Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The descent of memory T-cell subsets

Abstract

The immune system has evolved by continuously increasing its complexity to provide the host with an advantage over infectious agents. The development of immunological memory engenders long-lasting protection and lengthens the lifespan of the host. The generation of subsets of memory T cells with distinct homing and functional properties increases our defensive capabilities. However, the developmental relationship of memory T-cell subsets is a matter of debate. In this Opinion article, in light of recent developments, we suggest that it is probable that two distinct lineages comprise the memory CD8+ T-cell population generated in response to infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential pathways of the development of memory CD8+ T-cell subsets based on CD62L expression.
Figure 2: Production of secondary memory CD8+ T cells after reactivation of TCM and TEM cells.

Similar content being viewed by others

References

  1. Reinach, T. Roi de Pont 283–285; 409–410 (Firmin-Didot, Paris, 1890) (in French).

    Google Scholar 

  2. Tripp, R. A., Hou, S. & Doherty, P. C. Temporal loss of the activated L-selectin-low phenotype for virus-specific CD8+ memory T cells. J. Immunol. 154, 5870–5875 (1995).

    CAS  PubMed  Google Scholar 

  3. Hamann, D. et al. Phenotypic and functional separation of memory and effector human CD8+ T cells. J. Exp. Med. 186, 1407–1418 (1997).

    Article  CAS  Google Scholar 

  4. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  Google Scholar 

  5. Masopust, D., Vezys, V., Marzo, A. L. & Lefrançois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).

    Article  CAS  Google Scholar 

  6. Reinhardt, R. L., Khoruts, A., Merica, R., Zell, T. & Jenkins, M. K. Visualizing the generation of memory CD4 T cells in the whole body. Nature 410, 101–105 (2001).

    Article  CAS  Google Scholar 

  7. Unsoeld, H. & Pircher, H. Complex memory T-cell phenotypes revealed by coexpression of CD62L and CCR7. J. Virol. 79, 4510–4513 (2005).

    Article  CAS  Google Scholar 

  8. Baars, P. A. et al. Properties of murine CD8+CD27 T cells. Eur. J. Immunol. 35, 3131–3141 (2005).

    Article  CAS  Google Scholar 

  9. de Bree, G. J. et al. Selective accumulation of differentiated CD8+ T cells specific for respiratory viruses in the human lung. J. Exp. Med. 202, 1433–1442 (2005).

    Article  CAS  Google Scholar 

  10. Masopust, D., Vezys, V., Wherry, E. J., Barber, D. L. & Ahmed, R. Cutting edge: gut microenvironment promotes differentiation of a unique memory CD8 T cell population. J. Immunol. 176, 2079–2083 (2006).

    Article  CAS  Google Scholar 

  11. Fearon, D. T., Manders, P. & Wagner, S. D. Arrested differentiation, the self-renewing memory lymphocyte, and vaccination. Science 293, 248–250 (2001).

    Article  CAS  Google Scholar 

  12. Wu, C. Y. et al. Distinct lineages of TH1 cells have differential capacities for memory cell generation in vivo. Nature Immunol. 3, 852–858 (2002).

    Article  CAS  Google Scholar 

  13. Lefrançois, L., Marzo, A. & Williams, K. Sustained response initiation is required for T cell clonal expansion but not for effector or memory development in vivo. J. Immunol. 171, 2832–2839 (2003).

    Article  Google Scholar 

  14. Seder, R. A. & Ahmed, R. Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nature Immunol. 4, 835–842 (2003).

    Article  CAS  Google Scholar 

  15. Lanzavecchia, A. & Sallusto, F. Progressive differentiation and selection of the fittest in the immune response. Nature Rev. Immunol. 2, 982–987 (2002).

    Article  CAS  Google Scholar 

  16. Gett, A. V., Sallusto, F., Lanzavecchia, A. & Geginat, J. T cell fitness determined by signal strength. Nature Immunol. 4, 355–360 (2003).

    Article  CAS  Google Scholar 

  17. Obar, J. J., Crist, S. G., Leung, E. K. & Usherwood, E. J. IL-15-independent proliferative renewal of memory CD8+ T cells in latent gammaherpesvirus infection. J. Immunol. 173, 2705–2714 (2004).

    Article  CAS  Google Scholar 

  18. Wherry, E. J., Barber, D. L., Kaech, S. M., Blattman, J. N. & Ahmed, R. Antigen-independent memory CD8 T cells do not develop during chronic viral infection. Proc. Natl Acad. Sci. USA 101, 16004–16009 (2004).

    Article  CAS  Google Scholar 

  19. Sierro, S., Rothkopf, R. & Klenerman, P. Evolution of diverse antiviral CD8+ T cell populations after murine cytomegalovirus infection. Eur. J. Immunol. 35, 1113–1123 (2005).

    Article  CAS  Google Scholar 

  20. Clambey, E. T., van Dyk, L. F., Kappler, J. W. & Marrack, P. Non-malignant clonal expansions of CD8+ memory T cells in aged individuals. Immunol. Rev. 205, 170–189 (2005).

    Article  CAS  Google Scholar 

  21. Wherry, E. J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nature Immunol. 4, 225–234 (2003).

    Article  CAS  Google Scholar 

  22. Marzo, A. L. et al. Initial T cell frequency dictates memory CD8+ T cell lineage commitment. Nature Immunol. 6, 793–799 (2005).

    Article  CAS  Google Scholar 

  23. Bouneaud, C., Garcia, Z., Kourilsky, P. & Pannetier, C. Lineage relationships, homeostasis, and recall capacities of central- and effector-memory CD8 T cells in vivo. J. Exp. Med. 201, 579–590 (2005).

    Article  CAS  Google Scholar 

  24. Bachmann, M. F., Wolint, P., Schwarz, K., Jager, P. & Oxenius, A. Functional properties and lineage relationship of CD8+ T cell subsets identified by expression of IL-7 receptor α and CD62L. J. Immunol. 175, 4686–4696 (2005).

    Article  CAS  Google Scholar 

  25. Chao, C. C., Jensen, R. & Dailey, M. O. Mechanisms of L-selectin regulation by activated T cells. J. Immunol. 159, 1686–1694 (1997).

    CAS  PubMed  Google Scholar 

  26. Galkina, E. et al. L-selectin shedding does not regulate constitutive T cell trafficking but controls the migration pathways of antigen-activated T lymphocytes. J. Exp. Med. 198, 1323–1335 (2003).

    Article  CAS  Google Scholar 

  27. Smalley, D. M. & Ley, K. L-selectin: mechanisms and physiological significance of ectodomain cleavage. J. Cell. Mol. Med. 9, 255–266 (2005).

    Article  CAS  Google Scholar 

  28. Blattman, J. N. et al. Estimating the precursor frequency of naive antigen-specific CD8 T cells. J. Exp. Med. 195, 657–664 (2002).

    Article  CAS  Google Scholar 

  29. Baron, V. et al. The repertoires of circulating human CD8+ central and effector memory T cell subsets are largely distinct. Immunity 18, 193–204 (2003).

    Article  Google Scholar 

  30. Chtanova, T. et al. Identification of T cell-restricted genes, and signatures for different T cell responses, using a comprehensive collection of microarray datasets. J. Immunol. 175, 7837–7847 (2005).

    Article  CAS  Google Scholar 

  31. Williams, M. A. & Bevan, M. J. T cell memory: fixed or flexible? Nature Immunol. 6, 752–754 (2005).

    Article  CAS  Google Scholar 

  32. Kaech, S. M. et al. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nature Immunol. 4, 1191–1198 (2003).

    Article  CAS  Google Scholar 

  33. Sprent, J. & Tough, D. F. T cell death and memory. Science 293, 245–248 (2001).

    Article  CAS  Google Scholar 

  34. Miller, M. J., Hejazi, A. S., Wei, S. H., Cahalan, M. D. & Parker, I. T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the lymph node. Proc. Natl Acad. Sci. USA 101, 998–1003 (2004).

    Article  CAS  Google Scholar 

  35. Mempel, T. R., Henrickson, S. E. & von Andrian, U. H. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154–159 (2004).

    Article  CAS  Google Scholar 

  36. Celli, S., Garcia, Z. & Bousso, P. CD4 T cells integrate signals delivered during successive DC encounters in vivo. J. Exp. Med. 202, 1271–1278 (2005).

    Article  CAS  Google Scholar 

  37. Hogan, R. J. et al. Activated antigen-specific CD8+ T cells persist in the lungs following recovery from respiratory virus infections. J. Immunol. 166, 1813–1822 (2001).

    Article  CAS  Google Scholar 

  38. Roberts, A. D., Ely, K. H. & Woodland, D. L. Differential contributions of central and effector memory T cells to recall responses. J. Exp. Med. 202, 123–133 (2005).

    Article  CAS  Google Scholar 

  39. De Martinis, M. et al. CD50 and CD62L adhesion receptor expression on naive (CD45RA+) and memory (CD45RO+) T lymphocytes in the elderly. Pathobiology 68, 245–250 (2000).

    Article  CAS  Google Scholar 

  40. Ginaldi, L. et al. Immunophenotypical changes of T lymphocytes in the elderly. Gerontology 46, 242–248 (2000).

    Article  CAS  Google Scholar 

  41. Fagnoni, F. F. et al. Expansion of cytotoxic CD8+ CD28 T cells in healthy ageing people, including centenarians. Immunology 88, 501–507 (1996).

    Article  CAS  Google Scholar 

  42. Saule, P. et al. Accumulation of memory T cells from childhood to old age: Central and effector memory cells in CD4+ versus effector memory and terminally differentiated memory cells in CD8+ compartment. Mech. Ageing Dev. 127, 274–281 (2006).

    Article  CAS  Google Scholar 

  43. Hou, S., Hyland, L., Ryan, K. W., Portner, A. & Doherty, P. C. Virus specific CD8+ T-cell memory determined by clonal burst size. Nature 369, 652–654 (1994).

    Article  CAS  Google Scholar 

  44. Selin, L. K., Vergilis, K., Welsh, R. M. & Nahill, S. R. Reduction of otherwise remarkably stable virus-specific cytotoxic T lymphocyte memory by heterologous viral infections. J. Exp. Med. 183, 2489–2499 (1996).

    Article  CAS  Google Scholar 

  45. Asano, M. S. & Ahmed, R. CD8 T cell memory in B cell-deficient mice. J. Exp. Med. 183, 2165–2174 (1996).

    Article  CAS  Google Scholar 

  46. Homann, D., Teyton, L. & Oldstone, M. B. Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory. Nature Med. 7, 913–919 (2001).

    Article  CAS  Google Scholar 

  47. Schluns, K. S., Williams, K., Ma, A., Zheng, X. X. & Lefrançois, L. Requirement for IL-15 in the generation of primary and memory antigen-specific CD8 T cells. J. Immunol. 168, 4827–4831 (2002).

    Article  CAS  Google Scholar 

  48. Klonowski, K. D. & Lefrancois, L. The CD8 memory T cell subsystem: integration of homeostatic signaling during migration. Semin. Immunol 17, 219–229 (2005).

    Article  CAS  Google Scholar 

  49. Sallusto, F., Lenig, D., Mackay, C. R. & Lanzavecchia, A. Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J. Exp. Med. 187, 875–883 (1998).

    Article  CAS  Google Scholar 

  50. Mackay, C. R. et al. Tissue-specific migration pathways by phenotypically distinct populations of memory T cells. Eur. J. Immunol. 22, 887–895 (1992).

    Article  CAS  Google Scholar 

  51. Bromley, S. K., Thomas, S. Y. & Luster, A. D. Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nature Immunol. 6, 895–901 (2005).

    Article  CAS  Google Scholar 

  52. Debes, G. F. et al. Chemokine receptor CCR7 required for T lymphocyte exit from peripheral tissues. Nature Immunol. 6, 889–894 (2005).

    Article  CAS  Google Scholar 

  53. Lefrançois, L. et al. The role of β7 integrins in CD8 T cell trafficking during an anti-viral immune response. J. Exp. Med. 189, 1631–1638 (1999).

    Article  Google Scholar 

  54. Klonowski, K. D. et al. Dynamics of blood-borne CD8 memory T cell migration in vivo. Immunity 20, 551–562 (2004).

    Article  CAS  Google Scholar 

  55. Zammit, D. J., Cauley, L. S., Pham, Q.-M. & Lefrançois, L. Dendritic cells maximize the memory CD8 T cell response to infection. Immunity 22, 561–570 (2005).

    Article  CAS  Google Scholar 

  56. Kaech, S. M., Hemby, S., Kersh, E. & Ahmed, R. Molecular and functional profiling of memory CD8 T cell differentiation. Cell 111, 837–851 (2002).

    Article  CAS  Google Scholar 

  57. Zaph, C., Uzonna, J., Beverley, S. M. & Scott, P. Central memory T cells mediate long-term immunity to Leishmania major in the absence of persistent parasites. Nature Med. 10, 1104–1110 (2004).

    Article  CAS  Google Scholar 

  58. Hogan, R. J. et al. Protection from respiratory virus infections can be mediated by antigen-specific CD4+ T cells that persist in the lungs. J. Exp. Med. 193, 981–986 (2001).

    Article  CAS  Google Scholar 

  59. Roberts, A. D. & Woodland, D. L. Effector memory CD8+ T cells play a prominent role in recall responses to secondary viral infection in the lung. J. Immunol. 172, 6533–6537 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank L. Puddington for critical review of the manuscript and all the members of the laboratory for intellectual and scientific contributions that led to the theories put forth in this paper. This work was supported by grants from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Lefrançois.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Leo Lefrançois' homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lefrançois, L., Marzo, A. The descent of memory T-cell subsets. Nat Rev Immunol 6, 618–623 (2006). https://doi.org/10.1038/nri1866

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1866

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing