Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting protein kinases in central nervous system disorders

Key Points

  • The success of drugs such as imatinib has made protein kinases an intensively studied class of drug targets.

  • Research on new protein kinase targets and a range of potential disease indications has led to increasing interest in the development of small-molecule kinase inhibitors for the treatment of central nervous system (CNS) disorders.

  • Although disclosed clinical trial information shows a current oncology focus to CNS clinical investigations, preclinical in vivo studies of protein kinase inhibitors in animal models reveal a major increase in efforts for other CNS disease indications. Selected examples of emerging protein kinase targets for CNS disorders and the state of inhibitor development are discussed in this Review.

  • A crucial issue in CNS drug discovery is the challenge of effective blood–brain barrier (BBB) penetrance. Statistical analysis of a database of 448 disclosed small molecules revealed trends in molecular properties that correlate with in vivo BBB penetrance. Lower molecular weights and polar surface area values were correlated with brain uptake, whereas higher lipophilicity was not. The available information about CNS drug discovery in general, and kinase inhibitor drugs in particular, raises concerns about the approach of applying existing drugs to CNS therapeutic use.

  • Some of the molecular property trends that correlate with good BBB penetrance also correlate with a molecule being a good substrate for the first-pass metabolism enzyme cytochrome P450 2D6 (CYP2D6). Polymorphisms in this enzyme contribute to variability between individuals in drug metabolism. In medicinal chemistry refinement to improve BBB penetrance, care must therefore be taken to avoid generating better CYP2D6 substrates. Currently, 31% of approved CNS drugs are metabolized by CYP2D6.

  • Current CNS-targeted drug discovery programmes use contemporary approaches, such as molecular fragment expansion, that address these issues at the compound design stage and use early drug property and bioavailability screens to generate fewer, more CNS-focused lead compounds.

Abstract

Protein kinases are a growing drug target class in disorders in peripheral tissues, but the development of kinase-targeted therapies for central nervous system (CNS) diseases remains a challenge, largely owing to issues associated specifically with CNS drug discovery. However, several candidate therapeutics that target CNS protein kinases are now in various stages of preclinical and clinical development. We review candidate compounds and discuss selected CNS protein kinases that are emerging as important therapeutic targets. In addition, we analyse trends in small-molecule properties that correlate with key challenges in CNS drug discovery, such as blood–brain barrier penetrance and cytochrome P450-mediated metabolism, and discuss the potential of future approaches that will integrate molecular-fragment expansion with pharmacoinformatics to address these challenges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trends in drug discovery and development efforts targeting protein kinases.
Figure 2: Selected chemical structures of small-molecule kinase inhibitors in clinical trials for CNS indications.
Figure 3: Protein kinase targets as components of intracellular signal transduction networks.
Figure 4: Key molecular-property trends for small molecules.
Figure 5: Structure of the protein kinase catalytic core and bound inhibitor in the ATP fold.
Figure 6: Example of a potential compound discovery paradigm for CNS kinase targets.

Similar content being viewed by others

References

  1. Catapano, L. A. & Manji, H. K. Kinases as drug targets in the treatment of bipolar disorder. Drug Disc. Today 13, 295–302 (2008).

    CAS  Google Scholar 

  2. Zhang, J., Yang, P. L. & Gray, N. S. Targeting cancer with small molecule kinase inhibitors. Nature Rev. Cancer 9, 28–39 (2009). A recent detailed review of the structural basis of target recognition and molecular mechanism of protein kinase inhibitors.

    Google Scholar 

  3. Borders, A. S., de Almeida, L., Van Eldik, L. J. & Watterson, D. M. The p38α mitogen-activated protein kinase as a central nervous system drug discovery target. BMC Neurosci. 9, S12 (2008).

    PubMed  PubMed Central  Google Scholar 

  4. Martinez, A. & Perez, D. I. GSK-3 inhibitors: a ray of hope for the treatment of Alzheimer's disease? J. Alzheimer. Dis. 15, 181–191 (2008).

    CAS  Google Scholar 

  5. Jope, R. S., Yuskaitis, C. J. & Beurel, E. Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem. Res. 32, 577–595 (2007). A review of the link between GSK3β and pathology progression in CNS diseases.

    CAS  PubMed  Google Scholar 

  6. Forde, J. E. & Dale, T. C. Glycogen synthase kinase 3: a key regulator of cellular fate. Cell. Mol. Life Sci. 64, 1930–1944 (2007).

    CAS  PubMed  Google Scholar 

  7. Kockeritz, L., Doble, B., Patel, S. & Woodgett, J. R. Glycogen synthase kinase-3 — an overview of an over-achieving protein kinase. Curr. Drug Targets 7, 1377–1388 (2006).

    CAS  PubMed  Google Scholar 

  8. Kubo, T., Yamaguchi, A., Iwata, N. & Yamashita, T. The therapeutic effects of Rho-ROCK inhibitors on CNS disorders. Ther. Clin. Risk Manag. 4, 605–615 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Martinez, A. Preclinical efficacy on GSK-3 inhibitors: towards a future generation of powerful drugs. Med. Res. Rev. 28, 773–796 (2008). A recent review documenting the efficacy of various classes of GSK3 inhibitors in preclinical models of CNS disorders.

    CAS  PubMed  Google Scholar 

  10. Mueller, B. K., Mack, H. & Teusch, N. Rho kinase, a promising drug target for neurological disorders. Nature Rev. Drug Discov. 4, 387–398 (2005). A review of Rho kinase as a CNS therapeutic target.

    CAS  Google Scholar 

  11. Schumacher, A. M., Velentza, A. V. & Watterson, D. M. Death associated protein kinase as a potential therapeutic target. Exp. Opin. Ther. Targets 6, 497–506 (2002).

    CAS  Google Scholar 

  12. Hooper, C., Killick, R. & Lovestone, S. The GSK3 hypothesis of Alzheimer's disease. J. Neurochem. 104, 1433–1439 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Jope, R. S. & Roh, M.-S. Glycogen synthase kinase-3 (GSK3) in psychiatric diseases and therapeutic interventions. Curr. Drug Targets 7, 1421–1434 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lovestone, S., Killick, R., Di Forti, M. & Murray, R. Schizophrenia as a GSK-3 dysregulation disorder. TRENDS Neurosci. 30, 142–149 (2007).

    CAS  PubMed  Google Scholar 

  15. Hye, A. et al. Glycogen synthase kinase-3 is increased in white cells early in Alzheimer's disease. Neurosci. Lett. 373, 1–4 (2005).

    CAS  PubMed  Google Scholar 

  16. Kwok, J. B. J. et al. Glycogen synthase kinase-3β and tau genes interact in Alzheimer's disease. Ann. Neurol. 64, 446–454 (2008).

    CAS  PubMed  Google Scholar 

  17. Parihar, M. S. & Hemnani, T. Alzheimer's disease pathogenesis and therapeutic interventions. J. Clin. Neurosci. 11, 456–467 (2004).

    CAS  PubMed  Google Scholar 

  18. Huang, H.-C. & Klein, P. S. Multiple roles for glycogen synthase kinase-3 as a drug target in Alzheimer's disease. Curr. Drug Targets 7, 1389–1397 (2006).

    CAS  PubMed  Google Scholar 

  19. Klein, P. S. & Melton, D. A. A molecular mechanism for the effect of lithium on development. Proc. Natl Acad. Sci. USA 93, 8455–8459 (1996).

    CAS  PubMed  Google Scholar 

  20. Macdonald, A. et al. A feasibility and tolerability study of lithium in Alzheimer's disease. Intl J. Geriatr. Psychiatry 23, 704–711 (2008).

    Google Scholar 

  21. Jope, R. S. Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes. Trends Pharmacol. Sci. 24, 441–443 (2003).

    CAS  PubMed  Google Scholar 

  22. Zhang, F., Phiel, C. J., Spece, L., Gurvich, N. & Klein, P. S. Inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3) in response to lithium. Evidence for autoregulation of GSK-3. J. Biol. Chem. 278, 33067–33077 (2003).

    CAS  PubMed  Google Scholar 

  23. Kozikowski, A. P. et al. Structure-based design leads to the identification of lithium mimetics that block mania-like effects in rodents. Possible new GSK-3β therapies for bipolar disorders. J. Am. Chem. Soc. 129, 8328–8332 (2007).

    CAS  PubMed  Google Scholar 

  24. Kozikowski, A. P. et al. Highly potent and specific GSK-3β inhibitors that block tau phosphorylation and decrease a-synuclein protein expression in a cellular model of Parkinson's disease. Chem. Med. Chem. 1, 256–266 (2006).

    CAS  PubMed  Google Scholar 

  25. Wang, W. et al. Inhibition of glycogen synthase kinase-3β protects dopaminergic neurons from MPTP toxicity. Neuropharmacol. 52, 1678–1684 (2007).

    CAS  Google Scholar 

  26. Koh, S. et al. Inhibition of glycogen synthase kinase-3 suppresses the onset of symptoms and disease progression of G93A-SOD1 mouse model of ALS. Exp. Neurol. 205, 336–346 (2007).

    CAS  PubMed  Google Scholar 

  27. Gould, T. D., Einat, H., Bhat, R. & Manji, H. K. AR-A014418, a selective GSK-3 inhibitor, produces antidepressant-like effects in the forced swim test. Int. J. Neuropsychopharmacol. 7, 387–390 (2004).

    CAS  PubMed  Google Scholar 

  28. Koh, S. H., Yoo, A. R., Chang, D. I., Hwang, S. J. & Kim, S. H. Inhibition of GSK-3 reduces infarct volume and improves neurobehavioral functions. Biochem. Biophys. Res. Commun. 371, 894–899 (2008).

    CAS  PubMed  Google Scholar 

  29. Martinez, A., Alonso, M., Castro, A., Prez, C. & Moreno, F. J. First non-ATP competitive glycogen synthase kinase 3β (GSK-3β) inhibitors: thiadiazolidinones (TDZD) as potential drugs for the treatment of Alzheimer's disease. J. Med. Chem. 45, 1292–1299 (2002).

    CAS  PubMed  Google Scholar 

  30. Collino, M. et al. Treatment with the glycogen synthase kinase-3β inhibitor, TDZD-8, affects transient cerebral ischemia/reperfusion injury in the rat hippocampus. Shock 30, 299–307 (2008).

    CAS  PubMed  Google Scholar 

  31. Cuzzocrea, S. et al. Glycogen synthase kinase-3β inhibition reduces secondary damage in experimental spinal cord trauma. J. Pharmacol. Exp. Ther. 318, 79–89 (2006).

    CAS  PubMed  Google Scholar 

  32. Rosa, A. O. et al. Antidepressant-like effect of the novel thiadiazolidinone NP031115 in mice. Prog. Neuro. Psychopharmacol. Biol. Psych. 32, 1549–1556 (2008).

    CAS  Google Scholar 

  33. Luna-Medina, R. et al. NP031112, a thiadiazolidinone compound, prevents inflammation and neurodegeneration under excitotoxic conditions: potential therapeutic role in brain disorders. J. Neurosci. 27, 5766–5776 (2007).

    CAS  PubMed  Google Scholar 

  34. Sereno, L. et al. A novel GSK-3β inhibitor reduces Alzheimer's pathology and rescues neuronal loss in vivo. Neurobiol. Dis. 35, 359–367 (2009).

    CAS  PubMed  Google Scholar 

  35. Medina, M. & Castro, A. Glycogen synthase kinase-3 (GSK-3) inhibitors reach the clinic. Curr. Opin. Drug Discov. Devel. 11, 533–543 (2008). A recent review of the drug development status of GSK3 inhibitors.

    CAS  PubMed  Google Scholar 

  36. Gould, T. D., Gray, N. A. & Manji, H. K. Effects of a glycogen synthase kinase-3 inhibitor, lithium, in adenomatous polyposis coli mutant mice. Pharmacol. Res. 48, 49–53 (2003).

    CAS  PubMed  Google Scholar 

  37. Cohen, Y., Chetrit, A., Cohen, Y., Sirota, P. & Modan, B. Cancer morbidity in psychiatric patients: influence of lithium carbonate treatment. Med. Oncol. 15, 32–36 (1998).

    CAS  PubMed  Google Scholar 

  38. O'Brien, W. T. et al. Glycogen synthase kinase-3β haploinsufficiency mimics the behavioral and molecular effects of lithium. J. Neurosci. 24, 6791–6798 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bialik, S. & Kimchi, A. The death-associated protein kinases: structure, function, and beyond. Ann. Rev. Biochem. 75, 189–210 (2006).

    CAS  PubMed  Google Scholar 

  40. Schumacher, A. M., Velentza, A. V., Watterson, D. M. & Wainwright, M. S. DAPK catalytic activity in the hippocampus increases during the recovery phase in an animal model of brain hypoxic-ischemic injury. Biochim. Biophys. Acta 1600, 128–137 (2002).

    CAS  PubMed  Google Scholar 

  41. Velentza, A. V. et al. An aminopyridazine-based inhibitor of a pro-apoptotic protein kinase attenuates hypoxia-ischemia induced brain injury. Bioorg. Med. Chem. Lett. 13, 3465–3470 (2003). This study provides an example of kinase co-crystallography with an inactive fragment as the starting point for the design of bioavailable kinase inhibitors, and the first in vivo demonstration of DAPK as a discovery target for CNS disorders.

    CAS  PubMed  Google Scholar 

  42. Craft, J. M., Watterson, D. M., Frautschy, S. A. & Van Eldik, L. J. Aminopyridazines inhibit β-amyloid-induced glial activation and neuronal damage in vivo. Neurobiol. Aging 25, 1283–1292 (2004).

    CAS  PubMed  Google Scholar 

  43. Shamloo, M. et al. Death-associated protein kinase is activated by dephosphorylation in response to cerebral ischemia. J. Biol. Chem. 280, 42290–42299 (2005).

    CAS  PubMed  Google Scholar 

  44. Li, Y. et al. DAPK1 variants are associated with Alzheimer's disease and allele-specific expression. Hum. Mol. Genet. 15, 2560–2568 (2006).

    CAS  PubMed  Google Scholar 

  45. Schumacher, A. M., Schavocky, J. P., Velentza, A. V., Mirzoeva, S. & Watterson, D. M. A calmodulin-regulated protein kinase linked to neuron survival is a substrate for the calmodulin-regulated death-associated protein kinase. Biochemistry 43, 8116–8124 (2004).

    CAS  PubMed  Google Scholar 

  46. Schumacher, A. M., Velentza, A. V., Watterson, D. M. & Dresios, J. Death-associated protein kinase phosphorylates mammalian ribosomal protein S6 and reduces protein synthesis. Biochemistry 45, 13614–13621 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Shani, G. et al. Death-associated protein kinase phosphorylates ZIP kinase forming a unique kinase hierarchy to activate its cell death functions. Mol. Cell Biol. 24, 8611–8626 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Eisenberg-Lerner, A. & Kimchi, A. DAP kinase regulates JNK signaling by binding and activating protein kinase D under oxidative stress. Cell Death Diff. 14, 1908–1915 (2007).

    CAS  Google Scholar 

  49. Tian, J. H., Das, S. & Sheng, Z. H. Ca2+-dependent phosphorylation of syntaxin-1A by the death-associated protein (DAP) kinase regulates its interaction with Munc18. J. Biol. Chem. 278, 26265–26274 (2003).

    CAS  PubMed  Google Scholar 

  50. Bialik, S., Bresnick, A. R. & Kimchi, A. DAP-kinase-mediated morphological changes are localization dependent and involve myosin-II phosphorylation. Cell Death Diff. 11, 631–644 (2004).

    CAS  Google Scholar 

  51. Zalckvar, E. et al. DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Reports 10, 285–292 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen, C. H. et al. Bidirectional signals transduced by DAPK-ERK interaction promote the apoptotic effect of DAPK. EMBO J. 24, 294–304 (2005).

    CAS  PubMed  Google Scholar 

  53. Kyriakis, J. M. & Avruch, J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 81, 808–869 (2001).

    Google Scholar 

  54. Shaul, Y. D. & Seger R. The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim. Biophys. Acta. 1773, 1213–1226 (2006).

    PubMed  Google Scholar 

  55. Cuenda, A. & Rousseau, S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim. Biophys. Acta 1773, 1358–1375 (2007).

    CAS  PubMed  Google Scholar 

  56. Krishna, M. & Narang, H. The complexity of mitogen-activated protein kinases (MAPKs) made simple. Cell Mol. Life Sci. 65, 3525–3544 (2008).

    CAS  PubMed  Google Scholar 

  57. Schindler, J. F., Monahan, J. B. & Smith, W. G. p38 pathway kinases as anti-inflammatory drug targets. J. Dent. Res. 86, 800–811 (2007).

    CAS  PubMed  Google Scholar 

  58. Munoz, L. et al. A novel p38α MAPK inhibitor suppresses brain proinflammatory cytokine up-regulation and attenuates synaptic dysfunction and behavioral deficits in an Alzheimer's disease mouse model. J. Neuroinflammation 4, 21 (2007). A proof of concept study showing that selective kinase inhibitors can attenuate brain injury if designed to be bioavailable and BBB-penetrant.

    PubMed  PubMed Central  Google Scholar 

  59. Dewil, M., de la Cruz, V. F., Van Den Bosch, L. & Robberecht, W. Inhibition of p38 mitogen activated protein kinase activation and mutant SOD1G93A-induced motor neuron death. Neurobiol. Dis. 26, 332–341 (2007).

    CAS  PubMed  Google Scholar 

  60. Piao, C. S., Kim, J. B., Han, P. L. & Lee, J. K. Administration of the p38 MAPK inhibitor SB203580 affords brain protection with a wide therapeutic window against focal ischemic insult. J. Neurosci. Res. 73, 537–544 (2003).

    CAS  PubMed  Google Scholar 

  61. Barone, F. C. et al. SB 239063, a second-generation p38 mitogen-activated protein kinase inhibitor, reduces brain injury and neurological deficits in cerebral focal ischemia. J. Pharmacol. Exp. Ther. 296, 312–321 (2001).

    CAS  PubMed  Google Scholar 

  62. Legos, J. J. et al. SB 239063, a novel p38 inhibitor, attenuates early neuronal injury following ischemia. Brain Res. 892, 70–77 (2001).

    CAS  PubMed  Google Scholar 

  63. Ito, T. et al. Glial phosphorylated p38 MAP kinase mediates pain in a rat model of lumbar disc herniation and induces motor dysfunction in a rat model of lumbar spinal canal stenosis. Spine 32, 159–167 (2007).

    PubMed  Google Scholar 

  64. O'Keefe, S. J. et al. Chemical genetics define the roles of p38α and p38β in acute and chronic inflammation. J. Biol. Chem. 282, 34553–34671 (2007). A precedent for in vivo target validation of a small-molecule kinase inhibitor using mice strains engineered to be drug resistant but to retain physiological functions.

    Google Scholar 

  65. Hensley, K. et al. p38 kinase is activated in the Alzheimer's disease brain. J. Neurochem. 72, 2053–2058 (1999).

    CAS  PubMed  Google Scholar 

  66. Sheng, J. G. et al. Interleukin-1 promotion of MAPK-p38 overexpression in experimental animals and in Alzheimer's disease: potential significance for tau protein phosphorylation. Neurochem. Intl 39, 341–348 (2001).

    CAS  Google Scholar 

  67. Sun, A., Liu, M., Nguyen, X. V. & Bing, G. p38 MAP kinase is activated at early stages in Alzheimer's disease brain. Exp. Neurol. 183, 394–405 (2003).

    CAS  PubMed  Google Scholar 

  68. Swatton, J. E. et al. Increased MAP kinase activity in Alzheimer's and Down syndrome but not in schizophrenia human brain. Eur. J. Neurosci. 19, 2711–2719 (2004).

    PubMed  Google Scholar 

  69. Ferrer, I. et al. Active, phosphorylation-dependent mitogen-activated protein kinase (MAPK/ERK), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and p38 kinase expression in Parkinson's disease and dementia with Lewy bodies. J. Neural Transm. 108, 1383–1396 (2001).

    CAS  PubMed  Google Scholar 

  70. Karunakaran, S. et al. Selective activation of p38 mitogen-activated protein kinase in dopaminergic neurons of substantia nigra leads to nuclear translocation of p53 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice. J. Neurosci. 28, 12500–12509 (2008).

    CAS  PubMed  Google Scholar 

  71. Atzori, C. et al. Activation of the JNK/p38 pathway occurs in diseases characterized by tau protein pathology and is related to tau phosphorylation but not to apoptosis. J. Neuropath. Exp. Neurol. 60, 1190–1197 (2001).

    CAS  PubMed  Google Scholar 

  72. Ferrer, I., Blanco, R., Carmona, M. & Puig, B. Phosphorylated mitogen-activated protein kinase (MAPK/ERK-P), protein kinase of p38kDa (p38-P), stress-activated protein kinase (SAPK/JNK-P), and calcium/calmodulin-dependent kinase II (CaM kinase II) are differentially expressed in tau deposits in neurons and glial cells in tauopathies. J. Neural Transm. 108, 1397–1415 (2001).

    CAS  PubMed  Google Scholar 

  73. Demuth, T. et al. MAP-ing glioma invasion: mitogen-activated protein kinase kinase 3 and p38 drive glioma invasion and progression and predict patient survival. Mol. Cancer Ther. 6, 1212–1222 (2007).

    CAS  PubMed  Google Scholar 

  74. Lloyd, E., Somera-Molina, K. C., Van Eldik, L. J., Watterson, D. M. & Wainwright, M. S. Suppression of acute proinflammatory cytokine and chemokine upregulation by post-injury administration of a novel small molecule improves long-term neurology outcome in a mouse model of traumatic brain injury. J. Neuroinflammation 5, 28 (2008).

    PubMed  PubMed Central  Google Scholar 

  75. Dominguez, C., Powers, D. & Tamayo, N. p38 MAP kinase inhibitors: many are made, but few are chosen. Curr. Opin. Drug Discov. Devel. 8, 421–430 (2005).

    CAS  PubMed  Google Scholar 

  76. McInnes, C. & Fischer, P. M. Strategies for the design of potent and selective kinase inhibitors. Curr. Pharmaceut. Design 11, 1845–1863 (2005).

    CAS  Google Scholar 

  77. Wrobleski, S. T. & Doweyko, A. M. Structural comparison of p38 inhibitor-protein complexes: a review of recent p38 inhibitors having unique binding interactions. Curr. Topics Med. Chem. 5, 1005–1016 (2005).

    CAS  Google Scholar 

  78. Alaimo, P. M., Knight, Z. A. & Shokat, K. M. Targeting the gatekeeper residue in phosphoinositide 3-kinases. Bioorg. Med. Chem. 13, 2825–2836 (2005).

    CAS  PubMed  Google Scholar 

  79. Herberich, B. et al. Discovery of highly selective and potent p38 inhibitors based on a phthalazine scaffold. J. Med. Chem. 51, 6271–6279 (2008).

    CAS  PubMed  Google Scholar 

  80. Dambach, D. M. Potential adverse effects associated with inhibition of p38α/β MAP kinases. Curr. Topics Med. Chem. 5, 929–939 (2005).

    CAS  Google Scholar 

  81. Giovannini, M. G. et al. β-amyloid-induced inflammation and cholinergic hypofunction in the rat brain in vivo: involvement of the p38 MAPK pathway. Neurobiol. Dis. 11, 257–274 (2002).

    CAS  PubMed  Google Scholar 

  82. Wang, Z. Q., Wu, D. C., Huang, F. P. & Yang, G. Y. Inhibition of MEK/ERK 1/2 pathway reduces pro-inflammatory cytokine interleukin-1 expression in focal cerebral ischemia. Brain Res. 996, 55–66 (2003).

    Google Scholar 

  83. Ciruela, A. et al. Identification of MEK1 as a novel target for the treatment of neuropathic pain. Br. J. Pharmacol. 138, 751–756 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Farrokhnia, N., Ericsson, A., Terent, A. & Lennmyr, F. MEK-inhibitor U0126 in hyperglycaemic focal ischaemic brain injury in the rat. Eur. J. Clin. Invest. 38, 679–685 (2008).

    CAS  PubMed  Google Scholar 

  85. Mori, T. et al. Mitogen-activated protein kinase inhibition in traumatic brain injury: in vitro and in vivo effects. J. Cerebral Blood Flow Metab. 22, 444–452 (2002).

    CAS  Google Scholar 

  86. Carboni, S. et al. AS601245, a c-Jun NH2-terminal kinase (JNK) inhibitor, reduces axon/dendrite damage and cognitive deficits after global cerebral ischemia in gerbils. Br. J. Pharmacol. 153, 157–165 (2008).

    CAS  PubMed  Google Scholar 

  87. Yatsushige, H., Ostrowski, R. P., Tsubokawa, T., Colohan, A. & Zhang, J. H. Role of c-Jun N-terminal kinase in early brain injury after subarachnoid hemorrhage. J. Neurosci. Res. 85, 1436–1448 (2007).

    CAS  PubMed  Google Scholar 

  88. Saporito, M. S. et al. Preservation of cholinergic activity and prevention of neuron death by CEP-1347/KT7515 following excitotoxic injury of the nucleus basalis magnocellularis. Neuroscience 86, 461–472 (1998).

    CAS  PubMed  Google Scholar 

  89. Pirvola, U. et al. Rescue of hearing, auditory hair cells, and neurons by CEP-1347/KT7515, an inhibitor of c-Jun N-terminal kinase activation. J. Neurosci. 20, 43–50 (2000).

    CAS  PubMed  Google Scholar 

  90. Apostol, B. L. et al. CEP-1347 reduces Huntington-associated neurotoxicity and restores BDNF levels in R6/2 mice. Mol. Cell. Neurosci. 39, 8–20 (2008).

    CAS  PubMed  Google Scholar 

  91. Wang, L. H., Besirli, C. G. & Johnson, E. M. Mixed-lineage kinases: a target for the prevention of neurodegeneration. Ann. Rev. Pharmacol. Toxicol. 44, 451–474 (2004).

    CAS  Google Scholar 

  92. Wang, W., Ma, C., Mao, Z. & Li, M. JNK inhibition as a potential strategy in treating Parkinson's disease. Drug News Perspect. 17, 646–654 (2004).

    CAS  PubMed  Google Scholar 

  93. Resnick, L. & Fennell, M. Targeting JNK3 for the treatment of neurodegenerative disorders. Drug Discov. Today 9, 932–939 (2004).

    CAS  PubMed  Google Scholar 

  94. Hudkins, R. L. et al. Mixed lineage kinase 1 and mixed-lineage kinase 3 subtype-selective dihydronaphthyl[3,4-a]pyrrolo[3,4-c]carbazole-5-ones: optimization, mixed-lineage kinase 1 crystallography, and oral in vivo activity in 1-methyl-4-phenyltetrahydropyridine models. J. Med. Chem. 51, 5680–5689 (2008).

    CAS  PubMed  Google Scholar 

  95. The Parkinson Study Group PRECEPT Investigators. Mixed lineage kinase inhibitor CEP-1347 fails to delay disability in early Parkinson disease. Neurology 69, 1480–1490 (2007).

  96. Waldmeier, P., Bozyczko-Coyne, D., Williams, M. & Vaught, J. L. Recent clinical failures in Parkinson's disease with apoptosis inhibitors underline the need for a paradigm shift in drug discovery for neurodegenerative diseases. Biochem. Pharmacol. 72, 1197–1206 (2006).

    CAS  PubMed  Google Scholar 

  97. Wang, L. H. et al. Mixed lineage kinase inhibitor CEP-1347 fails to delay disability in early Parkinson disease. Neurology 71, 462–463 (2008).

    PubMed  Google Scholar 

  98. Bogatcheva, N. V., Adyshev, D., Mambetsariev, B., Moldobaeva, N. & Verin, A. D. Involvement of microtubules, p38, and Rho kinases pathway in 2-methoxyestradiol-induced lung vascular barrier dysfunction. Am. J. Physiol. Lung Cell Mol. Physiol. 292, L487–L499 (2007).

    CAS  PubMed  Google Scholar 

  99. Breslin, J. W. et al. Involvement of ROCK-mediated endothelial tension development in neutrophil-stimulated microvascular leakage. Am. J. Physiol. Heart Circ. Physiol. 290, H741–H750 (2006).

    CAS  PubMed  Google Scholar 

  100. Olson, M. F. Applications for ROCK kinase inhibition. Curr. Opin. Cell Biol. 20, 242–248 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Behanna, H. A., Watterson, D. M. & Ralay Ranaivo, H. Development of a novel bioavailable inhibitor of the calmodulin-regulated protein kinase MLCK: a lead compound that attenuates vascular leak. Biochim. Biophys. Acta 1763, 1266–1274 (2006).

    CAS  PubMed  Google Scholar 

  102. Zlokovic, B. V. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57, 178–201 (2008).

    CAS  PubMed  Google Scholar 

  103. Uehata, M. et al. Calcium sensitization of smooth muscle mediated by Rho-associated protein kinase in hypertension. Nature 389, 990–994 (1997).

    CAS  PubMed  Google Scholar 

  104. Tamura, M. et al. Development of specific Rho-kinase inhibitors and their clinical application. Biochim. Biophys. Acta 1754, 245–252 (2005).

    CAS  PubMed  Google Scholar 

  105. Reynoso, R. et al. A role for long chain myosin light chain kinase (MLCK-210) in microvascular hyperpermeability during severe burns. Shock 28, 589–595 (2007).

    CAS  PubMed  Google Scholar 

  106. Wainwright, M. S. et al. Protein kinase involved in lung injury susceptibility: evidence from enzyme isoform genetic knockout and in vivo inhibitor treatment. Proc. Natl Acad. Sci. USA 100, 6233–6238 (2003). The first demonstration by genetic knockout and small-molecule inhibitor approaches that MLCK is a drug discovery target for tissue barrier dysfunction.

    CAS  PubMed  Google Scholar 

  107. Rossi, J. L., Velentza, A. V., Steinhorn, D. M., Watterson, D. M. & Wainwright, M. S. MLCK 210 gene knockout or kinase inhibition preserves lung function following endotoxin-induced lung injury in mice. Am. J. Physiol. Lung Cell Mol. Physiol. 292, L1327–L1334 (2007).

    CAS  PubMed  Google Scholar 

  108. Clayburgh, D. R. et al. Epithelial myosin light chain kinase-dependent barrier dysfunction mediates T cell activation-induced diarrhea in vivo. J. Clin. Invest. 115, 2702–2715 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Ralay Ranaivo, H. et al. Protection against endotoxic shock as a consequence of reduced nitrosative stress in MLCK210 null mice. Am. J. Pathol. 170, 439–446 (2007).

    PubMed  Google Scholar 

  110. Gandhi, P. N., Chen, S. G. & Wilson-Delfosse, A. L. Leucine-rich repeat kinase 2 (LRRK2): a key player in the pathogenesis of Parkinson's disease. J. Neurosci. Res. 87, 1283–1295 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Mata, I. F., Wedemeyer, W. J., Farrer, M. J., Taylor, J. P. & Gallo, K. A. LRRK2 in Parkinson's disease: protein domains and functional insights. Trends Neurosci. 29, 286–293 (2006).

    CAS  PubMed  Google Scholar 

  112. Wegiel, J. et al. The role of overexpressed DYRK1A protein in the early onset of neurofibrillary degeneration in Down syndrome. Acta Neuropathol. 116, 391–407 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Nikolic, M. The Pak1kinase: an important regulator of neuronal morphology and function in the developing forebrain. Mol. Neurobiol. 37, 187–202 (2008).

    CAS  PubMed  Google Scholar 

  114. Knippschild, W. et al. The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell. Signal. 17, 675–689 (2005).

    CAS  PubMed  Google Scholar 

  115. Gong, C. S. & Iqbal, K. Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr. Med. Chem. 15, 2321–2328 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Pardridge, W. M. The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2, 3–14 (2005).

    PubMed  PubMed Central  Google Scholar 

  117. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46, 3–26 (2001). The seminal paper describing the 'Rule of Five' for drug-like molecular properties.

    CAS  Google Scholar 

  118. Levin, V. A. Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J. Med. Chem. 23, 682–684 (1980).

    CAS  PubMed  Google Scholar 

  119. Leeson, P. D. & Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nature Rev. Drug Discov. 6, 881–890 (2007).

    CAS  Google Scholar 

  120. Nies, A. T. The role of membrane transporters in drug delivery to brain tumors. Cancer Lett. 254, 11–29 (2007).

    CAS  PubMed  Google Scholar 

  121. Vieth, M. et al. Characteristic physical properties and structural fragments of marketed oral drugs. J. Med. Chem. 47, 224–232 (2004).

    CAS  PubMed  Google Scholar 

  122. Capdeville, R., Buchdunger, E., Zimmermann, J. & Matter, A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nature Rev. Drug Discov. 1, 493–502 (2002). A case study and historical review of the development of imatinib and the validation of protein kinases as drug targets.

    CAS  Google Scholar 

  123. Wen, P. Y. et al. Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99–08. Clin. Cancer Res. 12, 4899–4907 (2006).

    CAS  PubMed  Google Scholar 

  124. Raymond, E. et al. Phase II study of imatinib in patients with recurrent gliomas of various histologies: a European Organisation for Research and Treatment of Cancer Brain Tumor Group Study. J. Clin. Oncol. 26, 4659–4665 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Dai, H., Marbach, P., Lemaire, M., Hayes, M. & Elmquist, W. F. Distribution of STI-571 to the brain is limited by P-glycoprotein-mediated efflux. J. Pharmacol. Exp. Ther. 304, 1085–1092 (2003).

    CAS  PubMed  Google Scholar 

  126. Rishton, G. M., LaBonte, K., Williams, A. J., Kassam, K. & Kolovanov, E. Computational approaches to the prediction of blood-brain barrier permeability: a comparative analysis of central nervous system drugs versus secretase inhibitors for Alzheimer's disease. Curr. Opin. Drug Discov. Devel. 9, 303–313 (2006).

    CAS  PubMed  Google Scholar 

  127. Kamath, A. V., Wang, J., Lee, F. Y. & Marathe, P. H. Preclinical pharmacokinetics and in vitro metabolism of dasatinib (BMS-354825): a potent oral multi-targeted kinase inhibitor against SRC and BCR-ABL. Cancer Chemother. Pharmacol. 61, 365–376 (2008).

    CAS  PubMed  Google Scholar 

  128. Porkka, K. et al. Dasatinib crosses the blood-brain barrier and is an efficient therapy for central nervous system Philadelphia chromosome-positive leukemia. Blood 112, 1005–1012 (2008).

    CAS  PubMed  Google Scholar 

  129. Arendt, R. M., Greenblatt, D. J., Liebisch, D. C., Luu, M. D. & Paul, S. M. Determinants of benzodiazepine brain uptake: lipophilicity versus binding affinity. Psychopharmacology 93, 72–76 (1987).

    CAS  PubMed  Google Scholar 

  130. Obradovic, T., Dobson, G., Shingaki, T., Kungu, T. & Hidalgo, I. Assessment of the first and second generation antihistamines brain penetration and role of P-glycoprotein. Pharm. Res. 24, 318–327 (2007).

    CAS  PubMed  Google Scholar 

  131. Mahar Doan, K. et al. Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J. Pharmacol. Exp. Ther. 303, 1029–1037 (2002).

    PubMed  Google Scholar 

  132. Morphy, R. The influence of target family and functional activity on the physicochemical properties of pre-clinical compounds. J. Med. Chem. 49, 2969–2978.

    CAS  PubMed  Google Scholar 

  133. Chico, L. K. et al. Molecular properties and CYP2D6 substrates: central nervous system therapeutics case study and pattern analysis of a substrate database. Drug Metab. Disp. 6 Aug 2009 (doi:10.1124/dmd.109.028134).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Rendic, S. Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab. Rev. 34, 83–448 (2002).

    CAS  PubMed  Google Scholar 

  135. Kramer, J. A., Sagartz, J. E. & Morris, D. L. The application of discovery toxicology and pathology towards the design of safer pharmaceutical lead candidates. Nature Rev. Drug Discov. 6, 636–649 (2007).

    CAS  Google Scholar 

  136. Kirchheiner, J. et al. Pharmacokinetics of codeine and its metabolite morphine in ultra-rapid metabolizers due to CYP2D6 duplication. Pharmacogenomics 7, 257–265 (2007).

    CAS  Google Scholar 

  137. Peng, B., Lloyd, P. & Schran, H. Clinical pharmacokinetics of imatinib. Clin. Pharmacokinet. 44, 879–894 (2005).

    CAS  PubMed  Google Scholar 

  138. Ohren, J. F. et al. Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nature Struct. Mol. Biol. 11, 1192–1197 (2004).

    CAS  Google Scholar 

  139. VanScyoc, W. S., Holdgate, G. A., Sullivan, J. E. & Ward, W. H. Enzyme kinetics and binding studies on inhibitors of MEK protein kinase. Biochemistry 47, 5017–5027 (2008).

    CAS  PubMed  Google Scholar 

  140. Adams, J. A. Kinetic and catalytic mechanisms of protein kinases. Chem. Rev. 101, 2271–2290 (2001).

    CAS  PubMed  Google Scholar 

  141. Congreve, M., Chessari, G., Tisi, D. & Woodhead, A. J. Recent developments in fragment-based drug discovery. J. Med. Chem. 51, 3661–3680 (2008). This paper provides an update on the fragment-based approach to drug discovery and case studies of success with the approach.

    CAS  PubMed  Google Scholar 

  142. Chessari, G. & Woodhead, A. J. From fragment to clinical candidate – a historical perspective. Drug Discov. Today 14, 668–675 (2009).

    CAS  PubMed  Google Scholar 

  143. de Kloe, G. E., Bailey, D., Leurs, R. & de Esch, I. J. P. Transforming fragments into candidates: small becomes big in medicinal chemistry. Drug Discov. Today 14, 630–646 (2009).

    PubMed  Google Scholar 

  144. Nath, N. et al. 5-aminoimidazole-4-4-carboxamide ribonucleoside: a novel immunomodulator with therapeutic efficacy in experimental autoimmune encephalomyelitis. J. Immunol. 175, 566–574 (2005).

    CAS  PubMed  Google Scholar 

  145. McCullough, L. D. et al. Pharmacological inhibition of AMP-activated protein kinase provides neuroprotection in stroke. J. Biol. Chem. 280, 20493–20502 (2005).

    CAS  PubMed  Google Scholar 

  146. Takle, A. K. et al. The identification of potent, selective and CNS penetrant furan-based inhibitors of B-Raf kinase. Bioorg. Med. Chem. Lett. 18, 4373–4376 (2008).

    CAS  PubMed  Google Scholar 

  147. Hilton, G. D., Stoica, B. A., Byrnes, K. R. & Faden, A. I. Roscovitine reduces neuronal loss, glial activation, and neurologic deficits after brain trauma. J. Cereb. Blood Flow Metab. 28, 1845–1859 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Wang, F. et al. Inhibition of cyclin-dependent kinases improves CA1 neuronal survival and behavioral performance after global ischemia in the rat. J. Cereb. Blood Flow Metab. 22, 171–182 (2002).

    CAS  PubMed  Google Scholar 

  149. Weishaupt, J. H. et al. Inhibition of CDK5 is protective in necrotic and apoptotic paradigms of neuronal cell death and prevents mitochondrial dysfunction. Mol. Cell Neurosci. 24, 489–502 (2003).

    CAS  PubMed  Google Scholar 

  150. Selenica, M. L. et al. Efficacy of small-molecule glycogen synthase kinase-3 inhibitors in the postnatal rat model of tau hyperphosphorylation. Br. J. Pharmacol. 152, 959–979 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Muñoz-Montaño, J. R., Moreno, F. J., Avila, J. & Diaz-Nido, J. Lithium inhibits Alzheimer's disease-like tau protein phosphorylation in neurons. FEBS Lett. 411, 183–188 (1997).

    PubMed  Google Scholar 

  152. Kozikowski, A. P. et al. Structure-based design leads to the identification of lithium mimetics that block mania-like effects in rodents. possible new GSK-3β therapies for bipolar disorders. J. Am. Chem. Soc. 129, 8328–8332 (2007).

    CAS  PubMed  Google Scholar 

  153. Cowper-Smith, C. D., Anger, G. J. A., Magal, E., Norman, M. H. & Robertson, G. S. Delayed administration of a potent cyclin dependent kinase and glycogen synthase kinase 3β inhibitor produces long-term neuroprotection in a hypoxia-ischemia model of brain inury. Neurosci. 155, 864–875 (2008).

    CAS  Google Scholar 

  154. Kelly S. et al. Glycogen synthase kinase 3β inhibitor Chir025 reduces neuronal death resulting from oxygen-glucose deprivation, glutamate excitotoxicity, and cerebral ischemia. Exp. Neurol. 188, 378–386 (2004).

    CAS  PubMed  Google Scholar 

  155. Dewhurst, S., Maggirwar, S. B., Schifitto, G., Gendelman, H. E. & Gelbard, H. A. Glycogen synthase kinase 3 beta (GSK-3β) as a therapeutic target in neuroAIDS. J. Neuroimmune. Pharmacol. 2, 93–96 (2006).

    PubMed  Google Scholar 

  156. Wang, W. et al. Inhibition of glycogen synthase kinase-3β protects dopaminergic neurons from MPTP toxicity. Neuropharmacology 52, 1678–1684 (2007).

    CAS  PubMed  Google Scholar 

  157. Thotala, D. K., Hallahan, D. E. & Yazlovitskaya, E. M. Inhibition of glycogen synthase kinase 3 beta attenuates neurocognitive dysfunction resulting from cranial irradiation. Cancer Res. 68, 5859–5868 (2008).

    CAS  PubMed  Google Scholar 

  158. Shapira, M. et al. Role of glycogen synthase kinase-3β in early depressive behavior induced by mild traumatic brain injury. Mol. Cell. Neurosci. 34, 571–577 (2007).

    CAS  PubMed  Google Scholar 

  159. Trieu, V. N., Liu, R., Liu, X. P. & Uckun, F. M. A specific inhibitor of janus kinase-3 increases survival in a transgenic mouse model of amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 267, 22–25 (2000).

    CAS  PubMed  Google Scholar 

  160. Wang, W. et al. SP600125, a new JNK inhibitor, protects dopaminergic neurons in the MPTP model of Parkinson's disease. Neurosci. Res. 48, 195–202 (2004).

    CAS  PubMed  Google Scholar 

  161. Carr, K. D. et al. Effects of the MEK inhibitor, SL-327, on rewarding, motor- and cellular-activating effects of d-amphetamine and SKF-82958, and their augmentation by food restriction in rat. Psychopharmacology 201, 495–506 (2009).

    CAS  PubMed  Google Scholar 

  162. Alessandrini, A., Namura, S., Moskowitz, M. A. & Bonventre, J. V. MEK1 protein kinase inhibition protects against damage resulting from focal cerebral ischemia. Proc. Natl Acad. Sci. USA 96, 12866–12869 (1999).

    CAS  PubMed  Google Scholar 

  163. Gu, Z., Jiang, Q. & Zhang, G. Extracellular signal-regulated kinase and c-Jun N-terminal protein kinase in ischemic tolerance. NeuroReport 12, 3487–3491 (2001).

    CAS  PubMed  Google Scholar 

  164. Ciruela, A. et al. Identification of MEK1 as a novel target for the treatment of neuropathic pain. Br. J. Pharmacol. 138, 751–756 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Saporito, M. S., Hudkins, R. L. & Maroney, A. C. Discovery of CEP-1347/KT-7515, an inhibitor of the JNK/SAPK pathway for the treatment of neurodegenerative diseases. Prog. Med. Chem. 40, 23–62 (2002).

    CAS  PubMed  Google Scholar 

  166. Conforti, P. et al. Blood level of brain-derived neutrophic factor mRNA is progressively reduced in rodent models of Huntington's disease: restoration by the neuroprotective compound CEP-1347. Mol. Cell Neurosci. 39, 1–7 (2008).

    CAS  PubMed  Google Scholar 

  167. Glicksman, M. A. et al. CEP-1347/KT7515 prevents motor neuronal programmed cell death and injury-induced dedifferentiation in vivo. J. Neurobiol. 35, 361–370 (1998).

    CAS  PubMed  Google Scholar 

  168. Kokubu, K., Tani, E., Nakano, M., Minami, N. & Shindo, H. Effects of ML-9 on experimental delayed cerebral vasospasm. J. Neurosurg. 71, 916–922 (1989).

    CAS  PubMed  Google Scholar 

  169. Meikle, L. et al. Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function. J. Neurosci. 28, 5422–5432 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nature Genet. 36, 585–595 (2004).

    CAS  PubMed  Google Scholar 

  171. Ito, T. et al. Glial phosphorylated p38 MAP kinase mediates pain in a rat model of lumbar disc herniation and induces motor dysfunction in a rat model of lumbar spinal canal stenosis. Spine 32, 159–167 (2007).

    PubMed  Google Scholar 

  172. Stirling, D. P., Liu, J., Plunet, W., Steeves, J. D. & Tetzlaff, W. SB203580, a p38 mitogen-activated protein kinase inhibitor, fails to improve functional outcome following a moderate spinal cord injury in rat. Neuroscience 155, 128–137 (2008).

    CAS  PubMed  Google Scholar 

  173. Ferraccioli, G. F. VX-745 Vertex Pharmaceuticals. Curr. Opin. Anti-Inflamm. Immun. Invest. Drugs 2, 74–77 (2000).

    CAS  Google Scholar 

  174. Su, Y., Ryder, J. & Ni, B. Inhibition of Aβ production and APP maturation by a specific PKA inhibitor. FEBS Lett. 546, 407–410 (2003).

    CAS  PubMed  Google Scholar 

  175. Zhao, W. Q. et al. Inhibitors of cAMP-dependent protein kinase impair long-term memory formation in day-old chicks. Neurobiol. Learn. Mem. 64, 106–118 (1995).

    CAS  PubMed  Google Scholar 

  176. Smith, F. L., Javed, R. R., Smith, P. A., Dewey, W. L. & Gabra, B. H. PKC and PKA inhibitors reinstate morphine-induced behaviors in morphine tolerant mice. Pharmacol. Res. 54, 474–480 (2006).

    CAS  PubMed  Google Scholar 

  177. Otuki, M. F. et al. Antinociceptive properties of mixture of α-amyrin and β-amyrin triterpenes: evidence for participation of protein kinase C and protein kinase A pathways. J. Pharmacol. Exp. Ther. 313, 310–318 (2005).

    CAS  PubMed  Google Scholar 

  178. Liu, S. J. et al. Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositol-3 kinase and protein kinase C leads to hyperphosphorylation of tau and impairment of spatial memory. J. Neurochem. 87, 1333–1344 (2003).

    CAS  PubMed  Google Scholar 

  179. Zarate, C. A. Jr et al. Efficacy of a protein kinase C inhibitor (tamoxifen) in the treatment of acute mania: a pilot study. Bipolar Disord. 9, 561–570 (2007).

    CAS  PubMed  Google Scholar 

  180. Teicher, B. A. et al. Enzymatic rationale and preclinical support for a potent protein kinase Cb inhibitor in cancer therapy. Adv. Enzyme. Regul. 39, 313–327 (1999).

    CAS  PubMed  Google Scholar 

  181. da Cunha, J. M., Rae, G. A., Ferreira, S. H. & Cunha Fde, Q. Endothelins induce ETB receptor-mediated mechanical hypernociception in rat hindpaw: roles of cAMP and protein kinase C. Eur. J. Pharm. 501, 87–94 (2004).

    CAS  Google Scholar 

  182. Parnham, M. & Sies, H. Ebselen: prospective therapy for cerebral ischaemia. Exp. Opin. Investig. Drugs 9, 607–619 (2000).

    CAS  Google Scholar 

  183. Minami, N., Tani, E., Maeda, Y., Yamaura, I. & Fukami, M. Effects of inhibitors of protein kinase C and calpain in experimental delayed cerebral vasospasm. J. Neurosurg. 76, 111–118 (1992).

    CAS  PubMed  Google Scholar 

  184. Nishizawa, S. et al. Attenuation of canine cerebral vasospasm after subarachnoid hemorrhage by protein kinase C inhibitors despite augmented phosphorylation of myosin light chain. J. Vasc. Res. 40, 169–178 (2003).

    CAS  PubMed  Google Scholar 

  185. Tokuyama, S., Ho, I. K. & Yamamoto, T. A protein kinase inhibitor, H-7, blocks naloxone-precipitated changes in dopamine and its metabolites in the brains of opioid-dependent rats. Brain Res. Bull. 52, 363–369 (2000).

    CAS  PubMed  Google Scholar 

  186. Zhang, D., Kanthasamy, A., Yang, Y., Anantharam, V. & Kanthasamy, A. Protein kinase Cδ negatively regulates tyrosine hydroxylase activity and dopamine synthesis by enhancing protein phosphatase-2A activity in dopaminergic neurons. J. Neurosci. 27, 5349–5362 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Inglis, K. et al. Polo-like kinase 2 (PLK2) phosphorylates α-synuclein at serine 129 in central nervous system. J. Biol. Chem. 284, 2598–2602 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Zhou, Y. et al. Nonsteroidal anti-inflammatory drugs can lower amyloidogenic Aβ42 by inhibiting Rho. Science 302, 1215–1217 (2003).

    CAS  PubMed  Google Scholar 

  189. Satoh, S., Toshima, Y., Ikegaki, I., Iwasaki, M. & Asano, T. Wide therapeutic time window for fasudil neuroprotection against ischemia-induced delayed neuronal death in gerbils. Brain Res. 1128, 175–180 (2007).

    CAS  PubMed  Google Scholar 

  190. Satoh, S. et al. Pharmacological profile of hydroxy fasudil as a selective rho kinase inhibitor on ischemic brain damage. Life Sci. 69, 1441–1453 (2001).

    CAS  PubMed  Google Scholar 

  191. Sun, X. et al. The selective Rho-kinase inhibitor Fasudil is protective and therapeutic in experimental autoimmune encephalomyelitis. J. Neuroinflamm. 180, 126–134 (2006).

    CAS  Google Scholar 

  192. Inan, S. & Büyükafsar, K. Antiepileptic effects of two Rho-kinase inhibitors, Y-27632 and fasudil, in mice. Br. J. Pharmacol. 155, 44–51 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Büyükafsar, K. et al. Rho-kinase inhibitor, Y-27632, has an antinociceptive effect in mice. Eur. J. Pharmacol. 541, 49–52 (2006).

    PubMed  Google Scholar 

  194. Fournier, A. E., Takizawa, B. T. & Strittmatter, S. M. Rho kinase inhibition enhances axonal regeneration in the injured CNS. J. Neurosci. 23, 1416–1423 (2003).

    CAS  PubMed  Google Scholar 

  195. Jadhav, V., Matchett, G., Hsu, F. P. & Zhang, J. H. Inhibition of Src tyrosine kinase and effect on outcomes in a new in vivo model of surgically induced brain injury. J. Neurosurg. 106, 680–686 (2007).

    CAS  PubMed  Google Scholar 

  196. Liu, D. Z. et al. Src kinase inhibition decreases thrombin-induced injury and cell cycle re-entry in striatal neurons. Neurobiol. Dis. 30, 201–211 (2008).

    PubMed  PubMed Central  Google Scholar 

  197. Tran, T. T. et al. Inhibiting TGF-β signaling restores immune surveillance in the SMA-560 glioma model. Neuro. Oncol. 9, 259–270 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the National Institutes of Health (AG031311, NS056051 and AG013939).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Martin Watterson.

Supplementary information

Supplementary information S1 (box)

Supplementary information (PDF 1093 kb)

Supplementary information S2 (table)

Database of protein kinase targets for CNS indications (XLS 62 kb)

Supplementary information S3 (table)

Database of disclosed CNS-penetrant small molecules (XLS 156 kb)

Supplementary information S4 (table)

Small molecule protein kinase inhibitor drugs (approved and in clinical trial) (XLS 28 kb)

Related links

Related links

DATABASES

OMIM

Alzheimer's disease

Parkinson's disease

FURTHER INFORMATION

D. Martin Watterson's homepage

Northwestern University Center for Molecular Innovation and Drug Discovery

LCK Pharma Services

Glossary

Blood–brain barrier

The barrier formed by tight junctions of brain endothelial cells that restrict the passage of drugs between the bloodstream and the brain.

Pharmacodynamics

The biochemical and physiological effects of an administered drug on the body, and the relationships between drug dose and efficacy or toxicity.

Kinome

The subset of genes that encode protein kinases in the genome of an organism.

P-glycoprotein

An efflux transporter at the blood–brain barrier that can prevent drug substrate accumulation in the brain.

Polar surface area

The total surface area of all polar atoms (usually oxygen and nitrogen), including attached hydrogen ions.

LogP

A measure of a drug's lipophilicity, it is the logarithm of the octanol–water partition coefficient. Higher values are associated with greater lipophilicity, whereas lower values are characteristic of more water-soluble compounds.

LogBB

The steady-state ratio of drug concentration in the brain versus drug concentration in the blood.

Pharmacokinetics

'What the body does to the drug', including the extent and rate of drug absorption, distribution, metabolism and excretion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chico, L., Van Eldik, L. & Watterson, D. Targeting protein kinases in central nervous system disorders. Nat Rev Drug Discov 8, 892–909 (2009). https://doi.org/10.1038/nrd2999

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2999

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing