Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Roles of interferon-regulatory factors in T-helper-cell differentiation

Key Points

  • Transcription factors of the interferon (IFN)-regulatory factor (IRF) family were originally identified by their capacity to mediate the effects of type I IFNs. Ten IRF-family members have now been defined on the basis of sequence homology and the ability to bind a common DNA motif in various gene promoters.

  • In the past seven years, many IRFs have been found to be involved in T helper (TH)-cell differentiation, a consequence of their capacity to influence the function of accessory cells. This influence leads to alterations in gene products that are important for differentiation into TH1 or TH2 cells, such as interleukin-12 (IL-12), IL-18, IL-23, type I IFNs and nitric oxide.

  • Recent evidence has shown an additional T-cell-intrinsic role for IRF1, -2 and -4 during TH-cell differentiation. This role can be shown even when highly purified naive TH cells are studied in the absence of any accessory cell.

  • IRF1 and IRF2 interact with each other and bind elements in the IL-4 promoter, suppressing its activity.

  • Evidence is accumulating that IRF1 is a multifunctional transcription factor that influences several different cell types and genes to modify the differentiation of TH cells into either TH1 or TH2 cells. Importantly, all of the activities of IRF1 are directed towards a TH1 response, making IRF1 an attractive target for therapeutic intervention in diseases with increased or deficient TH1-cell responses, such as multiple sclerosis or asthma.

  • IRF4 mainly drives TH2-cell development but might also influence TH1-cell development. IRF4 acts intrinsically on TH cells, functions upstream of GATA-binding protein 3 (GATA3) and might interact with signal transducer and activator of transcription 6 (STAT6), B-cell lymphoma 6 (BCL-6) and/or nuclear factor of activated T cells 1 (NFAT1) and/or NFAT2.

Abstract

Members of the interferon-regulatory factor family of transcription factors have long been known to be intracellular mediators of the effects of interferons. In recent years, interferon-regulatory factors have also been shown to have an essential role in the differentiation of T helper cells, both by modulating the functions of antigen-presenting cells and by having direct effects on the T helper cells themselves. Depending on the interferon-regulatory factor involved, the differentiation of T helper cells to either T helper 1 cells or T helper 2 cells can be influenced. In this article, we provide an overview of this relatively new and still underappreciated role of interferon-regulatory factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of interferon-regulatory factors.
Figure 2: Multiple roles of interferon-regulatory factor 1 in differentiation of T helper cells into T helper 1 cells.
Figure 3: Model of differentiation into T helper 2 cells mediated by interferon-regulatory factor 4.

Similar content being viewed by others

References

  1. Miyamoto, M. et al. Regulated expression of a gene encoding a nuclear factor, IRF-1, that specifically binds to IFN-β gene regulatory elements. Cell 54, 903–913 (1988).

    CAS  PubMed  Google Scholar 

  2. Harada, H. et al. Structurally similar but functionally distinct factors, IRF-1 and IRF-2, bind to the same regulatory elements of IFN and IFN-inducible genes. Cell 58, 729–739 (1989).

    CAS  PubMed  Google Scholar 

  3. Tanaka, N., Kawakami, T. & Taniguchi, T. Recognition DNA sequences of interferon regulatory factor 1 (IRF-1) and IRF-2, regulators of cell growth and the interferon system. Mol. Cell. Biol. 13, 4531–4538 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Darnell, J. E., Kerr, I. M. & Stark, G. R. Jak–STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415–1421 (1994).

    CAS  PubMed  Google Scholar 

  5. Au, W. C., Moore, P. A., Lowther, W., Juang, Y. T. & Pitha, P. M. Identification of a member of the interferon regulatory factor family that binds to the interferon-stimulated response element and activates expression of interferon-induced genes. Proc. Natl Acad. Sci. USA 92, 11657–11661 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Barnes, B. J., Moore, P. A. & Pitha, P. M. Virus-specific activation of a novel interferon regulatory factor, IRF-5, results in the induction of distinct interferon α genes. J. Biol. Chem. 276, 23382–23390 (2001).

    CAS  PubMed  Google Scholar 

  7. Driggers, P. H. et al. An interferon γ-regulated protein that binds the interferon-inducible enhancer element of major histocompatibility complex class I genes. Proc. Natl Acad. Sci. USA 87, 3743–3747 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Eisenbeis, C. F., Singh, H. & Storb, U. Pip, a novel IRF family member, is a lymphoid-specific, PU.1-dependent transcriptional activator. Genes Dev. 9, 1377–1387 (1995).

    CAS  PubMed  Google Scholar 

  9. Grant, C. E., Vasa, M. Z. & Deeley, R. G. cIRF-3, a new member of the interferon regulatory factor (IRF) family that is rapidly and transiently induced by dsRNA. Nucleic Acids Res. 23, 2137–2146 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hatada, S. et al. An interferon regulatory factor-related gene (xIRF-6) is expressed in the posterior mesoderm during the early development of Xenopus laevis. Gene 203, 183–188 (1997).

    CAS  PubMed  Google Scholar 

  11. Matsuyama, T. et al. Molecular cloning of LSIRF, a lymphoid-specific member of the interferon regulatory factor family that binds the interferon-stimulated response element (ISRE). Nucleic Acids Res. 23, 2127–2136 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Nehyba, J., Hrdlickova, R., Burnside, J. & Bose, H. R. A novel interferon regulatory factor (IRF), IRF-10, has a unique role in immune defense and is induced by the v-Rel oncoprotein. Mol. Cell. Biol. 22, 3942–3957 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Schindler, C., Fu, X. Y., Improta, T., Aebersold, R. & Darnell, J. E. Proteins of transcription factor ISGF-3: one gene encodes the 91- and 84-kDa ISGF-3 proteins that are activated by interferon α. Proc. Natl Acad. Sci. USA 89, 7836–7839 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yamagata, T. et al. A novel interferon regulatory factor family transcription factor, ICSAT/Pip/LSIRF, that negatively regulates the activity of interferon-regulated genes. Mol. Cell. Biol. 16, 1283–1294 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, L. & Pagano, J. S. IRF-7, a new interferon regulatory factor associated with Epstein–Barr virus latency. Mol. Cell. Biol. 17, 5748–5757 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hobart, M., Ramassar, V., Goes, N., Urmson, J. & Halloran, P. F. IFN regulatory factor-1 plays a central role in the regulation of the expression of class I and II MHC genes in vivo. J. Immunol. 158, 4260–4269 (1997).

    CAS  PubMed  Google Scholar 

  17. Kamijo, R. et al. Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science 263, 1612–1615 (1994).

    CAS  PubMed  Google Scholar 

  18. Tanaka, N. et al. Cooperation of the tumour suppressors IRF-1 and p53 in response to DNA damage. Nature 382, 816–818 (1996).

    CAS  PubMed  Google Scholar 

  19. Taniguchi, T., Ogasawara, K., Takaoka, A. & Tanaka, N. IRF family of transcription factors as regulators of host defense. Annu. Rev. Immunol. 19, 623–655 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Holtschke, T. et al. Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 87, 307–317 (1996).

    CAS  PubMed  Google Scholar 

  21. Meraro, D. et al. Protein–protein and DNA–protein interactions affect the activity of lymphoid-specific IFN regulatory factors. J. Immunol. 163, 6468–6478 (1999).

    CAS  PubMed  Google Scholar 

  22. Barber, S. A., Fultz, M. J., Salkowski, C. A. & Vogel, S. N. Differential expression of interferon regulatory factor 1 (IRF-1), IRF-2, and interferon consensus sequence binding protein genes in lipopolysaccharide (LPS)-responsive and LPS-hyporesponsive macrophages. Infect. Immun. 63, 601–608 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Galon, J., Sudarshan, C., Ito, S., Finbloom, D. & O'Shea, J. J. IL-12 induces IFN regulating factor-1 (IRF-1) gene expression in human NK and T cells. J. Immunol. 162, 7256–7262 (1999).

    CAS  PubMed  Google Scholar 

  24. Coccia, E. M., Stellacci, E., Marziali, G., Weiss, G. & Battistini, A. IFN-γ and IL-4 differently regulate inducible NO synthase gene expression through IRF-1 modulation. Int. Immunol. 12, 977–985 (2000).

    CAS  PubMed  Google Scholar 

  25. Elser, B. et al. IFN-γ represses IL-4 expression via IRF-1 and IRF-2. Immunity 17, 703–712 (2002).

    CAS  PubMed  Google Scholar 

  26. Pine, R., Canova, A. & Schindler, C. Tyrosine phosphorylated p91 binds to a single element in the ISGF2/IRF-1 promoter to mediate induction by IFN α and IFN γ, and is likely to autoregulate the p91 gene. EMBO J. 13, 158–167 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Remoli, M. E. et al. Selective expression of type I IFN genes in human dendritic cells infected with Mycobacterium tuberculosis. J. Immunol. 169, 366–374 (2002).

    CAS  PubMed  Google Scholar 

  28. Lin, R. & Hiscott, J. A role for casein kinase II phosphorylation in the regulation of IRF-1 transcriptional activity. Mol. Cell. Biochem. 191, 169–180 (1999).

    CAS  PubMed  Google Scholar 

  29. Nelson, N. et al. Expression of IFN regulatory factor family proteins in lymphocytes. Induction of Stat-1 and IFN consensus sequence binding protein expression by T cell activation. J. Immunol. 156, 3711–3720 (1996).

    CAS  PubMed  Google Scholar 

  30. Watanabe, N., Sakakibara, J., Hovanessian, A. G., Taniguchi, T. & Fujita, T. Activation of IFN-β element by IRF-1 requires a posttranslational event in addition to IRF-1 synthesis. Nucleic Acids Res. 19, 4421–4428 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Harada, H. et al. Structure and regulation of the human interferon regulatory factor 1 (IRF-1) and IRF-2 genes: implications for a gene network in the interferon system. Mol. Cell. Biol. 14, 1500–1509 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Matsuyama, T. et al. Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development. Cell 75, 83–97 (1993).

    CAS  PubMed  Google Scholar 

  33. Yamamoto, H., Lamphier, M. S., Fujita, T., Taniguchi, T. & Harada, H. The oncogenic transcription factor IRF-2 possesses a transcriptional repression and a latent activation domain. Oncogene 9, 1423–1428 (1994).

    CAS  PubMed  Google Scholar 

  34. Jesse, T. L., LaChance, R., Iademarco, M. F. & Dean, D. C. Interferon regulatory factor-2 is a transcriptional activator in muscle where it regulates expression of vascular cell adhesion molecule-1. J. Cell Biol. 140, 1265–1276 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Childs, K. S. & Goodbourn, S. Identification of novel co-repressor molecules for interferon regulatory factor-2. Nucleic Acids Res. 31, 3016–3026 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mamane, Y. et al. Interferon regulatory factors: the next generation. Gene 237, 1–14 (1999).

    CAS  PubMed  Google Scholar 

  37. Qin, B. Y. et al. Crystal structure of IRF-3 reveals mechanism of autoinhibition and virus-induced phosphoactivation. Nature Struct. Biol. 10, 913–921 (2003).

    CAS  PubMed  Google Scholar 

  38. Takahasi, K. et al. X-ray crystal structure of IRF-3 and its functional implications. Nature Struct. Biol. 10, 922–927 (2003).

    CAS  PubMed  Google Scholar 

  39. Fitzgerald, K. A. et al. IKKε and TBK1 are essential components of the IRF3 signaling pathway. Nature Immunol. 4, 491–496 (2003).

    CAS  Google Scholar 

  40. McWhirter, S. M. et al. IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc. Natl Acad. Sci. USA 101, 233–238 (2004).

    CAS  PubMed  Google Scholar 

  41. Sharma, S. et al. Triggering the interferon antiviral response through an IKK-related pathway. Science 300, 1148–1151 (2003).

    CAS  PubMed  Google Scholar 

  42. Karpova, A. Y., Trost, M., Murray, J. M., Cantley, L. C. & Howley, P. M. Interferon regulatory factor-3 is an in vivo target of DNA-PK. Proc. Natl Acad. Sci. USA 99, 2818–2823 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Marecki, S., Atchison, M. L. & Fenton, M. J. Differential expression and distinct functions of IFN regulatory factor 4 and IFN consensus sequence binding protein in macrophages. J. Immunol. 163, 2713–2722 (1999).

    CAS  PubMed  Google Scholar 

  44. Grossman, A. et al. Cloning of human lymphocyte-specific interferon regulatory factor (hLSIRF/hIRF4) and mapping of the gene to 6p23–p25. Genomics 37, 229–233 (1996).

    CAS  PubMed  Google Scholar 

  45. Grumont, R. J. & Gerondakis, S. Rel induces interferon regulatory factor 4 (IRF-4) expression in lymphocytes: modulation of interferon-regulated gene expression by Rel/nuclear factor κB. J. Exp. Med. 191, 1281–1292 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gupta, S., Jiang, M., Anthony, A. & Pernis, A. B. Lineage-specific modulation of interleukin 4 signaling by interferon regulatory factor 4. J. Exp. Med. 190, 1837–1848 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lau, J. F., Parisien, J. P. & Horvath, C. M. Interferon regulatory factor subcellular localization is determined by a bipartite nuclear localization signal in the DNA-binding domain and interaction with cytoplasmic retention factors. Proc. Natl Acad. Sci. USA 97, 7278–7283 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Brass, A. L., Kehrli, E., Eisenbeis, C. F., Storb, U. & Singh, H. Pip, a lymphoid-restricted IRF, contains a regulatory domain that is important for autoinhibition and ternary complex formation with the Ets factor PU.1. Genes Dev. 10, 2335–2347 (1996).

    CAS  PubMed  Google Scholar 

  49. Barnes, B. J. et al. Global and distinct targets of IRF-5 and IRF-7 during innate response to viral infection. J. Biol. Chem. 279, 45194–45207 (2004).

    CAS  PubMed  Google Scholar 

  50. Barnes, B. J., Kellum, M. J., Field, A. E. & Pitha, P. M. Multiple regulatory domains of IRF-5 control activation, cellular localization, and induction of chemokines that mediate recruitment of T lymphocytes. Mol. Cell. Biol. 22, 5721–5740 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Barnes, B. J., Field, A. E. & Pitha-Rowe, P. M. Virus-induced heterodimer formation between IRF-5 and IRF-7 modulates assembly of the IFNA enhanceosome in vivo and transcriptional activity of IFNA genes. J. Biol. Chem. 278, 16630–16641 (2003).

    CAS  PubMed  Google Scholar 

  52. Kondo, S. et al. Mutations in IRF6 cause Van der Woude and popliteal pterygium syndromes. Nature Genet. 32, 285–289 (2002).

    CAS  PubMed  Google Scholar 

  53. Izaguirre, A. et al. Comparative analysis of IRF and IFN-α expression in human plasmacytoid and monocyte-derived dendritic cells. J. Leukoc. Biol. 74, 1125–1138 (2003).

    CAS  PubMed  Google Scholar 

  54. Lu, R., Au, W. C., Yeow, W. S., Hageman, N. & Pitha, P. M. Regulation of the promoter activity of interferon regulatory factor-7 gene. Activation by interferon and silencing by hypermethylation. J. Biol. Chem. 275, 31805–31812 (2000).

    CAS  PubMed  Google Scholar 

  55. Hemmi, H., Kaisho, T., Takeda, K. & Akira, S. The roles of Toll-like receptor 9, MyD88, and DNA-dependent protein kinase catalytic subunit in the effects of two distinct CpG DNAs on dendritic cell subsets. J. Immunol. 170, 3059–3064 (2003).

    CAS  PubMed  Google Scholar 

  56. Kerkmann, M. et al. Activation with CpG-A and CpG-B oligonucleotides reveals two distinct regulatory pathways of type I IFN synthesis in human plasmacytoid dendritic cells. J. Immunol. 170, 4465–4474 (2003).

    CAS  PubMed  Google Scholar 

  57. Lin, R., Mamane, Y. & Hiscott, J. Multiple regulatory domains control IRF-7 activity in response to virus infection. J. Biol. Chem. 275, 34320–34327 (2000).

    CAS  PubMed  Google Scholar 

  58. Marie, I., Durbin, J. E. & Levy, D. E. Differential viral induction of distinct interferon-α genes by positive feedback through interferon regulatory factor-7. EMBO J. 17, 6660–6669 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sato, M. et al. Positive feedback regulation of type I IFN genes by the IFN-inducible transcription factor IRF-7. FEBS Lett. 441, 106–110 (1998).

    CAS  PubMed  Google Scholar 

  60. Au, W. C., Yeow, W. S. & Pitha, P. M. Analysis of functional domains of interferon regulatory factor 7 and its association with IRF-3. Virology 280, 273–282 (2001).

    CAS  PubMed  Google Scholar 

  61. Lu, R. & Pitha, P. M. Monocyte differentiation to macrophage requires interferon regulatory factor 7. J. Biol. Chem. 276, 45491–45496 (2001).

    CAS  PubMed  Google Scholar 

  62. Tsujimura, H., Tamura, T. & Ozato, K. IFN consensus sequence binding protein/IFN regulatory factor 8 drives the development of type I IFN-producing plasmacytoid dendritic cells. J. Immunol. 170, 1131–1135 (2003). This paper shows that IRF8 is associated with the generation of T H 1-cell-inducing plasmacytoid DCs.

    CAS  PubMed  Google Scholar 

  63. Tamura, T., Nagamura-Inoue, T., Shmeltzer, Z., Kuwata, T. & Ozato, K. ICSBP directs bipotential myeloid progenitor cells to differentiate into mature macrophages. Immunity 13, 155–165 (2000).

    CAS  PubMed  Google Scholar 

  64. Sharf, R. et al. Phosphorylation events modulate the ability of interferon consensus sequence binding protein to interact with interferon regulatory factors and to bind DNA. J. Biol. Chem. 272, 9785–9792 (1997).

    CAS  PubMed  Google Scholar 

  65. Nelson, N., Marks, M. S., Driggers, P. H. & Ozato, K. Interferon consensus sequence-binding protein, a member of the interferon regulatory factor family, suppresses interferon-induced gene transcription. Mol. Cell. Biol. 13, 588–599 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Sharf, R. et al. Functional domain analysis of interferon consensus sequence binding protein (ICSBP) and its association with interferon regulatory factors. J. Biol. Chem. 270, 13063–13069 (1995).

    CAS  PubMed  Google Scholar 

  67. Weisz, A. et al. Human interferon consensus sequence binding protein is a negative regulator of enhancer elements common to interferon-inducible genes. J. Biol. Chem. 267, 25589–25596 (1992).

    CAS  PubMed  Google Scholar 

  68. Eklund, E. A., Jalava, A. & Kakar, R. PU. 1, interferon regulatory factor 1, and interferon consensus sequence-binding protein cooperate to increase gp91phox expression. J. Biol. Chem. 273, 13957–13965 (1998).

    CAS  PubMed  Google Scholar 

  69. Levy, D. E., Lew, D. J., Decker, T., Kessler, D. S. & Darnell, J. E. Synergistic interaction between interferon-α and interferon-γ through induced synthesis of one subunit of the transcription factor ISGF3. EMBO J. 9, 1105–1111 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lohoff, M. et al. Interferon regulatory factor-1 is required for a T helper 1 immune response in vivo. Immunity 6, 681–689 (1997).

    CAS  PubMed  Google Scholar 

  71. Taki, S. et al. Multistage regulation of TH1-type immune responses by the transcription factor IRF-1. Immunity 6, 673–679 (1997). References 70 and 71 are the first reports to associate IRFs with the T H 1-cell versus T H 2-cell differentiation concept. They describe the marked T H 2-response-prone phenotype of Irf1−/− mice.

    CAS  PubMed  Google Scholar 

  72. Sommer, F. et al. Lack of gastritis and of an adaptive immune response in interferon regulatory factor-1-deficient mice infected with Helicobacter pylori. Eur. J. Immunol. 31, 396–402 (2001).

    CAS  PubMed  Google Scholar 

  73. Liu, J., Cao, S., Herman, L. M. & Ma, X. Differential regulation of interleukin (IL)-12 p35 and p40 gene expression and interferon (IFN)-γ-primed IL-12 production by IFN regulatory factor 1. J. Exp. Med. 198, 1265–1276 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Maruyama, S. et al. Identification of IFN regulatory factor-1 binding site in IL-12 p40 gene promoter. J. Immunol. 170, 997–1001 (2003).

    CAS  PubMed  Google Scholar 

  75. Salkowski, C. A. et al. IL-12 is dysregulated in macrophages from IRF-1 and IRF-2 knockout mice. J. Immunol. 163, 1529–1536 (1999).

    CAS  PubMed  Google Scholar 

  76. Oppmann, B. et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13, 715–725 (2000).

    CAS  PubMed  Google Scholar 

  77. Fantuzzi, G. et al. Role of interferon regulatory factor-1 in the regulation of IL-18 production and activity. Eur. J. Immunol. 31, 369–375 (2001).

    CAS  PubMed  Google Scholar 

  78. Niedbala, W. et al. Nitric oxide preferentially induces type 1 T cell differentiation by selectively up-regulating IL-12 receptor β2 expression via cGMP. Proc. Natl Acad. Sci. USA 99, 16186–16191 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Laskay, T., Rollinghoff, M. & Solbach, W. Natural killer cells participate in the early defense against Leishmania major infection in mice. Eur. J. Immunol. 23, 2237–2241 (1993).

    CAS  PubMed  Google Scholar 

  80. Scharton, T. M. & Scott, P. Natural killer cells are a source of interferon γ that drives differentiation of CD4+ T cell subsets and induces early resistance to Leishmania major in mice. J. Exp. Med. 178, 567–577 (1993).

    CAS  PubMed  Google Scholar 

  81. Ogasawara, K. et al. Requirement for IRF-1 in the microenvironment supporting development of natural killer cells. Nature 391, 700–703 (1998).

    CAS  PubMed  Google Scholar 

  82. Hida, S. et al. CD8+ T cell-mediated skin disease in mice lacking IRF-2, the transcriptional attenuator of interferon-α/β signaling. Immunity 13, 643–655 (2000).

    CAS  PubMed  Google Scholar 

  83. Honda, K., Mizutani, T. & Taniguchi, T. Negative regulation of IFN-α/β signaling by IFN regulatory factor 2 for homeostatic development of dendritic cells. Proc. Natl Acad. Sci. USA 101, 2416–2421 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ichikawa, E. et al. Defective development of splenic and epidermal CD4+ dendritic cells in mice deficient for IFN regulatory factor-2. Proc. Natl Acad. Sci. USA 101, 3909–3914 (2004). References 83 and 84 are the first reports to describe the effects of IRF2 on the generation of the B220 CD8α subset of DCs.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Lohoff, M. et al. Deficiency in the transcription factor interferon regulatory factor (IRF)-2 leads to severely compromised development of natural killer and T helper type 1 cells. J. Exp. Med. 192, 325–336 (2000). This paper describes the T H 2-response-prone phenotype of Irf2−/− mice. It also describes the dysregulated maturation of NK cells in these mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang, I. M. et al. An IFN-γ-inducible transcription factor, IFN consensus sequence binding protein (ICSBP), stimulates IL-12 p40 expression in macrophages. J. Immunol. 165, 271–279 (2000).

    CAS  PubMed  Google Scholar 

  87. Bovolenta, C. et al. Molecular interactions between interferon consensus sequence binding protein and members of the interferon regulatory factor family. Proc. Natl Acad. Sci. USA 91, 5046–5050 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Salkowski, C. A., Barber, S. A., Detore, G. R. & Vogel, S. N. Differential dysregulation of nitric oxide production in macrophages with targeted disruptions in IFN regulatory factor-1 and -2 genes. J. Immunol. 156, 3107–3110 (1996).

    CAS  PubMed  Google Scholar 

  89. Lohoff, M. et al. Dysregulated T helper cell differentiation in the absence of interferon regulatory factor 4. Proc. Natl Acad. Sci. USA 99, 11808–11812 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Rengarajan, J. et al. Interferon regulatory factor 4 (IRF4) interacts with NFATc2 to modulate interleukin 4 gene expression. J. Exp. Med. 195, 1003–1012 (2002). References 89 and 90 are the first descriptions of the requirement for IRF4 in mouse T H 2-cell development. Reference 89 also shows that IRF4 upregulates the expression of GATA3. Reference 90 also indicates that an IRF4–NFAT1 interaction might be the underlying molecular mechanism.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Tominaga, N. et al. Development of TH1 and not TH2 immune responses in mice lacking IFN-regulatory factor-4. Int. Immunol. 15, 1–10 (2003).

    CAS  PubMed  Google Scholar 

  92. Hu, C. M., Jang, S. Y., Fanzo, J. C. & Pernis, A. B. Modulation of T cell cytokine production by interferon regulatory factor-4. J. Biol. Chem. 277, 49238–49246 (2002). This paper shows the relevance of IRF4 for the production of human T H 2 cells.

    CAS  PubMed  Google Scholar 

  93. Lohoff, M. et al. Enhanced TCR-induced apoptosis in interferon regulatory factor 4-deficient CD4+ TH cells. J. Exp. Med. 200, 247–253 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Serfling, E. et al. The role of NF-AT transcription factors in T cell activation and differentiation. Biochim. Biophys. Acta 1498, 1–18 (2000).

    CAS  PubMed  Google Scholar 

  95. Zhu, J. et al. Growth factor independent-1 induced by IL-4 regulates TH2 cell proliferation. Immunity 16, 733–744 (2002).

    CAS  PubMed  Google Scholar 

  96. Dent, A. L., Hu-Li, J., Paul, W. E. & Staudt, L. M. T helper type 2 inflammatory disease in the absence of interleukin 4 and transcription factor STAT6. Proc. Natl Acad. Sci. USA 95, 13823–13828 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Rosenbauer, F. et al. Interferon consensus sequence binding protein and interferon regulatory factor-4/Pip form a complex that represses the expression of the interferon-stimulated gene-15 in macrophages. Blood 94, 4274–4281 (1999).

    CAS  PubMed  Google Scholar 

  98. Mittrucker, H. W. et al. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science 275, 540–543 (1997).

    CAS  PubMed  Google Scholar 

  99. Fanzo, J. C., Hu, C. M., Jang, S. Y. & Pernis, A. B. Regulation of lymphocyte apoptosis by interferon regulatory factor 4 (IRF-4). J. Exp. Med. 197, 303–314 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Suzuki, S. et al. Critical roles of interferon regulatory factor 4 in CD11bhighCD8α dendritic cell development. Proc. Natl Acad. Sci. USA 101, 8981–8986 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Fehr, T. et al. Crucial role of interferon consensus sequence binding protein, but neither of interferon regulatory factor 1 nor of nitric oxide synthesis for protection against murine listeriosis. J. Exp. Med. 185, 921–931 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Giese, N. A. et al. Interferon (IFN) consensus sequence-binding protein, a transcription factor of the IFN regulatory factor family, regulates immune responses in vivo through control of interleukin 12 expression. J. Exp. Med. 186, 1535–1546 (1997). This paper and reference 104 are the first reports to describe the T H 2-response-prone phenotype of Irf8−/− mice. This paper also describes the susceptibility of these mice to infection with L. major and their deficit in IL-12 production. Reference 104 also describes the susceptibility of these mice to infection with Toxoplasma gondii and their deficit in IL-12 production.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Hein, J. et al. Interferon consensus sequence binding protein confers resistance against Yersinia enterocolitica. Infect. Immun. 68, 1408–1417 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Scharton, K. T., Contursi, C., Masumi, A., Sher, A. & Ozato, K. Interferon consensus sequence binding protein-deficient mice display impaired resistance to intracellular infection due to a primary defect in interleukin 12 p40 induction. J. Exp. Med. 186, 1523–1534 (1997).

    Google Scholar 

  105. Kim, Y. M. et al. Roles of IFN consensus sequence binding protein and PU.1 in regulating IL-18 gene expression. J. Immunol. 163, 2000–2007 (1999).

    CAS  PubMed  Google Scholar 

  106. Wu, C. Y., Maeda, H., Contursi, C., Ozato, K. & Seder, R. A. Differential requirement of IFN consensus sequence binding protein for the production of IL-12 and induction of TH1-type cells in response to IFN-γ. J. Immunol. 162, 807–812 (1999).

    CAS  PubMed  Google Scholar 

  107. Doyle, S. et al. IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity 17, 251–263 (2002).

    CAS  PubMed  Google Scholar 

  108. Fitzgerald, K. A. et al. LPS–TLR4 signaling to IRF-3/7 and NF-κB involves the Toll adapters TRAM and TRIF. J. Exp. Med. 198, 1043–1055 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Yamamoto, M. et al. A novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-β promoter in the Toll-like receptor signaling. J. Immunol. 169, 6668–6672 (2002).

    CAS  PubMed  Google Scholar 

  110. Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science 301, 640–643 (2003).

    CAS  PubMed  Google Scholar 

  111. Barnes, B. J. et al. Global and distinct targets of IRF-5 and IRF-7 during innate response to viral infection. J. Biol. Chem. 279, 45194–45207 (2004).

    CAS  PubMed  Google Scholar 

  112. Fujita, T., Kimura, Y., Miyamoto, M., Barsoumian, E. L. & Taniguchi, T. Induction of endogenous IFN-α and IFN-β genes by a regulatory transcription factor, IRF-1. Nature 337, 270–272 (1989).

    CAS  PubMed  Google Scholar 

  113. Wathelet, M. G. et al. Virus infection induces the assembly of coordinately activated transcription factors on the IFN-β enhancer in vivo. Mol. Cell 1, 507–518 (1998).

    CAS  PubMed  Google Scholar 

  114. Sasaki, S., Amara, R. R., Yeow, W. S., Pitha, P. M. & Robinson, H. L. Regulation of DNA-raised immune responses by cotransfected interferon regulatory factors. J. Virol. 76, 6652–6659 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Nakao, F. et al. Association of IFN-γ and IFN regulatory factor 1 polymorphisms with childhood atopic asthma. J. Allergy Clin. Immunol. 107, 499–504 (2001).

    CAS  PubMed  Google Scholar 

  116. Cherwinski, H. M., Schumacher, J. H., Brown, K. D. & Mosmann, T. R. Two types of mouse helper T cell clone. III. Further differences in lymphokine synthesis between TH1 and TH2 clones revealed by RNA hybridization, functionally monospecific bioassays, and monoclonal antibodies. J. Exp. Med. 166, 1229–1244 (1987).

    CAS  PubMed  Google Scholar 

  117. Fiorentino, D. F., Bond, M. W. & Mosmann, T. R. Two types of mouse T helper cell. IV. TH2 clones secrete a factor that inhibits cytokine production by TH1 clones. J. Exp. Med. 170, 2081–2095 (1989).

    CAS  PubMed  Google Scholar 

  118. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS  PubMed  Google Scholar 

  119. Sacks, D. & Noben-Trauth, N. The immunology of susceptibility and resistance to Leishmania major in mice. Nature Rev. Immunol. 2, 845–858 (2002).

    CAS  Google Scholar 

  120. Murphy, K. M. & Reiner, S. L. The lineage decisions of helper T cells. Nature Rev. Immunol. 2, 933–944 (2002).

    CAS  Google Scholar 

  121. Zheng, W. & Flavell, R. A. The transcription factor GATA-3 is necessary and sufficient for TH2 cytokine gene expression in CD4 T cells. Cell 89, 587–596 (1997).

    CAS  PubMed  Google Scholar 

  122. Ouyang, W. et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent TH2 development and commitment. Immunity 12, 27–37 (2000).

    CAS  PubMed  Google Scholar 

  123. Takemoto, N. et al. Chromatin remodeling at the IL-4/IL-13 intergenic regulatory region for TH2-specific cytokine gene cluster. J. Immunol. 165, 6687–6691 (2000).

    CAS  PubMed  Google Scholar 

  124. Noben-Trauth, N. et al. An interleukin 4 (IL-4)-independent pathway for CD4+ T cell IL-4 production is revealed in IL-4 receptor-deficient mice. Proc. Natl Acad. Sci. USA 94, 10838–10843 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Kim, J. I., Ho, I. C., Grusby, M. J. & Glimcher, L. H. The transcription factor c-Maf controls the production of interleukin-4 but not other TH2 cytokines. Immunity 10, 745–751 (1999).

    CAS  PubMed  Google Scholar 

  126. Lighvani, A. A. et al. T-bet is rapidly induced by interferon-γ in lymphoid and myeloid cells. Proc. Natl Acad. Sci. USA 98, 15137–15142 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Szabo, S. J. et al. A novel transcription factor, T-bet, directs TH1 lineage commitment. Cell 100, 655–669 (2000).

    CAS  PubMed  Google Scholar 

  128. Afkarian, M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nature Immunol. 3, 549–557 (2002).

    CAS  Google Scholar 

  129. Mullen, A. C. et al. Hlx is induced by and genetically interacts with T-bet to promote heritable TH1 gene induction. Nature Immunol. 3, 652–658 (2002).

    CAS  Google Scholar 

  130. Pflanz, S. et al. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity 16, 779–790 (2002).

    CAS  PubMed  Google Scholar 

  131. Smeltz, R. B., Chen, J., Ehrhardt, R. & Shevach, E. M. Role of IFN-γ in TH1 differentiation: IFN-γ regulates IL-18Rα expression by preventing the negative effects of IL-4 and by inducing/maintaining IL-12 receptor β2 expression. J. Immunol. 168, 6165–6172 (2002).

    CAS  PubMed  Google Scholar 

  132. Bradley, L. M., Dalton, D. K. & Croft, M. A direct role for IFN-γ in regulation of TH1 cell development. J. Immunol. 157, 1350–1358 (1996).

    CAS  PubMed  Google Scholar 

  133. Farrar, J. D. et al. Selective loss of type I interferon-induced STAT4 activation caused by a minisatellite insertion in mouse Stat2. Nature Immunol. 1, 65–69 (2000).

    CAS  Google Scholar 

  134. Rogge, L. et al. The role of Stat4 in species-specific regulation of TH cell development by type I IFNs. J. Immunol. 161, 6567–6574 (1998).

    CAS  PubMed  Google Scholar 

  135. Cella, M. et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nature Med. 5, 919–923 (1999).

    CAS  PubMed  Google Scholar 

  136. Maldonado-Lopez, R. et al. CD8α+ and CD8α subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J. Exp. Med. 189, 587–592 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Sato, M. et al. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-α/β gene induction. Immunity 13, 539–548 (2000). This paper provides clear evidence of the interplay of IRF3, -7 and -9 in the production of type I IFNs in response to viral infection. It describes the susceptibility of Irf3−/− mice to viral infection.

    CAS  PubMed  Google Scholar 

  138. Kimura, T. et al. Essential and non-redundant roles of p48 (ISGF3 γ) and IRF-1 in both type I and type II interferon responses, as revealed by gene targeting studies. Genes Cells 1, 115–124 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. S. Duncan (Ontario Cancer Institute, Toronto, Canada), H.-W. Mittrücker (Max–Planck-Institut, Berlin, Germany), T. Matsuyama (Nagasaki University, Nagasaki, Japan) and D. Ferrick (University of California, Davis, United States) for their excellent cooperation during the past few years. We also thank M. E. Saunders for scientific editing. This work was supported by grants from the Deutsche Forschungsgemeinschaft (Germany) and the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Lohoff or Tak W. Mak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

BCL-6

GATA3

IFN-γ

IL-4

IRF1

IRF2

IRF4

IRF8

STAT1

STAT6

Glossary

VIRUS–IFN AXIS

(Virus–interferon axis). After viral infection, constitutively expressed cytoplasmic IFN-regulatory factor 3 (IRF3) translocates to the nucleus to induce transcription of the IFN-α4 and IFN-β genes. In turn, IFN-α4 and IFN-β induce the expression of IRF7 and thereby the production of other subtypes of IFN-α.

PEST DOMAIN

(Proline-, glutamic-acid-, serine- and threonine-rich domain). A domain that supports the interaction of transcription factors of the ETS family with other transcription factors.

CONCANAVALIN A

(con A). A plant lectin that functions as a T-cell mitogen.

NUCLEAR-LOCALIZATION SIGNAL

A positively charged region of a target protein that binds a cytoplasmic transporter protein. It is responsible for directing the transport of the target protein through nuclear membrane pores and into the nucleus.

PLASMACYTOID DCS

(Plasmacytoid dendritic cells). Immature DCs with a plasmacytoid morphology (that is, similar to plasmablasts), which produce type I interferons in response to viral infection.

ACTIVATION-INDUCED CELL DEATH

(AICD). Apoptotic cell death that is triggered by cellular activation. For example, the death undergone by T helper cells that are activated by CD3-specific antibodies.

ETS SITE

A DNA-binding motif that is recognized by transcription factors of the ETS family. It is a purine-rich sequence that contains the core motif GGAA/T.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lohoff, M., Mak, T. Roles of interferon-regulatory factors in T-helper-cell differentiation. Nat Rev Immunol 5, 125–135 (2005). https://doi.org/10.1038/nri1552

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1552

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing