that can result in destruction of the glomeruli and renal failure.

Neoplasm

New or abnormal growth of tissue that might be benign or cancerous.

Angiogenesis

The process of the development of new blood vessels from existing blood vessels. It is frequently associated with tumour development and inflammation.

Plasma cells

Non-dividing, terminally differentiated, immunoglobulin-secreting cells of the B-cell lineage.

C3 and C5 convertases

Proteins that are activated by all three pathways of the complement system (the classical, lectin and alternative pathways) and generate the main effector molecules of this system.

p300

P300 (and CBP) are scaffolding proteins that interact with interferon (IFN) regulatory factors (IRFs) and other transcription factors promoting the recruitment of the RNA polymerase holoenzyme and allowing transcriptional activation of the IFN genes. Additionally, p300 and CBP have a histone acetyltransferase (HAT) activity, which endows these proteins with the capacity to influence chromatin activity by modulating nucleosomal histones.

Ubiquitylation

The attachment of the small protein ubiquitin to lysine residues that are present in other proteins. This tags these proteins for rapid cellular degradation. Protein ubiquitylation occurs in three enzymatic steps requiring a ubiquitin-activating enzyme (E1), a ubiquitin-conjugating enzyme (E2), and ubiquitin ligase (E3), which catalyses the ligation of an isopeptide bond between the carboxy-terminal domain of ubiquitin and an amino group belonging to a lysine residue of the target protein.

E3 ubiquitin ligase

Ubiquitin ligases recruit ubiquitin-conjugating enzymes, which attach the small polypeptide ubiquitin to proteins. The polyubiquitylated proteins are then subjected to proteasomal degradation. Polyubiquitylation, followed by proteasomal degradation, is one of the cellular mechanisms to eliminate proteins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coscoy, L. Immune evasion by Kaposi's sarcoma-associated herpesvirus. Nat Rev Immunol 7, 391–401 (2007). https://doi.org/10.1038/nri2076

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2076

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing