Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

A role for antigen in the maintenance of immunological memory

Abstract

The immune system has a memory that it exhibits in the enhanced and augmented responses the second time it meets an antigen. The memory is the result of a number of changes to the system brought about during the primary response. The most important of these changes is the formation of an expanded pool of antigen-specific memory cells. One of the enduring questions in immunology is how these memory cells are maintained for such long periods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of memory cells and effector cells.
Figure 2: Model of homeostasis in the memory pool.
Figure 3: Niche occupancy in different lymphoid systems.

Similar content being viewed by others

References

  1. Gray, D. & Skarvall, H. B cell memory is short-lived in the absence of antigen. Nature 336, 70–73 (1988).

    Article  CAS  Google Scholar 

  2. Gray, D. & Matzinger, P. T cell memory is short-lived in the absence of antigen. J. Exp. Med. 174, 969–974 (1991).

    Article  CAS  Google Scholar 

  3. Oehen, S., Waldner, H., Kündig, T. M., Hengartner, H. & Zinkernagel, R. M. Antivirally protective cytotoxic T cell memory to lymphocytic choriomeningitis virus is governed by persisting antigen. J. Exp. Med. 176, 1273–1281 (1992).

    Article  CAS  Google Scholar 

  4. Tew, J. G. & Mandel, T. E. Prolonged antigen half-life in the lymphoid follicles of specifically immunized mice. Immunology 37, 69–76 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Fu, Y. X., Huang, G., Wang, Y. & Chaplin, D. D. Lymphotoxin-α-dependent spleen microenvironment supports the generation of memory B cells and is required for their subsequent antigen-induced activation. J. Immunol. 164, 2508–2514 (2000).

    Article  CAS  Google Scholar 

  6. Mims, C. A., Nash, A. & Stephen, J. Pathogenesis of Infectious Disease (Academic Press, London, 2000).

    Google Scholar 

  7. Ciurea, A. et al. Persistence of lymphocytic choriomeningitis virus at very low levels in immune mice. Proc. Natl Acad. Sci. USA 96, 11964–11969 (1999).

    Article  CAS  Google Scholar 

  8. Hamad, A. A. et al. Chronic Plasmodium falciparum infections under low intensity malaria transmission in the Sudan. Parasitology 120, 447–456 (2000).

    Article  Google Scholar 

  9. Marrack, P. et al. Homeostasis of αβ TCR+ T cells. Nature Immunol. 1, 107–111 (2000).

    Article  CAS  Google Scholar 

  10. Freitas, A. A. & Rocha, B. Population biology of lymphocytes: the flight for survival. Annu. Rev. Immunol. 18, 83–111 (2000).

    Article  CAS  Google Scholar 

  11. Selin, L. K. et al. Attrition of T cell memory: selective loss of LCMV epitope-specific memory CD8 T cells following infections with heterologous viruses. Immunity 11, 733–742 (1999).

    Article  CAS  Google Scholar 

  12. Tough, D. F., Borrow, P. & Sprent, J. Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science 272, 1947–1950 (1996).

    Article  CAS  Google Scholar 

  13. Zhang, X., Sun, S., Hwang, I., Tough, D. & Sprent, J. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 8, 591–599 (1998).

    Article  CAS  Google Scholar 

  14. Mattei, F., Schiavoni, G., Belardelli, F. & Tough, D. F. IL-15 is expressed by dendritic cells in response to type I IFN, double-stranded RNA, or lipopolysaccharide and promotes dendritic cell activation. J. Immunol. 167, 1179–1187 (2001).

    Article  CAS  Google Scholar 

  15. Lodolce, J. P. et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9, 669–676 (1998).

    Article  CAS  Google Scholar 

  16. Kennedy, M. K. et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J. Exp. Med. 191, 771–780 (2000).

    Article  CAS  Google Scholar 

  17. Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science 272, 54–60 (1996).

    Article  CAS  Google Scholar 

  18. Mims, C. A. Pathogenesis of Infectious Disease 3rd edn (Academic Press, London, 1987)

    Google Scholar 

  19. Slifka, M. K., Antia, R., Whitmire, J. K. & Ahmed, R. Humoral immunity due to long-lived plasma cells. Immunity 8, 363–372 (1998).

    Article  CAS  Google Scholar 

  20. Lauvau, G. et al. Priming of memory but not effector CD8 T cells by a killed bacterial vaccine. Science 294, 1735–1739 (2001).

    Article  CAS  Google Scholar 

  21. Sercarz, E. E. et al. Dominance and crypticity of T cell antigenic determinants. Annu. Rev. Immunol. 11, 729–766 (1993).

    Article  CAS  Google Scholar 

  22. Chen, W., Anton, L. C., Bennink, J. R. & Yewdell, J. W. Dissecting the multifactorial causes of immunodominance in class I-restricted T cell responses to viruses. Immunity 12, 83–93 (2000).

    Article  CAS  Google Scholar 

  23. Moskophidis, D., Lechner, F., Pircher, H. & Zinkernagel, R. M. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature 362, 758–761 (1993).

    Article  CAS  Google Scholar 

  24. Gallimore, A. et al. Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J. Exp. Med. 187, 1383–1393 (1998).

    Article  CAS  Google Scholar 

  25. Swain, S. L., Hu, H. & Huston, G. Class II-independent generation of CD4 memory T cells from effectors. Science 286, 1381–1383 (1999).

    Article  CAS  Google Scholar 

  26. Tanchot, C., Lemonnier, F. A., Perarnau, B., Freitas, A. A. & Rocha, B. Differential requirements for survival and proliferation of CD8 naive or memory T cells. Science 276, 2057–2062 (1997).

    Article  CAS  Google Scholar 

  27. Raff, M. C. Social controls on cell survival and cell death. Nature 356, 397–400 (1992).

    Article  CAS  Google Scholar 

  28. McLean, A. R., Rosado, M. M., Agenes, F., Vasconcellos, R. & Freitas, A. A. Resource competition as a mechanism for B cell homeostasis. Proc. Natl Acad. Sci. USA 94, 5792–5797 (1997).

    Article  CAS  Google Scholar 

  29. Lau, L. L., Jamieson, B. D., Somasundaram, T. & Ahmed, R. Cytotoxic T-cell memory without antigen. Nature 369, 648–652 (1994).

    Article  CAS  Google Scholar 

  30. Hou, S., Hyland, L., Ryan, K. W., Portner, A. & Doherty, P. C. Virus-specific CD8+ T-cell memory determined by clonal burst size. Nature 369, 652–654 (1994).

    Article  CAS  Google Scholar 

  31. Bruno, L., Kirberg, J. & von Boehmer, H. On the cellular basis of immunological T cell memory. Immunity 2, 37–43 (1995).

    Article  CAS  Google Scholar 

  32. Markiewicz, M. A. et al. Long-term T cell memory requires the surface expression of self- peptide/major histocompatibility complex molecules. Proc. Natl Acad. Sci. USA 95, 3065–3070 (1998).

    Article  CAS  Google Scholar 

  33. Murali-Krishna, K. et al. Persistence of memory CD8 T cells in MHC class I-deficient mice. Science 286, 1377–1381 (1999).

    Article  CAS  Google Scholar 

  34. Garcia, S., DiSanto, J. & Stockinger, B. Following the development of a CD4 T cell response in vivo: from activation to memory formation. Immunity 11, 163–171 (1999).

    Article  CAS  Google Scholar 

  35. Ernst, B., Lee, D. S., Chang, J. M., Sprent, J. & Surh, C. D. The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery. Immunity 11, 173–181 (1999).

    Article  CAS  Google Scholar 

  36. Tan, J. T. et al. IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc. Natl Acad. Sci. USA 98, 8732–8737 (2001).

    Article  CAS  Google Scholar 

  37. van Essen, D., Dullforce, P., Brocker, T. & Gray, D. Cellular interactions involved in TH memory. J. Immunol. 165, 3640–3646 (2000).

    Article  CAS  Google Scholar 

  38. Colle, J. H., Truffa-Bachi, P. & Freitas, A. A. Secondary antibody responses to thymus-independent antigens. Decline and life-span of memory. Eur. J. Immunol. 18, 1307–1314 (1988).

    Article  CAS  Google Scholar 

  39. Maruyama, M., Lam, K. P. & Rajewsky, K. Memory B-cell persistence is independent of persisting immunizing antigen. Nature 407, 636–642 (2000).

    Article  CAS  Google Scholar 

  40. Gu, H., Tarlinton, D., Muller, W., Rajewsky, K. & Forster, I. Most peripheral B cells in mice are ligand selected. J. Exp. Med. 173, 1357–1371 (1991).

    Article  CAS  Google Scholar 

  41. Viale, A. C., Coutinho, A., Heyman, R. A. & Freitas, A. A. V region dependent selection of persistent resting peripheral B cells in normal mice. Int. Immunol. 5, 599–605 (1993).

    Article  CAS  Google Scholar 

  42. Rosado, M. M. & Freitas, A. A. The role of the B cell receptor V region in peripheral B cell survival. Eur. J. Immunol. 28, 2685–2693 (1998).

    Article  CAS  Google Scholar 

  43. Zinkernagel, R. M. et al. On immunological memory. Annu. Rev. Immunol. 14, 333–367 (1996).

    Article  CAS  Google Scholar 

  44. Kundig, T. M. et al. On the role of antigen in maintaining cytotoxic T-cell memory. Proc. Natl Acad. Sci. USA 93, 9716–9723 (1996).

    Article  CAS  Google Scholar 

  45. Ochsenbein, A. F. et al. Protective long-term antibody memory by antigen-driven and T helper-dependent differentiation of long-lived memory B cells to short-lived plasma cells independent of secondary lymphoid organs. Proc. Natl Acad. Sci. USA 97, 13263–13268 (2000).

    Article  CAS  Google Scholar 

  46. Ochsenbein, A. F. et al. A comparison of T cell memory against the same antigen induced by virus versus intracellular bacteria. Proc. Natl Acad. Sci. USA 96, 9293–9298 (1999).

    Article  CAS  Google Scholar 

  47. Schittek, B. & Rajewsky, K. Maintenance of B-cell memory by long-lived cells generated from proliferating precursors. Nature 346, 749–751 (1990).

    Article  CAS  Google Scholar 

  48. Altman, J. D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996).

    Article  CAS  Google Scholar 

  49. Manz, R. A., Lohning, M., Cassese, G., Thiel, A. & Radbruch, A. Survival of long-lived plasma cells is independent of antigen. Int. Immunol. 10, 1703–1711 (1998).

    Article  CAS  Google Scholar 

  50. Jacob, J. & Baltimore, D. Modelling T-cell memory by genetic marking of memory T cells in vivo. Nature 399, 593–597 (1999).

    Article  CAS  Google Scholar 

  51. Opferman, J. T., Ober, B. T. & Ashton-Rickardt, P. G. Linear differentiation of cytotoxic effectors into memory T lymphocytes. Science 283, 1745–1748 (1999).

    Article  CAS  Google Scholar 

  52. Lanzavecchia, A. & Sallusto, F. Dynamics of T lymphocyte responses: intermediates, effectors, and memory cells. Science 290, 92–97 (2000).

    Article  CAS  Google Scholar 

  53. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  Google Scholar 

  54. Masopust, D., Vezys, V., Marzo, A. L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).

    Article  CAS  Google Scholar 

  55. Reinhardt, R. L., Khoruts, A., Merica, R., Zell, T. & Jenkins, M. K. Visualizing the generation of memory CD4 T cells in the whole body. Nature 410, 101–105 (2001).

    Article  CAS  Google Scholar 

  56. Goldrath, A. W. & Bevan, M. J. Selecting and maintaining a diverse T-cell repertoire. Nature 402, 255–262 (1999).

    Article  CAS  Google Scholar 

  57. Brocker, T. Survival of mature CD4 T lymphocytes is dependent on major histocompatibility complex class II-expressing dendritic cells. J. Exp. Med. 186, 1223–1232 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

CD122

IL-15

IL-15Rα

lymphotoxin-α

Rag1

scid

Thy1

FURTHER INFORMATION

David Gray's lab 

Encyclopedia of Life Sciences 

follicular dendritic cells (B lymphocyte stimulating)

immunological memory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gray, D. A role for antigen in the maintenance of immunological memory. Nat Rev Immunol 2, 60–65 (2002). https://doi.org/10.1038/nri706

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri706

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing