Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting IL-1 in inflammatory disease: new opportunities for therapeutic intervention

Key Points

  • Interleukin-1 (IL-1) is a pro-inflammatory cytokine that plays a role in many acute and chronic human diseases.

  • Elevated levels of IL-1, or the naturally occurring receptor antagonist IL-1Ra, can be measured in human samples of tissue or body fluids from patients with rheumatoid arthritis (RA), osteoarthritis, chronic obstructive pulmonary disease, asthma, inflammatory bowel disease and atherosclerosis.

  • Blockade of IL-1 binding to the IL-1 receptor has been achieved with biological agents that neutralize IL-1. Anakinra, a recombinant form of IL-1Ra, shows clinical efficacy in RA. Other agents show promise in preclinical models and are safe and well tolerated in Phase I volunteer studies.

  • Small-molecule drugs are being developed that interfere with IL-1 signalling production or processing. The most advanced of these is an inhibitor of IL-1-converting enzyme, which has has shown clinical efficacy in RA. Other approaches include targeting the post-translational processing or release of IL-1 and have yielded encouraging results in preclinical studies.

Abstract

The cytokine interleukin-1 (IL-1) is important in many human diseases, and drives a wide range of inflammatory responses in a number of cell types. Biological agents that target IL-1 neutralization have shown efficacy in patients with rheumatoid arthritis. Recently, new classes of compounds that target IL-1 production or processing, or regulatory steps on the IL-1 pathway, are being investigated as new drugs for the management of inflammatory disease. Such compounds will have wide utility in numerous inflammatory conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IL-1 processing.
Figure 2: IL-1β signalling.
Figure 3: Effects of 24 weeks therapy with anakinra on Larsen score and erosive joint count.
Figure 4: Comparison of proportions achieving ACR20, -50 and -70 responses at weeks 24 with MTX/infliximab, MTX/anakinra and anakinra monotherapy.
Figure 5: Comparison of proportions achieving ACR20, 50 and 70 responses at weeks 24 in rheumatoid arthritis patients treated with the interleukin-1 trap.
Figure 6: Chemical structures of some compounds described.

Similar content being viewed by others

References

  1. Arend, W. P., Malyak, M., Guthridge, C. J. & Gabay, C. Interleukin-1 receptor antagonist: role in biology. Annu. Rev. Immunol. 16, 27–55 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Hallegua, D. S. & Weisman, M. H. Potential therapeutic uses of interleukin-1 receptor antagonists in human diseases. Ann. Rheum. Dis. 61, 960–967 (2003).

    Article  Google Scholar 

  3. Cominelli, F. & Pizarro, T. T. Interleukin-1 and interleukin-1 receptor antagonist in inflammatory bowel disease. Aliment. Pharmacol. Ther. 10, 49–53 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Rothwell, N. J. Interleukin-1 and neuronal injury: mechanisms, modification and therapeutic potential. Brain Behav. Immun. 17, 152–157 (2003).

    Article  PubMed  Google Scholar 

  5. Dayer, J. M. The saga of the discovery of IL-1 and TNF and their specific inhibitors in the pathogenesis and treatment of rheumatoid arthritis. Joint Bone Spine 69, 123–132 (2002).

    Article  PubMed  Google Scholar 

  6. Chikanza, I. C., Roux-Lombrad, P., Dayer, J. M. & Panayi, G. S. Dysregulation of the in vivo production of interleukin-1 receptor antagonist in patients with rheumatoid arthritis. Pathogenetic implications. Arthritis Rheum. 38, 642–648 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Casini-Raggi, V. et al. Mucosal imbalance of IL-1 and IL-1 receptor antagonist in inflammatory bowel disease. A novel mechanism of chronic intestinal inflammation. J. Immunol. 154, 2434–2440 (1995).

    CAS  PubMed  Google Scholar 

  8. Eastgate, J. A. et al. Correlation of plasma interleukin-1 levels with disease activity in rheumatoid arthritis. Lancet 2, 706–708 (1988). A key paper in providing a linkage between the levels of plasma IL-1β and disease score as determined by the Ritchie articular index.

    Article  CAS  PubMed  Google Scholar 

  9. Rooney, M., Symons, J. A. & Duff, G. W. Interleukin-1β in synovial fluid is related to local disease activity in rheumatoid arthritis. Rheumatol. Int. 10, 217–219 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Dentener, M. A. et al. Systemic anti-inflammatory mediators in COPD: increase in soluble interleukin 1 receptor II during treatment of exacerbations. Thorax 56, 721–726 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Isaacs, K. L., Sartor, R. B. & Haskill, J. S. Cytokine messenger RNA profiles in inflammatory bowel disease mucosa detected by polymerase chain reaction amplification. Gastroenterology 103, 1587–1595 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Firestein, G. S. et al. IL-1 receptor antagonist production and gene expression in rheumatoid arthritis and osteoarthritis synovium. Arthritis Rheum. 149, 1054–1062 (1992).

    CAS  Google Scholar 

  13. Kahle, P. et al. Determination of cytokines in synovial fluids: correlation with diagnosis and histommorphological characteristics of synovial fluid. Ann. Rheum. Dis. 51, 731–734 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Koch, A. E., Kunkel, S. L., Chensue, S. W., Haines, G. K. & Streiter, R. M. Expression of interleukin-1 and interleukin-1 receptor antagonist by human rheumatoid synovial tissue macrophages. Clin. Immunol. Immunopathol. 65, 23–29 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Nouri, A. M., Panayi, G. S. & Goodman, S. M. Cytokines and the chronic inflammation of inflammatory disease. I. The presence of interleukin-1 in synovial fluids. Clin. Exp. Immunol. 55, 295–302 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chung, K. F. Cytokines in chronic obstructive pulmonary disease. Eur. Resp. J. Suppl. 34, S50–S59 (2001).

    Article  CAS  Google Scholar 

  17. Broide, D. H. et al. Cytokines in symptomatic asthma airways. J. Allergy Clin. Immunol. 89, 958–967 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Sousa, A. R., Lane, S. J., Nakhosteen, J. A., Lee, T. H. & Poston, R. N. Expression of interleukin-1β (IL-1β) and interleukin-1 receptor antagonist (IL-1Ra) on asthmatic bronchial epithelium. Am. J. Respir. Crit. Care Med. 154, 1061–1066 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Pomerantz, B. J., Reznikov, L. L., Harken, A. H. & Dinarello, C. A. Inhibition of caspase I reduces human myocardial ischemic dysfunction via inhibition of IL-18 and IL-1β. Proc. Natl Acad. Sci. USA 98, 2871–2876 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pearce, W. H., Sweis, I., Yao, J. S., McCarthy, W. J. & Koch, A. E. Interleukin-1β and tumour necrosis factor-α release in normal and diseased human infrarenal aortas. J. Vasc. Surg. 16, 784–789 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Lombardt, V. R. M., Garcia, M. & Cacabelos, R. R. Characterisation of cytokine production, screening of lymphocyte subset patterns and in vitro apoptosis in healthy Alzheimer's disease individuals. J. Neuroimmunol. 97, 163–171 (1999).

    Article  Google Scholar 

  22. Griffin, W. S. T. & Mrak, R. E. Interleukin-1 in the genesis and progression of and risk for development of neuronal degeneration in Alzheimer's disease. J. Leukoc. Biol. 72, 233–238 (2002).

    CAS  PubMed  Google Scholar 

  23. Sheng, J. G., Mrak, R. E. & Griffin, W. S. T. Interleukin-1 expression in brain regions in Alzheimer's disease: correlation with neuritic plaque distribution. Neuropathol. Appl. Neurobiol. 21, 290–301 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Basu, A. et al. The type 1 interleukin-1 receptor is essential for the efficient activation of microglia and the induction of multiple proinflammatory mediators in response to brain injury. J. Neurosci. 22, 6071–6082 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Calkins, C. M. et al. IL-1 regulates in vivo C-X-C chemokine induction and neutrophil sequestration following endotoxemia. J. Endotoxin Res. 8, 59–67 (2002).

    CAS  PubMed  Google Scholar 

  26. Sims, J. E. IL-1 and IL-18 receptors, and their extended family. Curr. Opin. Immunol. 14, 117–122 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Smith, D. et al. Four new members expand the interleukin-1 family. J. Biol. Chem. 275, 1169–1175 (2000). Isolation of four new members of the IL-1 superfamily by cDNA cloning from a human placental cDNA library.

    Article  CAS  PubMed  Google Scholar 

  28. Cerretti, D. P. et al. Molecular cloning of the interleukin-1β converting enzyme. Science 256, 97–100 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Thornberry, N. A. et al. A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes. Nature 356, 768–774 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Dinarello, C. A. Interleukin-1β, interleukin-18 and the interleukin-1β converting enzyme. Ann. NY Acad. Sci. 856, 1–11 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Kobayashi, Y. et al. Identification of a calcium-activated neutral protease as a processing enzyme of human interleukin-1α. Proc. Natl Acad. Sci. USA 87, 5548–5552 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wakabayashi, G. et al. Staphlococcus epidermidis induces complement activation, tumour necrosis factor and interleukin-1, a shock-like state and tissue injury in rabbits without endotoxemia — comparison to Escherichia coli. J. Clin. Invest. 87, 1925–1935 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Greenfeder, S. A. et al. Molecular cloning and characterisation of a second subunit of the interleukin-1 receptor complex. J. Biol. Chem. 270, 13757–13765 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Liege, S., Laye, S., Li, K., Moze, E. & Neveu, P. J. Interleukin-1 receptor accessory protein (IL-1RacP) is necessary for centrally mediated neuroendocrine and immune responses to IL-1β. J. Neuroimmunol. 110, 134–139 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Casadio, R. et al. Model of interaction of of the IL-1 receptor accessory protein IL-1RacP with the IL-1β/IL-1RI complex. FEBS Lett. 499, 65–68 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Smeets, R. L. et al. Effectiveness of the soluble form of the interleukin-1 receptor accessory protein as an inhibitor of interleukin-1 in collagen-induced arthritis. Arthritis Rheum. 48, 2949–2958 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Burns, K. et al. MyD88, an adapter protein involved in interleukin-1 signalling. J. Biol. Chem. 273, 12203–12209 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Janssens, S. & Beyaert, R. Functional diversity and regulation of different interleukin-1 receptor associated kinase (IRAK) family members. Mol. Cell 11, 293–302 (2003). A review of the complex molecular signalling cascades that are stimulated by members of the IL-1 superfamily.

    Article  CAS  PubMed  Google Scholar 

  39. Luheshi, G. N. Cytokines and fever. Mechanisms and sites of action. Ann. NY Acad. Sci. 856, 83–89 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Vincenti, M. P. & Brinckerhoff, C. E. Early response genes induced in chondrocytes stimulated with the inflammatory cytokine interleukin-1β. Arthritis Res. 3, 381–388 (2001). Identification of IL-1β target genes by microarray analysis of human chondrosarcoma cells. This study illustrates the involvement of IL-1β in the temporal regulation of early through to late gene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. van den Berg, W. B., Joosten, L. A. & van de Loo, F. A. TNF-α and IL-1β are separate targets in chronic arthritis. Clin. Exp. Rheumatol. 17, S105–S214 (1999).

    CAS  PubMed  Google Scholar 

  42. Mengshol, J. A., Vincenti, M. P., Coon, C. I., Barchowsky, A. & Brinckerhoff, C. E. Interleukin-1 induction of collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-Jun N-terminal kinase and nuclear factor κB: differential regulation of collagenase 1 and collagenase 3. Arthritis Rheum. 43, 801–811 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. McCachren, S. S., Greer, P. K. & Niedel, J. E. Regulation of human synovial fibroblast collagenase messenger RNA by interleukin-1. Arthritis Rheum. 32, 1539–1545 (1989).

    Article  CAS  PubMed  Google Scholar 

  44. Blanco, F. J. & Lotz, M. IL-1 induced nitric oxide inhibits chondrocyte proliferation via PGE2 . Exp. Cell Res. 218, 319–325.

  45. Neumann, D., Kollewe, C., Martin, M. U. & Boraschi, D. The membrane form of the type II receptor accounts for inhibitory function. J. Immunol. 165, 3350–3357 (2000)

    Article  CAS  PubMed  Google Scholar 

  46. Attur, M. G. et al. Functional genomic analysis of type II IL-1β decoy receptor: potential for gene therapy in human arthritis and inflammation. J. Immunol. 168, 2001–2010 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Bourke, E. et al. Il-1β scavenging by the type II IL-1 decoy receptor in human neutrophils. J. Immunol. 170, 5999–6005 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Arend, W. P. Interleukin-1 receptor antagonist. Adv. Immunol. 54, 167–227 (1999).

    Article  Google Scholar 

  49. Gouze, J. -N. et al. A comparative study of the inhibitory effects of interleukin-1 receptor antagonist following administration as a recombinant protein or by gene transfer. Arthritis Res. Ther. 5, R301–R309 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Abramson, S. B. & Amin, A. Blocking the effects of IL-1 in rheumatoid arthritis protects bone and cartilage. Rheumatology 41, 972–980 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Arend, W. P. & Gabay, C. Physiology of interleukin-1 receptor antagonist. Arthritis Res. 2, 245–248 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Arend, W. P., Welgus, H. G., Thompson, R. C. & Eisenberg, S. P. Biological properties of recombinant human monocyte-derived interleukin-1 receptor antagonist. J. Clin. Invest. 85, 1694–1697 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dinarello, C. The role of interleukin-1 receptor antagonist in blocking inflammation mediated by interleukin-1. N. Engl. J. Med. 343, 732–734 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Seckinger, P. et al. Natural and recombinant human IL-1 receptor antagonists block the effects of IL-1 on bone resorption and prostaglandin production. J. Immunol. 145, 4181–4184 (1990).

    CAS  PubMed  Google Scholar 

  55. Ruggiero, P. et al. Inhibitory activity of IL-1 receptor antagonist depends on the balance between binding capacity for IL-1 receptor type I and IL-1 receptor type II. J. Immunology 158, 3881–3887 (1997).

    CAS  Google Scholar 

  56. van de Loo, F. A., Joosten, L. A., van Lent, P. L., Arntz, O. J. & van den Berg, W. B. Role of interleukin-1, tumour necrosis factor-α and interleukin-6 in cartilage proteoglycan metabolism and destruction: effect of in situ blocking in murine antigen and zymogen-induced arthritis. Arthritis Rheum. 38, 164–172 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Joosten, L. A., Helsen, M. M., van de Loo, F. A. & van den Berg, W. B. Anticytokine treatment of established type-II collagen-induced arthritis in DBA/1 mice: a comparitive study using anti-tumour necrosis factor-α, anti-interleukin-1α/β and interleukin-1 receptor antagonist. Arthritis Rheum. 39, 797–809 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Schwab, J. H., Anderle, S. K., Brown, R. R., Daldorf, F. G. & Thompson, R. C. Pro- and anti-inflammatory roles of interleukin-1 in recurrence of bacterial cell wall-induced arthritis in rats. Infect. Immunol. 59, 4436–4442 (1991).

    Article  CAS  Google Scholar 

  59. Wooley, P. H. et al. The effect of an interleukin-1 receptor antagonist protein on type II collagen-induced arthritis and antigen-induced arthritis in mice. Arthritis Rheum. 36, 1305–1315 (1993).

    Article  CAS  PubMed  Google Scholar 

  60. Henderson, B., Thompson, R. C., Hardingham, T. & Lewthwaite, J. Inhibition of interleukin-1-induced synovitis and articular cartilage proteoglycan loss in the rabbit knee by recombinant human interleukin-1 receptor antagonist. Cytokine 2, 246–249 (1991).

    Article  Google Scholar 

  61. Matsukawa, A., Ohkawara, S., Maeda, T., Takagi, K. & Yoshinaga, M. Production of IL-1 and IL-1 receptor antagonist and the pathological significance in lipopolysaccharide-induced arthritis in rabbits. Clin. Exp. Immunol. 93, 206–211 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Roessler, B. J. et al. Inhibition of interleukin-1 induced effects in synoviocytes transduced with the human IL-1 receptor antagonist cDNA using an adenoviral vector. Hum. Gene. Ther. 6, 307–316 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Bandara, G. et al. Intra-articular expression of biologically active interleukin-1-receptor antagonist protein by ex vivo gene transfer. Proc. Natl Acad. Sci. USA 90, 10764–10768 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Geiger, T. et al. Neutralization of interleukin-1 activity in vivo with a monoclonal antibody alleviates collagen-induced arthritis in DBA/1 mice and prevents the acute-phase response. Clin. Exp. Rheumatol. 11, 515–522 (1993).

    CAS  PubMed  Google Scholar 

  65. Bakker, A. C. et al. Prevention of murine collagen-induced arthritis in the knee and ipsilateral paw by local expression of human interleukin-1 receptor antagonist protein in the knee. Arthritis Rheum. 40, 893–900 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Muller-Lander, U. et al. Human IL-1Ra gene transfer into human synovial fibroblasts is chondroprotective. J. Immunol. 158, 3492–3498 (1997).

    Google Scholar 

  67. Campion, G. V., Lesback, M. E., Lookabaugh, J., Gordon, G. & Catalano, M. A. Dose-range and dose-frequency of study of recombinant human interleukin-1 receptor antagonist in patients with rheumatoid arthritis. Arthritis Rheum. 39, 1092–1101 (1996). The first safety and tolerability study of anakinra in humans when dosed subcutaneously.

    Article  CAS  PubMed  Google Scholar 

  68. Bresnihan, B. et al. Treatment of rheumatoid arthritis with recombinant interleukin-1 receptor antagonist. Arthritis Rheum. 41, 2196–2204 (1998). A double-blinded, placebo-controlled study of anakinra to patients with active RA on a naive background. Significant clinical findings were reported after this 24-week study was completed.

    Article  CAS  PubMed  Google Scholar 

  69. Jiang, Y. et al. A multi-centre, double-blind, dose ranging, randomised, placebo-controlled study of recombinant human interleukin-1 receptor antagonist in patients with rheumatoid arthritis: radiologic progression and correlation with Genant and Larsen scores. Arthritis Rheum. 43, 1001–1009 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Bendele, A. et al. Effects of interleukin 1 receptor antagonist alone and in combination with methotrexate in adjuvant arthritic rats. J. Rheumatol. 26, 1225–1229 (1999).

    CAS  PubMed  Google Scholar 

  71. Bendele, A. M. et al. Combination benefit of treatment with the cytokine inhibitors interleukin-1 receptor antagonist and PEGylated soluble tumour necrosis factor receptor type I in animal models of rheumatoid arthritis. Arthritis Rheum. 43, 2648–2659 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Felge, U. et al. Anti-interleukin-1 and anti-tumor necrosis factor-α synergistically inhibit adjuvant arthritis in Lewis rats. Cell. Mol. Life Sci. 57, 1457–1470 (2000).

    Article  Google Scholar 

  73. Cohen, S. et al. Treatment of rheumatoid arthritis with anakinra, a recombinant human interleukin-1 receptor antagonist, in combination with methotrexate: results of a twenty-four-week, multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 46, 614–624 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Felson, D. T. et al. The American College of Rheumatology preliminary core set of disease activity measures for rheumatoid arthritis clinical trials. The Committee on Outcome Measures in Rheumatoid Arthritis Clinical Trials. Arthritis Rheum. 36, 729–740 (1993).

    Article  CAS  PubMed  Google Scholar 

  75. Dayer, J. M. & Bresnihan, B. Targeting interleukin-1 in the treatment of rheumatoid arthritis. Arthritis & Rheum. 46, 574–548 (2002).

  76. Schiff, M. H. et al. Safety of combination therapy with anakinra and etanercept in patients with rheumatoid arthritis. Arthritis Rheum. 44, S79 (2001).

    Google Scholar 

  77. Bresnihan, B. & Cunnane, G. Infection complications associated with the use of biologic agents. Rheum. Dis. Clin. North Am. 29, 185–202 (2003).

    Article  PubMed  Google Scholar 

  78. Mohan, A. K., Cote, T. R., Siegel, J. N. & Braun, M. M. Infectious complications of biologic treatments of rheumatoid arthritis. Curr. Opin. Rheumatol. 15, 179–184 (2003). References 77 and 78 are comprehensive reviews tracking the occurrence and frequency of opportunistic infections in patients treated with anti-TNF-α and anti-IL-1 biological agents.

    Article  CAS  PubMed  Google Scholar 

  79. Fleischmann, R. M. et al. Anakinra, a recombinant human interleukin-1 receptor antagonist (r-metHuIL-1ra) in patients with rheumatoid arthritis. A large, international, multi-centre, placebo-controlled trial. Arthrits Rheum. 48, 927–934 (2003).

    Article  CAS  Google Scholar 

  80. Hirsch, E., Irikura, V. M., Paul, S. M. & Hirsch, D. Functions of interleukin-1 receptor antagonist in gene knockout and overproducing mice. Proc. Natl Acad. Sci. USA 93, 11008–11013 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fukumoto, T., Matsukawa, A., Ohkawara, S., Takagi, K. & Yoshniaga, M. Administration of neutralizing antibody against rabbit IL-1 receptor antagonist exacerbates lipopolysaccharide-induced arthritis in rabbits. Inflamm. Res. 45, 479–485 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Ma, Y. et al. Altered susceptibility to collagen induced arthritis in transgenic mice with aberrant expression of IL-1 receptor antagonist. Arthritis Rheum. 41, 1798–1805 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Bendele, A. et al. Efficacy of sustained blood levels of interleukin-1 receptor antagonist in animal models of arthritis: comparison of efficacy in animal models with human clinical data. Arthritis Rheum. 42, 498–506 (1999). Demonstration of efficacy of IL-1Ra in rat collagen- and adjuvant-induced arthritis models. Data in this paper compare the efficacy and plasma levels of IL-1Ra in both preclinical studies and relate the data to the read out the clinical trial data in humans.

    Article  CAS  PubMed  Google Scholar 

  84. Goupille, P. et al. Safety and efficacy of intra-articular injection of IL-1Ra (IL-1 receptor antagonist) in patients with painful arthritis of the knee: a multi-centre, double blind study. Arthrits Rheum. 48, Suppl. S696. An abstract describing a preliminary study uing anakinra in patients with OA. This may extend the utility of anakinra in OA and further validate IL-1 in joint disease.

  85. Gabay, C. IL-1 trap Regenereon/Novartis. Curr. Opin. Invest. Drugs. 4, 593–597 (2003).

    CAS  Google Scholar 

  86. Economides, A. N. et al. Cytokine traps: multi-component, high-affinity blockers of cytokine action. Nature Med. 9, 47–52 (2003). An elegant description of cytokine trap technology, which is widely applicable across cytokines and offers a new approach to ameliorating cytokine-driven disease.

    Article  CAS  PubMed  Google Scholar 

  87. Guler, H. -P. et al. A phase I, single dose escalation study of IL–1 trap in patients with rheumatoid arthritis. Arthritis Rheum. 44, S370 (2001).

    Google Scholar 

  88. Caldwell, J. et al. Results of a phase 1 safety and pharmacokinetic study of interleukin-1 receptor in rheumatoid arthritis. Proc. Eur. League against Rheum. Abstract FR10098 (2002).

  89. Perregaux, D. G. et al. Identification and characterisation of a novel class of interleukin-1 post-translational processing inhibitors. J. Pharmacol. Exp. Ther. 299, 187–197 (2001). Discovery of a novel class of compounds that block IL-1β processing and release. Their precise mechanism of action remains unknown.

    CAS  PubMed  Google Scholar 

  90. Perregaux, D. & Gabel, C. A. Interleukin-1β maturation and release in response to ATP and nigericin. J. Biol. Chem. 269, 15195–15203 (1994).

    Article  CAS  PubMed  Google Scholar 

  91. Walev, I., Reske, K., Palmer, M., Valeva, A. & Bhakdi, S. Potassium-inhibited processing of IL-1β in human monocytes. EMBO J. 14, 1607–1614 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Laliberte, R. E. et al. Glutathione S-transferase omega 1-1 is a target of cytokine release inhibitory drugs and may be responsible for their effect on interleukin-1β post-translational processing. J. Biol. Chem. 278, 16567–16578 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Ichikawa, K. et al. Novel cytokine production inhibitors produced by a Basidiomycete, Marasmiellus sp. J. Antibiot. 54, 703–709.

  94. Ichikawa, K. et al. LL-Z1271α: an interleukin-1β production inhibitor. Biochem. Biophys. Res. Commun. 286, 697–700 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Ku, G., Ford, P., Raybuck, S. A., Harding, M. W. & Randle, J. C. R. Selective interleukin-1β converting enzyme (ICE/caspase-1) inhibition with pralnacasan (HMR 3480/VX-740) reduces inflammation and joint destruction in murine type II collagen–induced arthritis (CIA). Arthritis Rheum. 44 (Suppl. 9), S241 (2001).

    Google Scholar 

  96. Pavelka, K. et al. Clinical effects of pralnacasan (PRAL), an orally-active interleukin-1β converting enzyme (ICE) inhibitor in a 285-patient phase II trial in rheumatoid arthritis (RA). Arthritis Rheum. 46 (Suppl. 9), S281 (2002).

    Google Scholar 

  97. Provvedini, D. & Cohen, P. Efficacite de la diacerheine sur les signes fonctionnels et la progression radiologie de l'arthrose. Presse Med. 31, 4S13–4S15 (2002).

    CAS  PubMed  Google Scholar 

  98. Lipsky, P. E. et al. Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-tumor necrosis factor trial in rheumatoid arthritis with concomitant therapy study group. N. Engl. J. Med. 343, 1594–1602 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Rudlophi, K., Gerwin, N., Verzijl, N., van der Kraan, P. & van den Berg, W. Pralnacasan, an inhibitor of interleukin-1β converting enzyme, reduces joint damage in two murine models of osteoarthritis. Osteoarth. Cartil. 11, 738–746 (2003).

    Article  Google Scholar 

  100. Braddock, M. Inflammatory processes in drug discovery — SRI conference. IDrugs 6, 1049–1052 (2003).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank our colleagues in the Respiratory and Inflammation Research Area and in clinical development within AstraZeneca for their support and stimulating discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Braddock.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

LocusLink

ICE

IL-1

IL-1Ra

IL-1RacP

IL-1RI

IL-1RII

TNF-α

Online Mendelian Inheritance in Man

Alzheimer's disease

chronic obstructive pulmonary disease

multiple sclerosis

osteoarthritis

rheumatoid arthritis

ulcerative colitis

Glossary

AUTOCRINE

The secretion of a substance, such as a cytokine, that stimulates the secretory cell itself.

PROXIMAL

Nearest the point of origin of a biochemical pathway or molecular process, as opposed to distal, which represents a point towards or at the end of a pathway or process.

ACUTE-PHASE PROTEINS

Antibody-proteins or glycoproteins usually found in the plasma whose concentration increases in response to infection or injury.

PHARMACOKINETICS

The rate by which a drug is absorbed, distributed, metabolized and eliminated by the body.

PEGYLATED

Attachment of non-toxic polyethylene (PEG) polymers to drug and protein molecules to alter their properties to improve safety and efficacy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braddock, M., Quinn, A. Targeting IL-1 in inflammatory disease: new opportunities for therapeutic intervention. Nat Rev Drug Discov 3, 330–340 (2004). https://doi.org/10.1038/nrd1342

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1342

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing