Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Solid-state NMR in drug design and discovery for membrane-embedded targets

Key Points

  • Drug discovery for membrane targets will be a major focus for the foreseeable future.

  • However, the lack of essential high-resolution structural details at the molecular level, and the well-acknowledged technical difficulties that are associated with the crystallography of membrane proteins, have hampered the development of rational drug discovery for membrane targets.

  • NMR is a tool that is used to derive local (magnetic) information at the atomic level and is, therefore, limited by complexity in large molecules.

  • However, defining ligand–protein interactions does, fortuitously, require local information and so NMR comes into its own. Observing drugs at their membrane-embedded target directly is an important challenge that solid-state NMR is now addressing

  • This review describes the application of solid-state NMR for detecting ligands at their site of action, resolving drug structures at their site of action, defining target binding sites, resolving ligand orientation, resolving bound drug dynamics and assessing drug partitioning.

Abstract

Observing drugs and ligands at their site of action in membrane proteins is now possible through the use of a development in biomolecular NMR spectroscopy known as solid-state NMR. Even large, functionally active complexes are being examined using this method, with structural details being resolved at super-high subnanometre resolution. This is supplemented by detailed dynamic and electronic information about the surrounding ligand environment, and gives surprising new insights into the way in which ligands bind, which can aid drug design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Solid-state NMR in drug discovery.
Figure 2: Determining Kd for ligands.
Figure 3: Resolving drug structures at the site of action.
Figure 4: Identifying bound ligand environment.
Figure 5: Differential dynamics of bound ligands.

Similar content being viewed by others

References

  1. Terstappen, G. C. & Reggiani, A. In silico research in drug discovery. Trends Pharmacol. Sci. 22, 23–26 (2001).

    Article  CAS  Google Scholar 

  2. Drews, J. Drug discovery: a historical perspective. Science 287, 1960–1964 (2000).

    Article  CAS  Google Scholar 

  3. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  CAS  Google Scholar 

  4. Denker, B. M., Smith, B. L., Kuhajda, F. P. & Agre, P. Identification, purification, and partial characterization of a novel Mr28,000 integral membrane protein from erythrocytes and renal tubes. J. Biol. Chem. 263, 15634–15642 (1988).

    CAS  PubMed  Google Scholar 

  5. Tucker, J. & Grisshammer, R. Purification of a rat neurotensin receptor expressed in Escherichia coli. Biochem. J. 317, 891–899 (1996).

    Article  CAS  Google Scholar 

  6. Seifert, R. et al. Different effects of Gsa splice variants on β2-adrenoreceptor-mediated signaling. The β2-adrenoreceptor coupled to the long splice variant of Gsa has properties of a constitutively active receptor. J. Biol. Chem. 273, 5109–5116 (1998).

    Article  CAS  Google Scholar 

  7. Creemers, A. F. L. et al. Solid state 15N NMR evidence for a complex Schiff base counterion in the visual G-protein-coupled receptor rhodopsin. Biochemistry 38, 7195–7199 (1999).

    Article  CAS  Google Scholar 

  8. Vosegaard, T. & Nielsen, N. C. Towards high-resolution solid-state NMR on large uniformly 15N- and [13C, 15N]-labeled membrane proteins in oriented lipid bilayers. J. Biomol. NMR 22, 225–247 (2002).

    Article  CAS  Google Scholar 

  9. Riek, R., Pervushin, K. & Wüthrich, K. TROSY and CRINEPT: NMR with large molecular and supramolecular structures in solution. Trends Biochem. Sci. 25, 462–468 (2000). This paper reviews the potential of using new solution-state NMR for the structural determinations of larger (30100 kDa) purified proteins.

    Article  CAS  Google Scholar 

  10. Watts, A. et al. in Methods in Molecular Biology: Techniques in Protein NMR (ed. Downing, K.) (Humana, Totowa, New Jersey, 2004).

    Google Scholar 

  11. Roberts, G. C. K. Applications of NMR in drug discovery. Drug Discov. Today 5, 230–240 (2000).

    Article  CAS  Google Scholar 

  12. Pellecchia, M., Sem, D. S. & Wüthrich, K. NMR in drug discovery. Nature Rev. Drug. Discov. 1, 211–219 (2002). References 11 and 12 are good and comprehensible reviews of solution-state NMR methods to study ligand-target interactions.

    Article  CAS  Google Scholar 

  13. Shuker, S., Hajduk, P., Meadows, R. & Fesik, S. Discovering high-affinity ligands for proteins: SAR by NMR. Science 274, 1531–1534 (1996).

    Article  CAS  Google Scholar 

  14. Watts, A. Direct studies of ligand–receptor interactions and ion channel blocking. Mol. Memb. Biol. 19, 267–275 (2002).

    Article  CAS  Google Scholar 

  15. Watts, A. et al. Membrane protein structure determination by solid state NMR. Nat. Prod. Rep. 16, 419–423 (1999).

    Article  CAS  Google Scholar 

  16. Watts, A. NMR of drugs and ligands bound to membrane receptors. Curr. Opin. Biotechnol. 10, 48–53 (1999).

    Article  CAS  Google Scholar 

  17. Watts, A. Structural resolution of ligand–receptor interactions in functional, membrane-embedded receptors and proteins using novel, non-perturbing solid state NMR methods. Pharm. Pharm. Comm. 5, 7–13 (1999).

    Article  CAS  Google Scholar 

  18. Spooner, P. J. R., Rutherford, N., Watts, A. & Henderson, P. J. F. NMR observation of substrate in the binding site of an active sugar H+ symport protein in native membranes. Proc. Natl Acad. Sci. USA 91, 3877–3881 (1994).

    Article  CAS  Google Scholar 

  19. Spooner, P. J. R., Veenhoff, L. M., Watts, A. & Poolman, B. Structural information on a membrane transport protein from nuclear magnetic resonance spectroscopy using sequence-selective nitroxide labeling. Biochemistry 38, 9634–9639 (1999)

    Article  CAS  Google Scholar 

  20. Creuzet, F. et al. Determination of membrane-protein structure by rotational resonance NMR: bacteriorhodopsin. Science 251, 783–786 (1991). This was the first example of distance measurements in a membrane receptor using solid-state NMR to determine ligand (retinal) structure.

    Article  CAS  Google Scholar 

  21. Gröbner, G. et al. Observation of light-induced structural changes of retinal within rhodopsin. Nature 405, 810–813 (2000).

    Article  Google Scholar 

  22. Ulrich, A. S., Wallat, I., Heyn, M. P. & Watts, A. Re-orientation of retinal in the M-photointermediate of bacteriorhodopsin. Nature Struct. Biol. 2, 190–192 (1995).

    Article  CAS  Google Scholar 

  23. Carravetta, M. et al. Protein-induced bonding perturbation of the rhodopsin chromophore detected by double-quantum solid-state NMR. J. Am. Chem. Soc. 126, 3948–3953 (2004).

    Article  CAS  Google Scholar 

  24. Blundell, T. L., Jhoti, H. & Abell, C. High-throughput crystallography for lead discovery in drug design. Nature Rev. Drug Discov. 1, 45–54 (2002).

    Article  CAS  Google Scholar 

  25. Toyoshima, C. & Nomura, H. Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418, 605–611 (2002). This paper presents the first high-resolution structure of a P-type membrane ATPase in which the ligand structure and conformational changes are defined.

    Article  CAS  Google Scholar 

  26. Watts, J. A., Watts, A. & Middleton, D. A. A model of reversible inhibitors in gastric H+/K+-ATPase binding site determined by rotational echo double resonance NMR. J. Biol. Chem. 276, 43197–43204 (2001).

    Article  CAS  Google Scholar 

  27. Middleton, D. A., Rankin, S., Esmann, M. & Watts, A. Structural insights into the binding of cardiac glycosides to the digitalis receptor revealed by solid-state NMR. Proc. Natl Acad. Sci. USA 97, 13602–13607 (2000).

    Article  CAS  Google Scholar 

  28. Kim, C. G., Watts, J. A. & Watts, H. Ligand docking in the gastric H+/K+-ATPase — homology modelling of reversible inhibitor sites. J. Med. Chem. (in the press).

  29. Miyazawa, A., Fujiyoshi, Y., Stowell, M. & Unwin, N. Nicotinic acetylcholine receptor at 4.6Å resolution: transverse tunnels in the channel wall. J. Mol. Biol. 288, 765–786 (1999).

    Article  CAS  Google Scholar 

  30. Miyazawa, A., Fujiyoshi, Y. & Unwin, N. Structure and gating mechanism of the acetylcholine receptor pore. Nature 424, 949 (2003).

    Article  Google Scholar 

  31. Fraenkel, Y., Gershoni, J. M. & Navon, G. NMR analysis reveals a positively charged hydrophobic domain as a common motif to bound acetylcholine and D-tubocurarine. Biochemistry 33, 644–650 (1994).

    Article  CAS  Google Scholar 

  32. Williamson, P. T. F., Watts, J. A., Addona, G. H., Miller, K. W. & Watts, A. Dynamics and orientation of N+(CD3)3-bromoacetylcholine bound to its binding site on the nicotinic acetylcholine receptor. Proc. Natl Acad. Sci. USA 98, 2346–2351 (2001).

    Article  CAS  Google Scholar 

  33. Williamson, P. T. F., Gröbner, G., Spooner, P. J. R., Miller, K. W. & Watts, A. Probing the agonist binding pocket on the nicotinic acetylcholine receptor: a high resolution solid state NMR approach. Biochemistry 37, 10854–10859 (1998).

    Article  CAS  Google Scholar 

  34. Gallivan, J. P. & Dougherty, D. A. Cation–π interactions in structural biology. Proc. Natl Acad. Sci. USA 96, 9459–9464 (1999).

    Article  CAS  Google Scholar 

  35. Sabbagh, M., Lukas, R., Sparks, D. & Reid, R. The nicotinic acetylcholine receptor, smoking, and Alzheimer's disease. J. Alzheimers Dis. 4, 317–325 (2002).

    Article  CAS  Google Scholar 

  36. Shytle, R. et al. Cholinergic modulation of microglial activation by α7 nicotinic receptors. J. Neurochem. 89, 337–343 (2004).

    Article  CAS  Google Scholar 

  37. Terry, A. J. & Buccafusco, J. The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: recent challenges and their implications for novel drug development. J. Pharmacol. Exp. Ther. 306, 821–827 (2003).

    Article  CAS  Google Scholar 

  38. Romano, J. A possible explanation for nicotine's neuroprotective effect. Neurol. Rev. 12, 4 (2004).

    Google Scholar 

  39. Arehart-Treichel, J. A. Role for nicotine in Alzheimer's, other disorders. Psych. News (17 March 2000).

  40. Wilens, T. E. et al. A pilot controlled clinical trial of ABT-418, a cholinergic agonist, in the treatment of adults with attention deficit hyperactivity disorder. Am. J. Psych. 156, 1931–1937 (1999).

    CAS  Google Scholar 

  41. Kelly, C. & McCreadie, R. Smoking habits, current symptoms, and premorbid characteristics of schizophrenic patients in Nithsdale, Scotland. Am. J. Psych. 156, 1751–1757 (1999).

    Article  CAS  Google Scholar 

  42. Pebay-Peyroula, E., Rummel, G., Rosenbusch, J. P. & Landau, E. M. X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science 277, 1676–1681 (1997).

    Article  CAS  Google Scholar 

  43. Luecke, H., Schobert, B., Richter, H. T., Cartailler, J. P. & Lanyi, J. K. Structure of bacteriorhodopsin at 1.55Å resolution. J. Mol. Biol. 291, 899–911 (1999).

    Article  CAS  Google Scholar 

  44. Gröbner, G. et al. Macroscopic orientation of natural and model membranes for structural studies. Anal. Biochem. 254, 132–136 (1997).

    Article  Google Scholar 

  45. Kamihira, M. et al. Structural and orientational constraints of bacteriorhodopsin in purple membranes determined by oriented-sample solid-state NMR spectroscopy. J. Struct. Biol. 149, 7–16 (2005).

    Article  CAS  Google Scholar 

  46. Merlitz, H., Burghardt, B. & Wenzel, W. Stochastic tunneling method for high-throughput database screening. Nanotechnology 1, 44–47 (2003).

    Google Scholar 

  47. Fraser, D. M., Van Gorkom, L. C. M. & Watts, A. Partitioning behaviour of 1- hexanol into lipid membranes as studied by deuterium NMR spectroscopy. Biochim. Biophys. Acta 1069, 53–60 (1991).

    Article  CAS  Google Scholar 

  48. Middleton, D. A., Reid, D. G. & Watts, A. A combined quantitative and mechanistic study of drug–membrane interactions using a novel 2H NMR approach. J. Pharm. Sci. 93, 507–514 (2004).

    Article  CAS  Google Scholar 

  49. Hu, J. G. et al. Early and late M intermediates in the bacteriorhodopsin photocycle: a solid-state NMR study. Biochemistry 37, 8088–8096 (1998).

    Article  CAS  Google Scholar 

  50. Jaroniec, C. P. et al. Measurement of dipolar couplings in a uniformly 13C/15N labeled membrane protein: distances between the Schiff Base and aspartic acids in the active site of bacteriorhodopsin. J. Am. Chem. Soc. 123, 12929–12930 (2001).

    Article  CAS  Google Scholar 

  51. Lemaitre, V. et al. New insights onto the bonding arrangements of L- and D-glutamates from solid state 170 NMR. Chem. Phys. Lett. 371, 91–97 (2003).

    Article  CAS  Google Scholar 

  52. Lansing, J. C., Hu, J. G., Belenky, M., Griffin, R. G. & Herzfeld, J. Solid-state NMR investigation of the buried X-proline peptide bonds of bacteriorhodopsin. Biochemistry 42, 3586–3593 (2003).

    Article  CAS  Google Scholar 

  53. Jaroniec, C. P. et al. Measurement of dipolar couplings in a uniformly 13C-15N-labeled membrane protein: distances between the Schiff Base and aspartic acids in the active site of Bacteriorhodopsin. J. Am. Chem. Soc. 123, 12929–12930 (2001).

    Article  CAS  Google Scholar 

  54. Castellani, F. et al. Structure of a protein determined by solid-state magic angle-spinning NMR spectroscopy. Nature 420, 98–102 (2003).

    Google Scholar 

  55. Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 277, 687–690 (2000).

    Google Scholar 

  56. Opella, S. J. NMR and membrane proteins. Nature Struct. Biol. 4 (Suppl.), 845–848 (1997). This is a good review of solid-state NMR structure determinations for membrane proteins, which is comprehensibly written and well illustrated.

    CAS  PubMed  Google Scholar 

  57. Griffin, R. G. Dipolar recoupling in MAS spectra of biological solids. Nature Struct. Biol. 5, 508–512 (1998). This paper contains descriptions of dipolar recoupling methods, and is accessible to specialists and nonspecialists alike.

    Article  CAS  Google Scholar 

  58. Tycko, R. Biomolecular solid state NMR: advances in structural methodology and applications to peptide and protein fibrils. Annu. Rev. Phys. Chem. 52, 575–606 (2001).

    Article  CAS  Google Scholar 

  59. Thompson, L. K. Solid state NMR studies of the structure and mechanisms of proteins. Curr. Opin. Struct. Biol. 12, 661–669 (2002).

    Article  CAS  Google Scholar 

  60. Zech, S. G., Olejniczak, E., Hajduk, P., Mack, J. & McDermott, A. E. Characterization of protein–ligand interactions by high-resolution solid-state NMR spectroscopy. J. Am. Chem. Soc. 126, 13948–13953 (2004).

    Article  CAS  Google Scholar 

  61. Bernstein, J. Polymorphism in Molecular Crystals (Oxford Univ. Press, Oxford, 2002).

    Google Scholar 

  62. Lemaitre, V., Smith, M. E. & Watts, A. A review of oxygen-17 solid state NMR of organic materials: towards biological applications. Solid State Nuc. Mag. Res. 26, 215–235 (2004).

    Article  CAS  Google Scholar 

  63. Levitt, M. H., Raleigh, D. P., Creuzet, F. & Griffin, R. G. Theory and simulations of homonuclear spin pair systems in rotating solids. J. Chem. Phys. 92, 6347–6364 (1990).

    Article  CAS  Google Scholar 

  64. Guillon, T. Introduction to rotational-echo double resonance NMR. Conc. Mag. Res. 10, 277–289 (1998).

    Article  Google Scholar 

  65. Caira, M. R. in Design of Organic Solids 163–208 (Springer-Verlag, Heidelberg, 1998).

    Book  Google Scholar 

  66. Threlfall, T. L. Analysis of organic polymorphs. A review. Analyst 120, 2435–2460 (1995).

    Article  CAS  Google Scholar 

  67. Yu, L., Reutzel, S. M. & Stephenson, G. A. Physical characterization of polymorphic drugs: an integrated characterization strategy. Pharm. Sci. Technol. Today 1, 118–127 (1999).

    Article  Google Scholar 

  68. Portieri, A., Harris, R. K., Fletton, R. A. & Lancaster, R. W. Effects of polymorphic differences for sulfanilamide, as seen through 13C and 15N solid state NMR, together with shielding calculations. Magn. Reson. Chem. 42, 313–320 (2004).

    Article  CAS  Google Scholar 

  69. Apperley, D. C. et al. Sulfathiazole polymorphism studied by magic-angle spinning NMR. J. Pharm. Sci. 88, 1275–1280 (1999).

    Article  CAS  Google Scholar 

  70. Midleton, D. A. et al. The conformation of an inhibitor bound to gastric proton pump. FEBS Letts. 410, 269–274 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

The work described here from this group was supported by the European Union (EU), the Medical Research Council (MRC) UK, the Biotechnology and Biological Sciences Research Council (BBSRC), the Engineering and Physical Sciences Research Council (EPSRC) and the Higher Education Funding Council for England (HEFCE), with commercial support from Varian Inc. and Magnex Scientific Ltd., GlaxoSmithKline, Syngenta, Nestec and the Cheil Jedang Corporation.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

OMIM

Alzheimer's disease

attention-deficit/hyperactivity disorder

gastro-oesophageal reflux disease

Tourette's syndrome

Parkinson's disease

schizophrenia

Glossary

TUMBLING

A term used to describe molecules moving freely in solution and reorientating themselves quickly with respect to any given point.

CHEMICAL SHIFT

The chemical shift of a particular nucleus is a measure of the dependence of the resonance frequency of the nucleus on its chemical environment.

ASSIGNMENT

The process of attributing a resonance in an NMR spectrum to a particular nucleus in a molecule.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watts, A. Solid-state NMR in drug design and discovery for membrane-embedded targets. Nat Rev Drug Discov 4, 555–568 (2005). https://doi.org/10.1038/nrd1773

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1773

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing