Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dendritic cells: emerging pharmacological targets of immunosuppressive drugs

Key Points

  • The development of pharmacological immunosuppression has revolutionized the treatment of autoimmune diseases and transplant recipients.

  • Traditionally, lymphocytes have been considered the main targets of immunosuppressive drugs.

  • Dendritic cells (DCs) represent a heterogeneous population of uniquely well-equipped antigen-presenting cells (APCs) that initiate and regulate immune responses.

  • Accumulating evidence indicates that many immunosuppressive and anti-inflammatory drugs target DCs in defined ways.

  • Corticosteroids and vitamin D receptor ligands are potent inhibitors of DC differentiation and maturation, whereas rapamycin targets antigen uptake and maturation of DCs. Chloroquine interferes with endosomal antigen processing and mycophenolate mofetil (MMF), as well as the anti-inflammatory drug acetylsalicylic acid (aspirin), have been shown to suppress DC maturation. The new cyclophilin-binding immunosuppressant sanglifehrin A blocks the production of bioactive interleukin-12 (IL-12), without affecting the phenotypic maturation of DCs.

  • Pharmacological programming of DCs provides a safe and predictable means of their manipulation and allows the generation of DCs of any desired phenotype or function.

  • The simple concept that immature DCs are tolerogenic and mature DCs immunogenic has been revised by several reports showing that phenotypically mature, IL-12low DCs can induce regulatory T-cell responses. These DCs have been designated partially mature or semi-mature DCs.

  • Putative tolerogenic immature DCs can be generated in the laboratory in the presence of drugs that inhibit DC maturation. Putative tolerogenic partially mature DCs can be generated by a combination of agents that suppress pro-inflammatory cytokine production (for example, IL-10) with substances that promote phenotypic maturation (for example, tumour-necrosis factor).

Abstract

Immunosuppressive drugs have revolutionized organ transplantation and improved the therapeutic management of autoimmune diseases. The development of immunosuppressive drugs and understanding of their action traditionally has been focused on lymphocytes, but recent evidence indicates that these agents interfere with immune responses at the earliest stage, targeting key functions of dendritic cells (DCs). Here, we review our present understanding of how classical and new immunosuppressive agents interfere with DC development and function. This knowledge might provide a rational basis for the selection of immunosuppressive drugs in different clinical settings and for the generation of tolerogenic DCs in the laboratory.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Checkpoints of dendritic-cell immunology.
Figure 2: Immunosuppressive and anti-inflammatory drugs target dendritic cells.
Figure 3: Generation of immunoregulatory dendritic cells in the laboratory.

Similar content being viewed by others

References

  1. Schwartz, R. & Dameshek, W. Drug-induced immunological tolerance. Nature 183, 1682–1683 (1959).

    CAS  PubMed  Google Scholar 

  2. Schwartz, R. & Dameshek, W. The effects of 6-mercaptopurine on homograft reactions. J. Clin. Invest. 39, 952–958 (1960). References 1 and 2 initiated the era of drug-based immunosuppression by showing that mercaptopurine inhibited lymphocyte proliferation and prolonged graft survival.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Starzl, T. E. & Zinkernagel, R. M. Transplantation tolerance from a historical perspective. Nature Rev. Immunol. 1, 233–239 (2001).

    CAS  Google Scholar 

  4. Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–811 (2000).

    CAS  PubMed  Google Scholar 

  5. Piemonti, L. et al. Glucocorticoids affect human dendritic cell differentiation and maturation. J. Immunol. 162, 6473–6481 (1999).

    CAS  PubMed  Google Scholar 

  6. Matasic, R., Dietz, A. B. & Vuk-Pavlovic, S. Dexamethasone inhibits dendritic cell maturation by redirecting differentiation of a subset of cells. J. Leukoc. Biol. 66, 909–914 (1999).

    CAS  PubMed  Google Scholar 

  7. Woltman, A. M. et al. The effect of calcineurin inhibitors and corticosteroids on the differentiation of human dendritic cells. Eur. J. Immunol. 30, 1807–1812 (2000).

    CAS  PubMed  Google Scholar 

  8. Woltman, A. M., Massacrier, C., de Fijter, J. W., Caux, C. & van Kooten, C. Corticosteroids prevent generation of CD34+-derived dermal dendritic cells but do not inhibit Langerhans cell development. J. Immunol. 168, 6181–6188 (2002).

    CAS  PubMed  Google Scholar 

  9. Moser, M. et al. Glucocorticoids downregulate dendritic cell function in vitro and in vivo. Eur. J. Immunol. 25, 2818–2824 (1995). An early report showing that corticosteroids strongly suppress the maturation and T-cell stimulatory capacity of dendritic cells (DCs) in vitro and in vivo.

    CAS  PubMed  Google Scholar 

  10. Till, S. J. et al. Recruitment of CD1a+ Langerhans cells to the nasal mucosa in seasonal allergic rhinitis and effects of topical corticosteroid therapy. Allergy 56, 126–131 (2001).

    CAS  PubMed  Google Scholar 

  11. Moller, G. M. et al. Increased numbers of dendritic cells in the bronchial mucosa of atopic asthmatic patients: downregulation by inhaled corticosteroids. Clin. Exp. Allergy 26, 517–524 (1996).

    CAS  PubMed  Google Scholar 

  12. Shodell, M. & Siegal, F. P. Corticosteroids depress IFN-α-producing plasmacytoid dendritic cells in human blood. J. Allergy Clin. Immunol. 108, 446–448 (2001).

    CAS  PubMed  Google Scholar 

  13. Sacedon, R., Vicente, A., Varas, A., Jimenez, E. & Zapata, A. G. Early differentiation of thymic dendritic cells in the absence of glucocorticoids. J. Neuroimmunol. 94, 103–108 (1999).

    CAS  PubMed  Google Scholar 

  14. Berer, A. et al. 1,25-Dihydroxyvitamin D3 inhibits dendritic cell differentiation and maturation in vitro. Exp. Hematol. 28, 575–583 (2000).

    CAS  PubMed  Google Scholar 

  15. Penna, G. & Adorini, L. 1α,25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J. Immunol. 164, 2405–2411 (2000).

    CAS  PubMed  Google Scholar 

  16. Piemonti, L. et al. Vitamin D3 affects differentiation, maturation, and function of human monocyte-derived dendritic cells. J. Immunol. 164, 4443–4451 (2000).

    CAS  PubMed  Google Scholar 

  17. Griffin, M. D. et al. Potent inhibition of dendritic cell differentiation and maturation by vitamin D analogs. Biochem. Biophys. Res. Commun. 270, 701–708 (2000).

    CAS  PubMed  Google Scholar 

  18. Griffin, M. D. et al. Dendritic cell modulation by 1α,25 dihydroxyvitamin D3 and its analogs: a vitamin D receptor-dependent pathway that promotes a persistent state of immaturity in vitro and in vivo. Proc. Natl Acad. Sci. USA 98, 6800–6805 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hewison, M. et al. Differential regulation of vitamin D receptor and its ligand in human monocyte-derived dendritic cells. J. Immunol. 170, 5382–5390 (2003).

    CAS  PubMed  Google Scholar 

  20. Millard, A. L. et al. Butyrate affects differentiation, maturation and function of human monocyte-derived dendritic cells and macrophages. Clin. Exp. Immunol. 130, 245–255 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Saemann, M. D. et al. Bacterial metabolite interference with maturation of human monocyte-derived dendritic cells. J. Leukoc. Biol. 71, 238–246 (2002).

    CAS  PubMed  Google Scholar 

  22. Sehgal, S. N. Rapamune (RAPA, rapamycin, sirolimus): mechanism of action immunosuppressive effect results from blockade of signal transduction and inhibition of cell cycle progression. Clin. Biochem. 31, 335–340 (1998).

    CAS  PubMed  Google Scholar 

  23. Woltman, A. M. et al. Rapamycin induces apoptosis in monocyte- and CD34-derived dendritic cells but not in monocytes and macrophages. Blood 98, 174–180 (2001).

    CAS  PubMed  Google Scholar 

  24. Monti, P. et al. Rapamycin impairs antigen uptake of human dendritic cells. Transplantation 75, 137–145 (2003).

    CAS  PubMed  Google Scholar 

  25. Hackstein, H. et al. Rapamycin inhibits IL-4-induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo. Blood 101, 4457–4463 (2003).

    CAS  PubMed  Google Scholar 

  26. Woltman, A. M. et al. Rapamycin specifically interferes with GM-CSF signaling in human dendritic cells, leading to apoptosis via increased p27KIP1 expression. Blood 101, 1439–1445 (2003).

    CAS  PubMed  Google Scholar 

  27. Lennon-Dumenil, A. M., Bakker, A. H., Wolf-Bryant, P., Ploegh, H. L. & Lagaudriere-Gesbert, C. A closer look at proteolysis and MHC-class-II-restricted antigen presentation. Curr. Opin. Immunol. 14, 15–21 (2002).

    CAS  PubMed  Google Scholar 

  28. Gromme, M. & Neefjes, J. Antigen degradation or presentation by MHC class I molecules via classical and non-classical pathways. Mol. Immunol. 39, 181–202 (2002).

    CAS  PubMed  Google Scholar 

  29. Delamarre, L., Holcombe, H. & Mellman, I. Presentation of exogenous antigens on major histocompatibility complex (MHC) class I and MHC class II molecules is differentially regulated during dendritic cell maturation. J. Exp. Med. 198, 111–122 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hackstein, H. et al. Aspirin inhibits in vitro maturation and in vivo immunostimulatory function of murine myeloid dendritic cells. J. Immunol. 166, 7053–7062 (2001).

    CAS  PubMed  Google Scholar 

  31. Hackstein, H., Taner, T., Logar, A. J. & Thomson, A. W. Rapamycin inhibits macropinocytosis and mannose receptor-mediated endocytosis by bone marrow-derived dendritic cells. Blood 100, 1084–1087 (2002). This study was the first to show inhibition by an immunosuppressive drug of antigen uptake by DCs.

    CAS  PubMed  Google Scholar 

  32. Tajima, K. et al. Immunomodulatory effects of cyclosporin A on human peripheral blood dendritic cell subsets. Immunology 108, 321–328 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Groettrup, M. & Schmidtke, G. Selective proteasome inhibitors: modulators of antigen presentation? Drug Discov. Today 4, 63–71 (1999).

    CAS  PubMed  Google Scholar 

  34. Fenteany, G. et al. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268, 726–731 (1995).

    CAS  PubMed  Google Scholar 

  35. Cerundolo, V. et al. The proteasome-specific inhibitor lactacystin blocks presentation of cytotoxic T lymphocyte epitopes in human and murine cells. Eur. J. Immunol. 27, 336–341 (1997).

    CAS  PubMed  Google Scholar 

  36. Andre, P. et al. An inhibitor of HIV-1 protease modulates proteasome activity, antigen presentation, and T cell responses. Proc. Natl Acad. Sci. USA 95, 13120–13124 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, X. et al. Rapamycin inhibits proteasome activator expression and proteasome activity. Eur. J. Immunol. 27, 2781–2786 (1997).

    CAS  PubMed  Google Scholar 

  38. Groettrup, M. et al. A role for the proteasome regulator PA28α in antigen presentation. Nature 381, 166–168 (1996).

    CAS  PubMed  Google Scholar 

  39. Streicher, H. Z., Berkower, I. J., Busch, M., Gurd, F. R. & Berzofsky, J. A. Antigen conformation determines processing requirements for T-cell activation. Proc. Natl Acad. Sci. USA 81, 6831–6835 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Schultz, K. R., Bader, S., Paquet, J. & Li, W. Chloroquine treatment affects T-cell priming to minor histocompatibility antigens and graft-versus-host disease. Blood 86, 4344–4352 (1995).

    CAS  PubMed  Google Scholar 

  41. Lee, J. et al. Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of Toll-like receptor 7. Proc. Natl Acad. Sci. USA 100, 6646–6651 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hacker, H. et al. CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by nonspecific endocytosis and endosomal maturation. EMBO J. 17, 6230–6240 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Meinao, I. M., Sato, E. I., Andrade, L. E., Ferraz, M. B. & Atra, E. Controlled trial with chloroquine diphosphate in systemic lupus erythematosus. Lupus 5, 237–241 (1996).

    CAS  PubMed  Google Scholar 

  44. Dieu, M. C. et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J. Exp. Med. 188, 373–386 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Martin-Fontecha, A. et al. Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J. Exp. Med. 198, 615–621 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lutz, M. B. & Schuler, G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol. 23, 445–449 (2002).

    CAS  PubMed  Google Scholar 

  47. Cumberbatch, M., Dearman, R. J. & Kimber, I. Inhibition by dexamethasone of Langerhans cell migration: influence of epidermal cytokine signals. Immunopharmacology 41, 235–243 (1999).

    CAS  PubMed  Google Scholar 

  48. Xing, N. et al. Distinctive dendritic cell modulation by vitamin D3 and glucocorticoid pathways. Biochem. Biophys. Res. Commun. 297, 645–652 (2002).

    CAS  PubMed  Google Scholar 

  49. Vulcano, M. et al. Dendritic cells as a major source of macrophage-derived chemokine/CCL22 in vitro and in vivo. Eur. J. Immunol. 31, 812–822 (2001).

    CAS  PubMed  Google Scholar 

  50. Vulcano, M. et al. Unique regulation of CCL18 production by maturing dendritic cells. J. Immunol. 170, 3843–3849 (2003).

    CAS  PubMed  Google Scholar 

  51. Randolph, G. J. Dendritic cell migration to lymph nodes: cytokines, chemokines, and lipid mediators. Semin. Immunol. 13, 267–274 (2001).

    CAS  PubMed  Google Scholar 

  52. Randolph, G. J. et al. A physiologic function for p-glycoprotein (MDR-1) during the migration of dendritic cells from skin via afferent lymphatic vessels. Proc. Natl Acad. Sci. USA 95, 6924–6929 (1998). A report indicating that the lipid transporter multidrug resistance protein 1 (MDR1) regulates DC migration to lymphatics.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Schinkel, A. H., Wagenaar, E., van Deemter, L., Mol, C. A. & Borst, P. Absence of the mdr1a p-glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J. Clin. Invest. 96, 1698–1705 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lohoff, M. et al. A multidrug-resistance protein (MRP)-like transmembrane pump is highly expressed by resting murine T helper (TH) 2, but not TH1 cells, and is induced to equal expression levels in TH1 and TH2 cells after antigenic stimulation in vivo. J. Clin. Invest. 101, 703–710 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. De Waal, E. J., Rademakers, L. H., Schuurman, H. J., Vos, J. G. & Van Loveren, H. Alterations of dendritic cells in the rat thymus without epithelial cell loss during cyclosporine treatment and recovery. Toxicology 110, 133–151 (1996).

    CAS  PubMed  Google Scholar 

  56. Chen, T. et al. Cyclosporin A impairs dendritic cell migration by regulating chemokine receptor expression and inhibiting cyclooxygenase-2 expression. Blood 22 September 2003 (doi: 10.1182/blood-2003-07-2412). An important publication showing that cyclosporine A (CsA) inhibits DC migration by suppression of CC-chemokine receptor 7 (CCR7) expression.

  57. Luft, T. et al. Functionally distinct dendritic cell (DC) populations induced by physiologic stimuli: prostaglandin E2 regulates the migratory capacity of specific DC subsets. Blood 100, 1362–1372 (2002).

    CAS  PubMed  Google Scholar 

  58. Scandella, E. et al. CCL19/CCL21-triggered signal transduction and migration of dendritic cells require prostaglandin E2 . Blood 100, 1354–1361 (2003).

    Google Scholar 

  59. Hackstein, H., Morelli, A. E. & Thomson, A. W. Designer dendritic cells for tolerance induction: guided not misguided missiles. Trends Immunol. 22, 437–442 (2001).

    CAS  PubMed  Google Scholar 

  60. Rea, D. et al. Glucocorticoids transform CD40-triggering of dendritic cells into an alternative activation pathway resulting in antigen-presenting cells that secrete IL-10. Blood 95, 3162–3167 (2000).

    CAS  PubMed  Google Scholar 

  61. Matyszak, M. K., Citterio, S., Rescigno, M. & Ricciardi-Castagnoli, P. Differential effects of corticosteroids during different stages of dendritic cell maturation. Eur. J. Immunol. 30, 1233–1242 (2000). This report shows that multiple restimulation of T cells with corticosteroid-treated DCs allows the in vitro generation of regulatory T cells.

    CAS  PubMed  Google Scholar 

  62. Ashworth, J., Kahan, M. C. & Breathnach, S. M. Flow cytometrically-sorted residual HLA-DR+T6+ Langerhans cells in topical steroid-treated human skin express normal amounts of HLA-DR and CD1a/T6 antigens and exhibit normal alloantigen-presenting capacity. J. Invest. Dermatol. 92, 258–262 (1989).

    CAS  PubMed  Google Scholar 

  63. Kiani, A., Rao, A. & Aramburu, J. Manipulating immune responses with immunosuppressive agents that target NFAT. Immunity 12, 359–372 (2000).

    CAS  PubMed  Google Scholar 

  64. Lee, J. I. et al. Cyclosporine A inhibits the expression of co-stimulatory molecules on in vitro-generated dendritic cells: association with reduced nuclear translocation of nuclear factor-κB. Transplantation 68, 1255–1263 (1999).

    CAS  PubMed  Google Scholar 

  65. Morelli, A. E. et al. Microchimerism, donor dendritic cells, and alloimmune reactivity in recipients of Flt3 ligand-mobilized hemopoietic cells: modulation by tacrolimus. J. Immunol. 165, 226–237 (2000).

    CAS  PubMed  Google Scholar 

  66. Szabo, G., Gavala, C. & Mandrekar, P. Tacrolimus and cyclosporine A inhibit allostimulatory capacity and cytokine production of human myeloid dendritic cells. J. Investig. Med. 49, 442–449 (2001).

    CAS  PubMed  Google Scholar 

  67. Shimizu, K. et al. Tacrolimus (FK506) treatment of CD34+ hematopoietic progenitor cells promote the development of dendritic cells that drive CD4+ T cells toward TH2 responses. J. Leukoc. Biol. 68, 633–640 (2000).

    CAS  PubMed  Google Scholar 

  68. Duperrier, K. et al. Cyclosporin A inhibits dendritic cell maturation promoted by TNF-α or LPS but not by double-stranded RNA or CD40L. J. Leukoc. Biol. 72, 953–961 (2002).

    CAS  PubMed  Google Scholar 

  69. Matsue, H. et al. Contrasting impacts of immunosuppressive agents (rapamycin, FK506, cyclosporin A, and dexamethasone) on bidirectional dendritic cell–T cell interaction during antigen presentation. J. Immunol. 169, 3555–3564 (2002).

    CAS  PubMed  Google Scholar 

  70. Zenke, G. et al. Sanglifehrin A, a novel cyclophilin-binding compound showing immunosuppressive activity with a new mechanism of action. J. Immunol. 166, 7165–7171 (2001).

    CAS  PubMed  Google Scholar 

  71. Steinschulte, C., Taner, T., Thomson, A. W., Bein, G. & Hackstein, H. Cutting edge: sanglifehrin A, a novel cyclophilin-binding immunosuppressant blocks bioactive IL-12 production by human dendritic cells. J. Immunol. 171, 542–546 (2003). This study shows that the new cyclophilin-binding immunosuppressant sanglifehrin A rapidly blocks bioactive interleukin-12 (IL-12) production by human DCs. The effect was found to be unique in contrast to the related drugs CsA and rapamycin.

    CAS  PubMed  Google Scholar 

  72. Mehling, A. et al. Mycophenolate mofetil impairs the maturation and function of murine dendritic cells. J. Immunol. 165, 2374–2381 (2000). The first report showing that mycophenolate mofetil mediates its immunosuppressive effects not only by suppressing T-cell proliferation, but also by inhibiting DC maturation.

    CAS  PubMed  Google Scholar 

  73. Matasic, R., Dietz, A. B. & Vuk-Pavlovic, S. Cyclooxygenase-independent inhibition of dendritic cell maturation by aspirin. Immunology 101, 53–60 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Verhasselt, V. et al. N-acetyl-L-cysteine inhibits primary human T cell responses at the dendritic cell level: association with NF-κB inhibition. J. Immunol. 162, 2569–2574 (1999).

    CAS  PubMed  Google Scholar 

  75. Ho, L. J. et al. Aspirin differentially regulates endotoxin-induced IL-12 and TNF-α production in human dendritic cells. Scand. J. Rheumatol. 30, 346–352 (2001).

    CAS  PubMed  Google Scholar 

  76. Garg, S. et al. Genetic tagging shows increased frequency and longevity of antigen-presenting, skin-derived dendritic cells in vivo. Nature Immunol. 4, 907–912 (2003).

    CAS  Google Scholar 

  77. McLellan, A. et al. MHC class II and CD40 play opposing roles in dendritic cell survival. Eur. J. Immunol. 30, 2612–2619 (2000).

    CAS  PubMed  Google Scholar 

  78. Miga, A. J. et al. Dendritic cell longevity and T cell persistence is controlled by CD154–CD40 interactions. Eur. J. Immunol. 31, 959–965 (2001).

    CAS  PubMed  Google Scholar 

  79. Kim, K. D., Choe, Y. K., Choe, I. S. & Lim, J. S. Inhibition of glucocorticoid-mediated, caspase-independent dendritic cell death by CD40 activation. J. Leukoc. Biol. 69, 426–434 (2001).

    CAS  PubMed  Google Scholar 

  80. Castedo, M., Ferri, K. F. & Kroemer, G. Mammalian target of rapamycin (mTOR): pro- and anti-apoptotic. Cell Death Differ. 9, 99–100 (2002).

    CAS  PubMed  Google Scholar 

  81. Morelli, A. E., Hackstein, H. & Thomson, A. W. Potential of tolerogenic dendritic cells for transplantation. Semin. Immunol. 13, 323–335 (2001).

    CAS  PubMed  Google Scholar 

  82. Steinman, R. M., Hawiger, D. & Nussenzweig, M. C. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21, 685–711 (2003).

    CAS  PubMed  Google Scholar 

  83. Menges, M. et al. Repetitive injections of dendritic cells matured with tumor necrosis factor α induce antigen-specific protection of mice from autoimmunity. J. Exp. Med. 195, 15–21 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Gilliet, M. & Liu, Y. J. Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J. Exp. Med. 195, 695–704 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Huang, F. P. et al. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J. Exp. Med. 191, 435–444 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Scheinecker, C., McHugh, R., Shevach, E. M. & Germain, R. N. Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J. Exp. Med. 196, 1079–1090 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Yamazaki, S. et al. Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J. Exp. Med. 198, 235–247 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. O'Connell, P. J. et al. Immature and mature CD8α+ dendritic cells prolong the survival of vascularized heart allografts. J. Immunol. 168, 143–154 (2002).

    CAS  PubMed  Google Scholar 

  89. Akbari, O., DeKruyff, R. H. & Umetsu, D. T. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nature Immunol. 2, 725–731 (2001).

    CAS  Google Scholar 

  90. Akbari, O. et al. Antigen-specific regulatory T cells develop via the ICOS–ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nature Med. 8, 1024–1032 (2002).

    CAS  PubMed  Google Scholar 

  91. Gregori, S. et al. Regulatory T cells induced by 1α,25-dihydroxyvitamin D3 and mycophenolate mofetil treatment mediate transplantation tolerance. J. Immunol. 167, 1945–1953 (2001).

    CAS  PubMed  Google Scholar 

  92. Muller, G. et al. Interleukin-10-treated dendritic cells modulate immune responses of naive and sensitized T cells in vivo. J. Invest. Dermatol. 119, 836–841 (2002).

    CAS  PubMed  Google Scholar 

  93. Steinbrink, K., Graulich, E., Kubsch, S., Knop, J. & Enk, A. H. CD4+ and CD8+ anergic T cells induced by interleukin-10-treated human dendritic cells display antigen-specific suppressor activity. Blood 99, 2468–2476 (2002).

    CAS  PubMed  Google Scholar 

  94. Thomas, J. M. et al. Peritransplant tolerance induction in macaques: early events reflecting the unique synergy between immunotoxin and deoxyspergualin. Transplantation 68, 1660–1673 (1999).

    CAS  PubMed  Google Scholar 

  95. Yang, J. et al. LF15-0195 generates tolerogenic dendritic cells by suppression of NF-κB signaling through inhibition of IKK activity. J. Leukoc. Biol. 74, 438–447 (2003).

    CAS  PubMed  Google Scholar 

  96. Min, W. P. et al. Synergistic tolerance induced by LF15-0195 and anti-CD45RB monoclonal antibody through suppressive dendritic cells. Transplantation 75, 1160–1165 (2003).

    CAS  PubMed  Google Scholar 

  97. Giannoukakis, N. et al. Prolongation of cardiac allograft survival using dendritic cells treated with NF-κB decoy oligodeoxyribonucleotides. Mol. Ther. 1, 430–437 (2000).

    CAS  PubMed  Google Scholar 

  98. Martin, E., O'Sullivan, B., Low, P. & Thomas, R. Antigen-specific suppression of a primed immune response by dendritic cells mediated by regulatory T cells secreting interleukin-10. Immunity 18, 155–167 (2003).

    CAS  PubMed  Google Scholar 

  99. Sato, K., Yamashita, N., Baba, M. & Matsuyama, T. Regulatory dendritic cells protect mice from murine acute graft-versus-host disease and leukemia relapse. Immunity 18, 367–379 (2003).

    CAS  PubMed  Google Scholar 

  100. Sato, K., Yamashita, N., Baba, M. & Matsuyama, T. Modified myeloid dendritic cells act as regulatory dendritic cells to induce anergic and regulatory T cells. Blood 101, 3581–3589 (2003).

    CAS  PubMed  Google Scholar 

  101. Grohmann, U., Fallarino, F. & Puccetti, P. Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol. 24, 242–248 (2003).

    CAS  PubMed  Google Scholar 

  102. Munn, D. H. et al. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 297, 1867–1870 (2002).

    CAS  PubMed  Google Scholar 

  103. Wirleitner, B. et al. Monocyte-derived dendritic cells release neopterin. J. Leukoc. Biol. 72, 1148–1153 (2002).

    CAS  PubMed  Google Scholar 

  104. Mellor, A. L. et al. Cutting edge: induced indoleamine 2,3 dioxygenase expression in dendritic cell subsets suppresses T cell clonal expansion. J. Immunol. 171, 1652–1655 (2003).

    CAS  PubMed  Google Scholar 

  105. Hench, P. S., Kendall, E. C., Slocumb, C. H. & Polley, H. F. The effect of a hormone of the adrenal cortex (17-hydroxy-11-dehydrocorticosterone: compound E) and of pituitary adrenocorticotropic hormone on rheumatoid arthritis. Preliminary report. Annu. Rheum. Dis. 8, 97–104 (1949).

    CAS  Google Scholar 

  106. Calne, R. Y. The rejection of renal homografts. Inhibition in dogs by 6-mercaptopurine. Lancet 1, 417–418 (1960).

    CAS  PubMed  Google Scholar 

  107. Murray, J. E., Merrill, J. P., Harrison, J. H., Wilson, R. E. & Dammin, G. J. Prolonged survival of human-kidney homografts by immunosuppressive drug therapy. N. Engl. J. Med. 268, 1315–1323 (1963).

    CAS  PubMed  Google Scholar 

  108. Starzl, T. E., Marchioro, T. L. & Waddell, W. R. The reversal of rejection in human renal homografts with subsequent development of homograft tolerance. Surg. Gynecol. Obstet. 117, 385–395 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Waksman, B. H., Arbouys, S. & Arnason, B. G. The use of specific 'lymphocyte' antisera to inhibit hypersensitive reactions of the 'delayed' type. J. Exp. Med. 114, 997–1022 (1961).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Starzl, T. E., Marchioro, T. L., Porter, K. A., Iwasaki, Y. & Cerilli, G. J. The use of heterologous antilymphoid agents in canine renal and liver homotransplantation and in human renal homotransplantation. Surg. Gynecol. Obstet. 124, 301–308 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Borel, J. F., Feurer, C., Gubler, H. U. & Stahelin, H. Biological effects of cyclosporin A: a new antilymphocytic agent. Agents Actions 6, 468–475 (1976).

    CAS  PubMed  Google Scholar 

  112. Calne, R. Y. et al. Cyclosporin A in patients receiving renal allografts from cadaver donors. Lancet 2, 1323–1327 (1978).

    CAS  PubMed  Google Scholar 

  113. Kino, T. et al. FK-506, a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro. J. Antibiot. (Tokyo) 40, 1256–1265 (1987).

    CAS  Google Scholar 

  114. Starzl, T. E. et al. FK 506 for liver, kidney, and pancreas transplantation. Lancet 2, 1000–1004 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Sehgal, S. N., Baker, H. & Vezina, C. Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J. Antibiot. (Tokyo) 28, 727–732 (1975).

    CAS  Google Scholar 

  116. Martel, R. R., Klicius, J. & Galet, S. Inhibition of the immune response by rapamycin, a new antifungal antibiotic. Can. J. Physiol. Pharmacol. 55, 48–51 (1977).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the German Foundation of Haemotherapy Research, the German Science Foundation and the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Hackstein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

LocusLink

CCL2

CCL3

CCL5

CCL18

CCL19

CCL21

CCL22

CCR1

CCR2

CCR5

CCR7

CD1a

CD11c

CD14

CD34

CD40L

CD80

CD86

COX2

CTLA4

CXCR1

DC-SIGN

FKBP12

FLT3L

GM-CSF

IDO

IFN-α

IL-10

IL-12

MDR1

MRP1

MTOR

TGF-β

TLR7

TLR9

TNF

Further information

Homepage of the Thomas Starzl Transplantation Institute

Glossary

PRODRUG

A pharmacologically inactive compound that is converted into the active form through endogenous metabolism.

DC SUBSETS

Langerhans cells are located in the epidermis of the skin and epithelia, whereas interstitial dendritic cells (DCs) reside in the dermis of the skin and in most peripheral tissues. Plasmacytoid DCs are the main type I interferon (IFN-α/β/ω)-producing cells in the immune system and circulate as precursor cells in the blood or reside as immature cells in primary and secondary lymphoid tissues.

DC ANTIGEN UPTAKE

Macropinocytosis is a non-selective form of endocytosis that allows the internalization of large volumes of soluble antigens. Receptor-mediated endocytosis promotes the recognition and uptake of pathogen-associated antigens, such as immune complexes through the Fc receptor and mannosylated antigens through the mannose receptor. Phagocytosis refers to the receptor-mediated, actin-dependent uptake of larger particles, ranging from 0.5–0.6 μm. Dendritic cells (DCs) also express various C-type lectins, for example, DEC205, Langerin and DC-SIGN, functioning as endocytic receptors.

CORTICOSTEROIDS

A group of natural and synthetic hormones with potent anti-inflammatory and immunosuppressive effects and a wide range of other functions.

EICOSANOIDS

A family of highly active lipid mediators, such as prostaglandins, thromboxanes and leukotrienes that are derived from arachidonic acid and mediate a large number of biological activities, including inflammatory responses.

SPHINGOLIPID ANALOGUES

Sphingolipids are a group of complex lipids, derived from sphingosine, that are found in cell membranes and nervous tissue, and function in signal transduction and cell–cell communication. Sphingolipid analogues are synthetic derivatives of sphingolipids.

NON-CALCEMIC

An agent that has no or only minor effects on blood calcium levels.

PURINES

Organic bases, such as adenine and guanine that occur in nucleic acids (DNA and RNA).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hackstein, H., Thomson, A. Dendritic cells: emerging pharmacological targets of immunosuppressive drugs. Nat Rev Immunol 4, 24–35 (2004). https://doi.org/10.1038/nri1256

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1256

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing