Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prion diseases — close to effective therapy?

Key Points

  • Prions represent a new class of infectious agents which propagate on a protein-only level, not requiring agent-encoded nucleic acids.

  • Newly emergent prion diseases such as bovine spongiform encephalopathy, variant Creutzfeldt–Jakob disease (CJD), and chronic wasting disease are a source of critical concern to physicians, veterinarians, economists, politicians — and the general public.

  • Numerous strategies and targets have been proposed for the immunotherapy of prion diseases, based on the necessity of agent replication in lymphoid tissue prion to neuro-invasion, and the sensitivity of prion propagation to antibodies in vitro.

  • Prion replication in cell lines in vitro is sensitive to antibodies directed against the normal and abnormal isoforms of the prion protein.

  • Numerous strategies and potential targets for treating transmissible spongiform encephalopathies have been suggested, with the most studied target being the inhibition of PrPSc accumulation.

  • The development of higher-throughput screening assays based on scrapie-infected cell cultures have been developed and have greatly accelerated the pace of discovery of PrPSc inhibitors.

  • Several classes of inhibitors of PrPSc formation have been identified, some of which show prophylactic activity against scrapie in rodents. However, chemotherapeutic treatments of clinically affected scrapie-infected rodents and CJD-infected humans have been largely ineffectual.

  • Compounds that destabilize PrPSc and/or reduce scrapie infectivity have been identified that could be useful as decontaminants.

  • The most effective therapeutic strategies might require not only the inhibition of PrPSc formation but also the reversal of TSE-associated neuropathology.

Abstract

The transmissible spongiform encephalopathies could represent a new mode of transmission for infectious diseases — a process more akin to crystallization than to microbial replication. The prion hypothesis proposes that the normal isoform of the prion protein is converted to a disease-specific species by template-directed misfolding. Therapeutic and prophylactic strategies to combat these diseases have emerged from immunological and chemotherapeutic approaches. The lessons learned in treating prion disease will almost certainly have an impact on other diseases that are characterized by the pathological accumulation of misfolded proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PrPSc formation in scrapie-infected cells.
Figure 2: Possible spread of scrapie infectivity from the gut lumen to the nervous system following oral infection (route indicated by dotted line).
Figure 3: Tyr-Tyr-Arg antibodies selectively recognize PrPSc.
Figure 4: High-throughput cell-based screen for inhibitors of PrP-res formation.
Figure 5: Solid-phase cell-free PrP conversion assay for inhibition of PrP-res formation.

Similar content being viewed by others

References

  1. Will, R. G. et al. A new variant of Creutzfeldt–Jakob disease in the UK. Lancet 347, 921–925 (1996). The first recognition of a surprising zoonosis: bovine spongiform encephalopathy to human beings.

    Article  CAS  PubMed  Google Scholar 

  2. Coulthart, M. B. & Cashman, N. R. Variant Creutzfeldt–Jakob disease: a summary of current scientific knowledge in relation to public health. CMAJ 165, 51–58 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ghani, A. C., Donnelly, C. A., Ferguson, N. M. & Anderson, R. M. Updated projections of future vCJD deaths in the UK. BMC Infect. Dis. 3, 4 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Llewelyn, C. A. et al. G. Possible transmission of variant Creutzfeldt–Jakob disease by blood transfusion. Lancet 363, 417–421 (2004). The second description of blood borne transmission of any human prion disease, on a well-recognized background of iatrogenic transmission through prion-contaminated growth hormone, dura, corneas, and neurosurgical instrumentation.

    Article  CAS  PubMed  Google Scholar 

  5. Collins, S. J. et al. Quinacrine does not prolong survival in a murine Creutzfeldt–Jakob disease model. Ann. Neurol. 52, 503–506 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Wadsworth, J. D. et al. Tissue distribution of protease resistant prion protein in variant Creutzfeldt–Jakob disease using a highly sensitive immunoblotting assay. Lancet 358, 171–180 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Bruce, M. E. et al. Transmissions to mice indicate that 'new variant' CJD is caused by the BSE agent. Nature 389, 498–501 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Hill, A. F. et al. The same prion strain causes vCJD and BSE. Nature 389, 448–450 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Department of Environment, Food and Rural Affairs: BSE webpage [online], <http://www.defra.gov.uk/animalh/bse/index.html> (2004).

  10. Donnelly, C. A., Ferguson, N. M., Ghani, A. C. & Anderson, R. M. Implications of BSE infection screening data for the scale of the British BSE epidemic and current European infection levels. Proc. R. Soc. Lond. B Biol. Sci. 269, 2179–2190 (2002).

    Article  Google Scholar 

  11. Schreuder, B. E. & Somerville, R. A. Bovine spongiform encephalopathy in sheep? Rev. Sci. Tech. 22, 103–120 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Baylis, M. et al. BSE — a wolf in sheep's clothing. Trends Microbiol. 10, 563–570 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Houston, F. et al. Prion diseases: BSE in sheep bred for resistance to infection. Nature 423, 498 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Williams, E. S. & Young, S. Chronic wasting disease of captive mule deer: a spongiform encephalopathy. J. Wildl. Dis. 16, 89–98 (1980).

    Article  CAS  PubMed  Google Scholar 

  15. Brown, P. & Bradley, R. 1755 and all that: a historical primer of transmissible spongiform encephalopathy. BMJ 317, 1688–1692 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Belay, E. D. et al. Chronic wasting disease and potential transmission to humans. Emerging Infect. Dis. 10, (2004).

  17. Riesner, D. et al. Prions and nucleic acids: search for 'residual' nucleic acids and screening for mutations in the PrP-gene. Dev. Biol. Stand. 80, 173–181 (1993).

    CAS  PubMed  Google Scholar 

  18. Griffith, J. S. Self-replication and scrapie. Nature 215, 1043–1044 (1967). The first proposal of plausible mechanisms by which TSE agents (now called prions) could replicate as infectious proteins. The featured mechanisms are surprisingly close to those favored today; that is, the pathological agent was proposed to be an abnormal oligomeric state of a host protein that templates, autocatalyses or nucleates post-translational conformational changes in its normal counterpart.

    Article  CAS  PubMed  Google Scholar 

  19. Prusiner, S. B. Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144 (1982). This article was the first coin to the term 'prions' for the TSE infectious agents, and forcefully rekindles the argument that these agents form a novel class of pathogen that is devoid of nucleic acids. The protein-only mechanisms proposed here for prion replication were reverse translation, protein-directed protein synthesis and protein-directed alteration of prion protein gene expression, none of which seem to be applicable today.

    Article  CAS  PubMed  Google Scholar 

  20. Prusiner, S. B. Prions. Proc. Natl Acad. Sci. USA 95, 13363–13383 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brown, P., Goldfarb, L. G. & Gajdusek, D. C. The new biology of spongiform encephalopathy: infectious amyloidoses with a genetic twist. Lancet 337, 1019–1022 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Caughey, B. W. et al. Secondary structure analysis of the scrapie-associated protein PrP 27-30 in water by infrared spectroscopy. Biochemistry 30, 7672–7680 (1991). The first study revealing high β-sheet content in infectious preparations of PrPSc.

    Article  CAS  PubMed  Google Scholar 

  23. Safar, J., Roller, P. P., Gajdusek, D. C. & Gibbs, C. J. Jr. Conformational transitions, dissociation, and unfolding of scrapie amyloid (prion) protein. J. Biol. Chem. 268, 20276–20284 (1993).

    CAS  PubMed  Google Scholar 

  24. Pan, K. -M. et al. Conversion of α-helices into β-sheets features in the formation of the scrapie prion protein. Proc. Natl Acad. Sci. USA 90, 10962–10966 (1993). The first study showing high α-helical content of PrPC, providing evidence that conformational change in PrPC is important in its conversion to PrPSc.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Riek, R., Hornemann, S., Wider, G., Glockshuber, R. & Wuthrich, K. NMR characterization of the full-length recombinant murine prion protein, mPrP(23-21). FEBS Lett. 413, 282–288 (1997). The first glimpse of the full-length normal prion protein at atomic resolution. Follows the first determination of the three-dimensional structure of a PrP fragment by the same groups.

    Article  CAS  PubMed  Google Scholar 

  26. Oesch, B. et al. A cellular gene encodes scrapie PrP 27–30 protein. Cell 40, 735–746 (1985).

    Article  CAS  PubMed  Google Scholar 

  27. Meyer, R. K. et al. Separation and properties of cellular and scrapie prion protein. Proc. Natl Acad. Sci. USA 83, 2310–2314 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Caughey, B., Race, R. E. & Chesebro, B. Detection of prion protein mRNA in normal and scrapie-infected tissues and cell lines. J. Gen. Virol. 69, 711–716 (1988).

    Article  CAS  PubMed  Google Scholar 

  29. Bendheim, P. E. et al. Nearly ubiquitous tissue distribution of the scrapie agent precursor protein. Neurology 42, 149–156 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Prusiner, S. B. Molecular biology of prion diseases. Science 252, 1515–1522 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Come, J. H., Fraser, P. E. & Lansbury, P. T. Jr. A kinetic model for amyloid formation in the prion diseases: importance of seeding. Proc. Natl Acad. Sci. USA 90, 5959–5963 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kocisko, D. A. et al. Cell-free formation of protease-resistant prion protein. Nature 370, 471–474 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Bessen, R. A. et al. Nongenetic propagation of strain-specific phenotypes of scrapie prion protein. Nature 375, 698–700 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Caughey, B. et al. Interactions and conversions of prion protein isoforms. Adv. Protein Chem. 57, 139–169 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Saborio, G. P., Permanne, B. & Soto, C. Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411, 810–813 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Hill, A. F., Antoniou, M. & Collinge, J. Protease-resistant prion protein produced in vitro lacks detectable infectivity. J. Gen. Virol. 80, 11–14 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Bessen, R. A. & Marsh, R. F. Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy. J. Virol. 68, 7859–7868 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lasmezas, C. I. et al. Transmission of the BSE agent to mice in the absence of detectable abnormal prion protein. Science 275, 402–405 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Manson, J. C. et al. A single amino acid alteration (101L) introduced into murine PrP dramatically alters incubation time of transmissible spongiform encephalopathy. EMBO J. 18, 6855–6864 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Caughey, B., Kocisko, D. A., Raymond, G. J. & Lansbury, P. T. Aggregates of scrapie associated prion protein induce the cell-free conversion of protease-sensitive prion protein to the protease-resistant state. Chem. Biol. 2, 807–817 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Kocisko, D. A., Lansbury, P. T. Jr. & Caughey, B. Partial unfolding and refolding of scrapie-associated prion protein: evidence for a critical 16-kDa C-terminal domain. Biochemistry 35, 13434–13442 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Safar, J. et al. Eight prion strains have PrP(Sc) molecules with different conformations. Nature Med. 4, 1157–1165 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Caughey, B., Raymond, G. J., Kocisko, D. A. & Lansbury, P. T., Jr. Scrapie infectivity correlates with converting activity, protease resistance, and aggregation of scrapie-associated prion protein in guanidine denaturation studies. J. Virol. 71, 4107–4110 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chiesa, R. et al. Accumulation of protease-resistant prion protein (PrP) and apoptosis of cerebellar granule cells in transgenic mice expressing a PrP insertional mutation. Proc. Natl Acad. Sci. USA 97, 5574–5579 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tremblay, P. et al. Mutant PrPSc conformers induced by a synthetic peptide and several prion strains. J. Virol. 78, 2088–2099 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Legname, G. et al. Synthetic mammalian prions. Science 305, 673–676 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Bueler, H. et al. Mice devoid of PrP are resistant to scrapie. Cell 73, 1339–1347 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Caughey, B., Ernst, D. & Race, R. E. Congo red inhibition of scrapie agent replication. J. Virol. 67, 6270–6272 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bons, N. et al. Natural and experimental oral infection of nonhuman primates by bovine spongiform encephalopathy agents. Proc. Natl Acad. Sci. USA 96, 4046–4051 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sigurdson, C. J., Spraker, T. R., Miller, M. W., Oesch, B. & Hoover, E. A. PrP(CWD) in the myenteric plexus, vagosympathetic trunk and endocrine glands of deer with chronic wasting disease. J. Gen. Virol. 82, 2327–2334 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Beekes, M. & McBride, P. A. Early accumulation of pathological PrP in the enteric nervous system and gut-associated lymphoid tissue of hamsters orally infected with scrapie. Neurosci. Lett. 278, 181–184 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Mabbott, N. A. & Bruce, M. E. The immunobiology of TSE diseases. J. Gen. Virol. 82, 2307–2318 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Kimberlin, R. H. & Walker, C. A. The role of the spleen in the neuroinvasion of scrapie in mice. Virus Res. 12, 201–212 (1989).

    Article  CAS  PubMed  Google Scholar 

  54. Bruce, M. E., McConnell, I., Will, R. G. & Ironside, J. W. Detection of variant Creutzfeldt–Jakob disease infectivity in extraneural tissues. Lancet 358, 208–209 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Bruce, M. E., Brown, K. L., Mabbott, N. A., Farquhar, C. F. & Jeffrey, M. Follicular dendritic cells in TSE pathogenesis. Immunol. Today 21, 442–446 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Montrasio, F. et al. Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science 288, 1257–1259 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Klein, M. A. et al. A crucial role for B cells in neuroinvasive scrapie. Nature 390, 687–690 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Mabbott, N. A. et al. Tumor necrosis factor α-deficient, but not interleukin-6-deficient, mice resist peripheral infection with scrapie. J. Virol. 74, 3338–3344 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brown, K. L. et al. Scrapie replication in lymphoid tissues depends on prion protein-expressing follicular dendritic cells. Nature Med. 5, 1308–1312 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Matsumoto, M. et al. Role of lymphotoxin and the type I TNF receptor in the formation of germinal centers. Science 271, 1289–1291 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Mabbott, N. A., Bruce, M. E., Botto, M., Walport, M. J. & Pepys, M. B. Temporary depletion of complement component C3 or genetic deficiency of C1q significantly delays onset of scrapie. Nature Med. 7, 485–487 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. McBride, P. A., Eikelenboom, P., Kraal, G., Fraser, H. & Bruce, M. E. PrP protein is associated with follicular dendritic cells of spleens and lymph nodes in uninfected and scrapie-infected mice. J. Pathol. 168, 413–418 (1992).

    Article  CAS  PubMed  Google Scholar 

  63. Heikenwalder, M., Prinz, M., Heppner, F. L. & Aguzzi, A. Current concepts and controversies in prion immunopathology. J. Mol. Neurosci. 23, 3–12 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Brown, D. R., Schmidt, B. & Kretzschmar, H. A. Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature 380, 345–347 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Klein, M. A. et al. Complement facilitates early prion pathogenesis. Nature Med. 7, 488–492 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Gadjusek, D. C. in Field's Virology 3rd edn (eds Fields, B. N., Knipe, D. M. & Howley, P. M.) 2851–2900 (Lippincott–Raven, Philadelphia, 1996).

    Google Scholar 

  67. Enari, M., Flechsig, E. & Weissmann, C. Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated by exposure to a prion protein antibody. Proc. Natl Acad. Sci. USA 98, 9295–9299 (2001). The first of a series of papers prompting hope for immunotherapy of prion infection, which follows the demonstration of antibody inhibition of cell-free PrP conversion in reference 75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Peretz, D. et al. Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature 412, 739–743 (2001)

    Article  CAS  PubMed  Google Scholar 

  69. Perrier, V., et al. Anti-PrP antibodies block PrPSc replication in prion-infected cell cultures by accelerating PrPC degradation. J. Neurochem. 89, 454–463 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Heppner, F. L. et al. Prevention of scrapie pathogenesis by transgenic expression of anti-prion protein antibodies. Science 294, 178–182 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. White, A. R. et al. Monoclonal antibodies inhibit prion replication and delay the development of prion disease. Nature 422, 80–83 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Solforosi, L. et al. Cross-linking cellular prion protein triggers neuronal apoptosis in vivo. Science 303, 1514–1516 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Mouillet-Richard, S. et al. Signal transduction through prion protein. Science 289, 1925–1928 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Cashman, N. R. et al. Cellular isoform of the scrapie agent protein participates in lymphocyte activation. Cell 61, 185–192 (1990).

    Article  CAS  PubMed  Google Scholar 

  75. Horiuchi, M., Chabry, J. & Caughey, B. Specific binding of normal prion protein to the scrapie form via a localized domain initiates its conversion to the protease-resistant state. EMBO J. 18, 3193–3203 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Caughey, B. & Raymond, G. J. The scrapie-associated form of PrP is made from a cell surface precursor that is both protease- and phospholipase-sensitive. J. Biol. Chem. 266, 18217–18223 (1991).

    CAS  PubMed  Google Scholar 

  77. Caughey, B., Raymond, G. J., Ernst, D. & Race, R. E. N-terminal truncation of the scrapie-associated form of PrP by lysosomal protease(s): implications regarding the site of conversion of PrP to the protease-resistant state. J. Virol. 65, 6597–6603 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Borchelt, D. R., Taraboulos, A. & Prusiner, S. B. Evidence for synthesis of scrapie prion protein in the endocytic pathway. J. Biol. Chem. 267, 16188–16199 (1992).

    CAS  PubMed  Google Scholar 

  79. Taraboulos, A., Raeber, A. J., Borchelt, D. R., Serban, D. & Prusiner, S. B. Synthesis and trafficking of prion proteins in cultured cells. Mol. Biol. Cell. 3, 851–863 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Paramithiotis, E. et al. A prion protein epitope selective for the pathologically misfolded conformation. Nature Med. 9, 893–899 (2003). The first hypothesis-driven prion epitope.

    Article  CAS  PubMed  Google Scholar 

  81. Lehto, M. T., Ashman, D. A. & Cashman, N. R. Treatment of ScN2a cells with prion-specific YYR antibodies. Proc. First Intl Conf. Network Excellence: Neuroprion (Paris, 2004).

    Google Scholar 

  82. Schenk, D. et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400, 173–177 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Orgogozo, J. M. et al. Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization. Neurology 61, 46–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Mallucci, G. et al. Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302, 871–874 (2003). In conjunction with reference 158, this paper provides evidence that reduction of PrPC expression might be a reasonable therapeutic approach.

    Article  CAS  PubMed  Google Scholar 

  85. Shyng, S. L., Lehmann, S., Moulder, K. L. & Harris, D. A. Sulfated glycans stimulate endocytosis of the cellular isoform of the prion protein, PrPC, in cultured cells. J. Biol. Chem. 270, 30221–30229 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Taraboulos, A. et al. Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform. J. Cell. Biol. 129, 121–132 (1995).

    Article  CAS  PubMed  Google Scholar 

  87. Race, R. E., Fadness, L. H. & Chesebro, B. Characterization of scrapie infection in mouse neuroblastoma cells. J. Gen. Virol. 68, 1391–1399 (1987).

    Article  PubMed  Google Scholar 

  88. Butler, D. A. et al. Scrapie-infected murine neuroblastoma cells produce protease-resistant prion proteins. J. Virol. 62, 1558–1564 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Clarke, M. C. & Haig, D. A. Evidence for the multiplication of scrapie agent in cell culture. Nature 225, 100–101 (1970).

    Article  CAS  PubMed  Google Scholar 

  90. Schatzl, H. M. et al. A hypothalamic neuronal cell line persistently infected with scrapie prions exhibits apoptosis. J. Virol. 71, 8821–8831 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Vorberg, I., Raines, A., Story, B. & Priola, S. A. Susceptibility of common fibroblast cell lines to transmissible spongiform encephalopathy agents. J. Infect. Dis. 189, 431–439 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Sabuncu, E. et al. PrP polymorphisms tightly control sheep prion replication in cultured cells. J. Virol. 77, 2696–2700 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rudyk, H. et al. Screening Congo Red and its analogues for their ability to prevent the formation of PrP-res in scrapie-infected cells. J. Gen. Virol. 81, 1155–1164 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Kocisko, D. A. et al. New inhibitors of scrapie-associated prion protein formation in a library of 2000 drugs and natural products. J. Virol. 77, 10288–10294 (2003). A broad-based high-throughput screening of a wide variety of compounds for inhibition of PrPSc formation that builds on the work of reference 93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Supattapone, S. et al. Branched polyamines cure prion-infected neuroblastoma cells. J. Virol. 75, 3453–3461 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Birkett, C. R. et al. Scrapie strains maintain biological phenotypes on propagation in a cell line in culture. EMBO J. 20, 3351–3358 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Maxson, L., Wong, C., Herrmann, L. M., Caughey, B. & Baron, G. S. A solid-phase assay for identification of modulators of prion protein interactions. Anal. Biochem. 323, 54–64 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Horiuchi, M., Baron, G. S., Xiong, L. W. & Caughey, B. Inhibition of interactions and interconversions of prion protein isoforms by peptide fragments from the C-terminal folded domain. J. Biol. Chem. 276, 15489–15497 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Rhie, A. et al. Characterization of 2′-fluoro-RNA aptamers that bind preferentially to disease-associated conformations of prion protein and inhibit conversion. J. Biol. Chem. 278, 39697–39705 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Caughey, W. S., Raymond, L. D., Horiuchi, M. & Caughey, B. Inhibition of protease-resistant prion protein formation by porphyrins and phthalocyanines. Proc. Natl Acad. Sci. USA 95, 12117–12122 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tagliavini, F., Forloni, G., D'ursi, P., Bugiani, M. & Salmona, M. Studies on peptide fragments of prion protein. Adv. Protein Chem. 57, 171–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Zou, W. Q. & Cashman, N. R. Acidic pH and detergents enhance in vitro conversion of human brain PrPC to a PrPSc-like form. J. Biol. Chem. 277, 43942–43947 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Supattapone, S. Prion protein conversion in vitro. J. Mol. Med. (2004).

  104. Soto, C. et al. Reversion of prion protein conformational changes by synthetic β-sheet breaker peptides. Lancet 355, 192–197 (2000). The first demonstration of a peptide that can assist in the unfolding of PrPSc.

    Article  CAS  PubMed  Google Scholar 

  105. Tagliavini, F. et al. Effectiveness of anthracycline against experimental prion disease in syrian hamsters. Science 276, 1119–1122 (1998).

    Article  Google Scholar 

  106. Forloni, G. et al. Tetracyclines affect prion infectivity. Proc. Natl Acad. Sci. USA 99, 10849–10854 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shaked, G. M., Engelstein, R., Avraham, I., Kahana, E. & Gabizon, R. Dimethyl sulfoxide delays PrPSC accumulation and disease symptoms in prion-infected hamsters. Brain Res. 983, 137–143 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Ehlers, B. & Diringer, H. Dextran sulphate 500 delays and prevents mouse scrapie by impairment of agent replication in spleen. J. Gen. Virol. 65, 1325–1330 (1984).

    Article  CAS  PubMed  Google Scholar 

  109. Kimberlin, R. H. & Walker, C. A. Suppression of scrapie infection in mice by heteropolyanion 23, dextran sulfate, and some other polyanions. Antimicrob. Agents Chemother. 30, 409–413 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Farquhar, C. F. & Dickinson, A. G. Prolongation of scrapie incubation period by an injection of dextran sulphate 500 within the month before or after infection. J. Gen. Virol. 67, 463–473 (1986).

    Article  CAS  PubMed  Google Scholar 

  111. Priola, S. A., Raines, A. & Caughey, W. S. Porphyrin and phthalocyanine anti-scrapie compounds. Science 287, 1503–1506 (2000). Building on reference 100, this is the first demonstration that cyclic tetrapyrroles can substantially extend the incubation periods of rodents inoculated with scrapie.

    Article  CAS  PubMed  Google Scholar 

  112. Murakami-Kubo, I. et al. Quinoline derivatives are therapeutic candidates for transmissible spongiform encephalopathies. J. Virol. 78, 1281–1288 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Barret, A. et al. Evaluation of quinacrine treatment for prion diseases. J. Virol. 77, 8462–8469 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Race, R., Oldstone, M. & Chesebro, B. Entry versus blockade of brain infection following oral or intraperitoneal scrapie administration: role of prion protein expression in peripheral nerves and spleen. J. Virol. 74, 828–833 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fischer, M. et al. Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J. 15, 1255–1264 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Beringue, V., Adjou, K. T., Lamoury, F., Maignien, T., Deslys, J. P., Race, R. & Dormont, D. Opposite effects of dextran sulfate 500, the polyene antibiotic MS-8209, and Congo red on accumulation of the protease-resistant isoform of PrP in the spleens of mice inoculated intraperitoneally with the scrapie agent. J. Virol. 74, 5432–5440 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Korth, C., May, B. C., Cohen, F. E. & Prusiner, S. B. Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc. Natl Acad. Sci. USA 98, 9836–9841 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bate, C., Salmona, M., Diomede, L. & Williams, A. Squalestatin cures prion-infected neurones and protects against prion neurotoxicity. J. Biol. Chem. (in the press).

  119. Diringer, H. & Ehlers, B. Chemoprophylaxis of scrapie in mice. J. Gen. Virol. 72, 457–460 (1991).

    Article  CAS  PubMed  Google Scholar 

  120. Caughey, B. & Raymond, G. J. Sulfated polyanion inhibition of scrapie-associated PrP accumulation in cultured cells. J. Virol. 67, 643–650 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Gabizon, R., Meiner, Z., Halimi, M. & Bensasson, S. A. Heparin-like molecules bind differentially to prion proteins and change their intracellular metabolic-fate. J. Cell. Physiol. 157, 319–325 (1993).

    Article  CAS  PubMed  Google Scholar 

  122. Wong, C. et al. Sulfated glycans and elevated temperature stimulate PrPSc dependent cell-free formation of protease-resistant prion protein. EMBO J. 20, 377–386 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ben-Zaken, O. et al. Cellular heparan sulfate participates in the metabolism of prions. J. Biol. Chem. 278, 40041–40049 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Deleault, N. R., Lucassen, R. W. & Supattapone, S. RNA molecules stimulate prion protein conversion. Nature 425, 717–720 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Caughey, B. & Kocisko, D. A. Prion diseases: a nucleic-acid accomplice? Nature 425, 673–674 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Caughey, B. & Race, R. E. Potent inhibition of scrapie-associated PrP accumulation by Congo red. J. Neurochem. 59, 768–771 (1992). The first identification of a PrPSc inhibitor in live cells, a demonstration that even preternaturally hardy prion infectivity could be vulnerable to chemotherapy.

    Article  CAS  PubMed  Google Scholar 

  127. Ingrosso, L., Ladogana, A. & Pocchiari, M. Congo red prolongs the incubation period in scrapie-infected hamsters. J. Virol. 69, 506–508 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Caughey, B., Brown, K., Raymond, G. J., Katzenstien, G. E. & Thresher, W. Binding of the protease-sensitive form of PrP (prion protein) to sulfated glycosaminoglycan and Congo red. J. Virol. 68, 2135–2141 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Caspi, S. et al. The anti-prion activity of Congo red. Putative mechanism. J. Biol. Chem. 273, 3484–3489 (1998).

    Article  CAS  PubMed  Google Scholar 

  130. Demaimay, R. et al. Structural aspects of Congo red as an inhibitor of protease-resistant prion protein formation. J. Neurochem. 71, 2534–2541 (1998).

    Article  CAS  PubMed  Google Scholar 

  131. Demaimay, R., Chesebro, B. & Caughey, B. Inhibition of formation of protease-resistant prion protein by trypan blue, sirius red and other Congo red analogs. Arch. Virol. [Suppl] 16, 277–283 (2000).

    Google Scholar 

  132. Poli, G. et al. In vitro evaluation of the anti-prionic activity of newly synthesized congo red derivatives. Arzneimittelforschung. 53, 875–888 (2003).

    CAS  PubMed  Google Scholar 

  133. Gilch, S. et al. Intracellular re-routing of prion protein prevents propagation of PrP(Sc) and delays onset of prion disease. EMBO J. 20, 3957–3966 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Caughey, B., et al. Inhibition of protease-resistant prion protein accumulation in vitro by curcumin. J. Virol. 77, 5499–5502 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Priola, S. A., Raines, A. & Caughey, W. Prophylactic and therapeutic effects of phthalocyanine tetrasulfonate in scrapie-infected mice. J. Infect. Dis. 188, 699–705 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Pocchiari, M., Schmittinger, S. & Masullo, C. Amphotericin B delays the incubation period of scrapie in intracerebrally inoculated hamsters. J. Gen. Virol. 68, 219–223 (1987).

    Article  CAS  PubMed  Google Scholar 

  137. Dormont, D. Approaches to prophylaxis and therapy. Br. Med. Bull. 66, 281–292 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Mange, A. et al. Amphotericin B inhibits the generation of the scrapie isoform of the prion protein in infected cultures. J. Virol. 74, 3135–3140 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Marella, M., Lehmann, S., Grassi, J. & Chabry, J. Filipin prevents pathological prion protein accumulation by reducing endocytosis and inducing cellular PrP release. J. Biol. Chem. 277, 25457–25464 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Adjou, K. T. et al. MS-8209, an amphotericin B analogue, delays the appearance of spongiosis, astrogliosis and PrPres accumulation in the brain of scrapie-infected hamsters. J. Comp. Pathol. 122, 3–8 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. Doh-ura, K., Iwaki, T. & Caughey, B. Lysosomotropic agents and cysteine protease inhibitors inhibit accumulation of scrapie-associated prion protein. J. Virol. 74, 4894–4897 (2000). The first demonstration of the inhibitory efficacy of quinacrine, the antimalarial drug that is currently being tested in humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sigurdsson, E. M. et al. Copper chelation delays the onset of prion disease. J. Biol. Chem. 278, 46199–46202 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Scott, M. R., Kohler, R., Foster, D. & Prusiner, S. B. Chimeric prion protein expression in cultured cells and transgenic mice. Protein Sci. 1, 986–997 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Priola, S. A., Caughey, B., Race, R. E. & Chesebro, B. Heterologous PrP molecules interfere with accumulation of protease-resistant PrP in scrapie-infected murine neuroblastoma cells. J. Virol. 68, 4873–4878 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Horiuchi, M., Priola, S. A., Chabry, J. & Caughey, B. Interactions between heterologous forms of prion protein: Binding, inhibition of conversion, and species barriers. Proc. Natl Acad. Sci. USA 97, 5836–5841 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Goldmann, W., Hunter, N., Smith, G., Foster, J. & Hope, J. PrP genotype and agent effects in scrapie: change in allelic interaction with different isolates of agent in sheep, a natural host of scrapie. J. Gen. Virol. 75, 989–995 (1994).

    Article  CAS  PubMed  Google Scholar 

  147. Palmer, M. S., Dryden, A. J., Hughes, J. T. & Collinge, J. Homozygous prion protein genotype predisposes to sporadic Creutzfeldt–Jakob disease. Nature 352, 340–342 (1991).

    Article  CAS  PubMed  Google Scholar 

  148. Prusiner, S. B. et al. Transgenetic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell 63, 673–686 (1990). This paper, together with several others (references 98 and 143–150), establish a rationale for therapeutic approaches based on expression of interfering PrP molecules, or PrP fragments, in the host.

    Article  CAS  PubMed  Google Scholar 

  149. Chabry, J., Caughey, B. & Chesebro, B. Specific inhibition of in vitro formation of protease-resistant prion protein by synthetic peptides. J. Biol. Chem. 273, 13203–13207 (1998).

    Article  CAS  PubMed  Google Scholar 

  150. Chabry, J. et al. Species-independent inhibition of abnormal prion protein (PrP) formation by a peptide containing a conserved PrP sequence. J. Virol. 73, 6245–6250 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Brown, P. Drug therapy in human and experimental transmissible spongiform encephalopathy. Neurology 58, 1720–1725 (2002).

    Article  CAS  PubMed  Google Scholar 

  152. Doh-ura, K. et al. Treatment of transmissible spongiform encephalopathy by intraventricular drug infusion in animal models. J. Virol. 78, 4999–5006 (2004). A demonstration that the direct administration of PrPSc inhibitors to the brain ventricles can enhance the beneficial effects of drugs late in the incubation period, an approach that is currently being tested in human CJD patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kobayashi, Y., Hirata, K., Tanaka, H. & Yamada, T. [Quinacrine administration to a patient with Creutzfeldt–Jakob disease who received a cadaveric dura mater graft — an EEG evaluation]. Rinsho Shinkeigaku 43, 403–408 (2003).

    PubMed  Google Scholar 

  154. Nakajima, M. et al. Results of quinacrine administration to patients with Creutzfeldt–Jakob disease. Dement. Geriatr. Cogn Disord. 17, 158–163 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Otto, M. et al. Efficacy of flupirtine on cognitive function in patients with CJD: a double-blind study. Neurology 62, 714–718 (2004). A demonstration of beneficial effects of a drug on CJD patients.

    Article  CAS  PubMed  Google Scholar 

  156. Taylor, D. M. Inactivation of transmissible degenerative encephalopathy agents: a review. Vet. J. 159, 10–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  157. Kocisko, D. A., Morrey, J. D., Race, R., Chen, J. & Caughey, B. Evaluation of new cell-culture inhibitors of PrP–res against scrapie infection in mice. J. Gen. Virol. 85, 2479–2484 (2004).

    Article  CAS  PubMed  Google Scholar 

  158. Daude, N., Marella, M. & Chabry, J. Specific inhibition of pathological prion protein accumulation by small interfering RNAs. J. Cell Sci. 116, 2775–2779 (2003). This paper, along with reference 84, provides evidence that active reduction of PrPC expression might be a reasonable therapeutic approach.

    Article  CAS  PubMed  Google Scholar 

  159. Prusiner, S. B. Shattuck lecture — neurodegenerative diseases and prions. N. Engl. J. Med. 344, 1516–1526 (2001).

    Article  CAS  PubMed  Google Scholar 

  160. Caughey, B. & Lansbury, P. T. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267–298 (2003).

    Article  CAS  PubMed  Google Scholar 

  161. Kimberlin, R. H. & Walker, C. A. The antiviral compound HPA-23 can prevent scrapie when administered at the time of infection. Arch. Virol. 78, 9–18 (1983). This and an earlier paper by this group are the first to demonstrate prophylactic anti-scrapie activity of polyanionic molecules.

    Article  CAS  PubMed  Google Scholar 

  162. Lasmezas, C. I. et al. Transmission of the BSE agent to mice in the absence of detectable abnormal prion protein. Science 17, 402–405 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

N.R.C.'s work is supported by Canadian Institutes of Health Research (Institute of Infection and Immunity), Caprion Pharmaceuticals and McDonald's Corp.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

N.R.C is receives funding for research from Caprion Pharmaceuticals. B.C holds patents on the use of Congo red, cyclic tetrapyrroles and PrP peptides for TSE treatments.

Related links

Related links

DATABASES

Entrez Gene

Amyloid precursor protein

TNF-α

OMIM

Amyotrophic lateral sclerosis

Alzheimer's disease

Parkinson's disease

FURTHER INFORMATION

Encyclopedia of Life Sciences

Prions

prion diseases

Glossary

TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY

A class of infectious diseases characterized by neuronal degeneration, spongiform change, gliosis and accumulation of amyloid protein deposits.

SPONGIFORM CHANGE

Microvacuolization of brain tissue, which typically accompanies prion disease.

CREUTZFELDT–JAKOB DISEASE

(CJD). The most common human prion disease, classically comprising sporadic, familial and iatrogenic forms, and now including variant CJD (vCJD).

VARIANT CJD

(vCJD). A newly emergent form of human prion disease, initially linked to comsumption of cattle afflicted with bovine spongiform encephalopathy.

BOVINE SPONGIFORM ENCEPHALOPATHY

(BSE). A naturally acquired transmissible spongiform encephalopathies of cattle, epidemically amplified by feed supplementation with rendered products from afflicted bovines.

CHRONIC WASTING DISEASE

(CWD). A relatively contagious prion disease of captive and wild cervids (elk and deer).

SCRAPIE

A naturally acquired prion disease of sheep, clinically recognized for 300 years. Mouse-adapted scrapie agent strains are now used in many paradigms to identify therapies to prion disease.

PRION HYPOTHESIS

The proposal that transmissible spongiform encephalopathies infectivity comprises the conformational conversion of the host-encoded cellular prion protein PrPC into the disease-associated isoform PrPSc.

PrPC

The native, protease-sensitive, normally expressed form of PrP, named for its 'cellular' location.

PrP-SEN

A generic operational term referring to forms of PrP that are protease-sensitive. This includes native PrPC as well as various non-native or abnormal forms of PrP (for example, recombinant or mutant forms) that are protease-sensitive.

PrPSC

The native disease-associated isoform of PrP, originally named for its association with scrapie. Now often used generically to refer to the disease-associated form of PrP in prion diseases other than scrapie.

PrP-RES

A generic term referring to the disease-associated form of PrP that is recognizable by its partial resistance to proteolytic digestion, and therefore partially synonymous with PrPSc when the latter is applied generically. Also commonly used to denote the highly protease-resistant 27–30 kDa product of partial proteolysis of native disease-associated PrP.

PRNP

The human gene that encodes PrP. Also used to designate the prion protein gene in other species, although the mouse nomenclature is Prnp.

GERSTMANN–STRAUSSLER SYNDROME

A familial prion disease, linked with mutations in the PRNP open reading frame.

GLIOSIS

Activation and proliferation of astrocytes and microglial cells in the brain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cashman, N., Caughey, B. Prion diseases — close to effective therapy?. Nat Rev Drug Discov 3, 874–884 (2004). https://doi.org/10.1038/nrd1525

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1525

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing