Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Manifesto for a higher Tc

The term 'high-temperature superconductor' used to refer only to copper-based compounds — now, iron-based pnictides have entered the frame. The comparison of these two types of superconductor is revealing, and suggestive of what might be needed to achieve even higher transition temperatures.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic phase diagrams of the cuprates and pnictides on hole- or electron-doping2,3,4.
Figure 2: Characteristic energy scales for fermionic and bosonic excitations, electronic kinetic energy Kexp, superfluid density and superconducting energy gap in cuprates (red boxes) and Fe-based materials (blue boxes).
Figure 3: Schematics of two-dimensional cross-sections of Fermi surfaces (FSs) for cuprates and pnictides.
Figure 4: Superfluid density in exotic superconductors.

References

  1. Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. J. Am. Chem. Soc. 130, 3296–3297 (2008).

    Article  Google Scholar 

  2. Johnston, D. C. Adv. Phys. 59, 803–1061 (2010).

    Article  ADS  Google Scholar 

  3. Paglione, J.-P. & Greene, R. L. Nature Phys. 6, 645–658 (2010).

    Article  ADS  Google Scholar 

  4. Mazin, I. I. Nature 464, 183–186 (2010).

    Article  ADS  Google Scholar 

  5. Lee, P. A., Nagaosa, N. & Wen, X. G. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  ADS  Google Scholar 

  6. Damascelli, A., Hussain, Z. & Shen, Z.-X. Rev. Mod. Phys. 75, 473–541 (2003).

    Article  ADS  Google Scholar 

  7. Chang, Liu. et al. Preprint at http://arXiv.org/abs/1011.0980 (2010).

  8. Basov, D. N. & Timusk, T. Rev. Mod. Phys. 77, 721–779 (2005).

    Article  ADS  Google Scholar 

  9. Orenstein, J. & Millis, A. J. Science 288, 468–474 (2000).

    Article  ADS  Google Scholar 

  10. Hu, W. Z. et al. Phys. Rev. Lett. 101, 257005 (2008).

    Article  ADS  Google Scholar 

  11. Scalapino, D. J. Phys. Rep. 250, 329–365 (1995).

    Article  ADS  Google Scholar 

  12. Wang, F. et al. Preprint at http://arXiv.org/abs/1101.4390v1 (2011).

  13. Kemper, A. F. et al. New J. Phys. 12, 073030 (2010).

    Article  ADS  Google Scholar 

  14. Maiti, S. & Chubukov, A. V. Phys. Rev. B 82, 214515 (2010).

    Article  ADS  Google Scholar 

  15. Wang, F. et al. Phys. Rev. Lett. 102, 047005 (2009).

    Article  ADS  Google Scholar 

  16. Thomale, R. et al. Preprint at http://arXiv.org/abs/1101.3593 (2011).

  17. Eremin, I. & Chubukov, A. V. Phys. Rev. B 81, 024511 (2009).

    Article  ADS  Google Scholar 

  18. Vishik, I. M. et al. New J. Phys. 12, 105008 (2010).

    Article  ADS  Google Scholar 

  19. Onari, S. & Kontani, H. Phys. Rev. Lett. 103, 177001 (2009).

    Article  ADS  Google Scholar 

  20. Boeri, L., Dolgov, O. V. & Golubov, A. A. Phys. Rev. Lett. 101, 026403 (2008).

    Article  ADS  Google Scholar 

  21. Inosov, D. S. et al. Nature Phys. 6, 178–181 (2010).

    Article  ADS  Google Scholar 

  22. Hanaguri, T., Niitaka, S., Kuroki, K. & Takagi, H. Science 328, 474–476 (2010).

    Article  ADS  Google Scholar 

  23. Gordon, R. T. et al. Phys. Rev. B 82, 054507 (2010).

    Article  ADS  Google Scholar 

  24. Luan, L. et al. Phys. Rev. Lett. 106, 067001 (2011).

    Article  ADS  Google Scholar 

  25. Hashimoto, K. et al. Phys. Rev. B 81, 220501(R) (2010).

    Article  ADS  Google Scholar 

  26. Fernandes, R. M. & Schmalian, J. Phys. Rev. B 82, 014521 (2010).

    Article  ADS  Google Scholar 

  27. Qazilbash, M. M. et al. Nature Phys. 5, 647–650 (2009).

    Article  ADS  Google Scholar 

  28. Si, Q. & Abrahams, E. Phys. Rev. Lett. 101, 076401 (2008).

    Article  ADS  Google Scholar 

  29. Haule, K., Shim, J. H. & Kotliar, G. Phys. Rev. Lett. 100, 226402 (2008).

    Article  ADS  Google Scholar 

  30. Lu, D. H. et al. Nature 455, 81–84 (2008).

    Article  ADS  Google Scholar 

  31. Millis, A. J. et al. Phys. Rev. B 72, 224517 (2005).

    Article  ADS  Google Scholar 

  32. Emery, V. J. & Kivelson, S. A. Phys. Rev. Lett. 74, 3253–3257 (1995).

    Article  ADS  Google Scholar 

  33. Goko, T. et al. Phys. Rev. B 80, 024508 (2009).

    Article  ADS  Google Scholar 

  34. Homes, C. C. et al. Nature 430, 539–541 (2004).

    Article  ADS  Google Scholar 

  35. Homes, C. C. et al. Phys. Rev. B 81, 180508 (2010).

    Article  ADS  Google Scholar 

  36. Coldea, A. I. et al. Phys. Rev. Lett. 101, 216402 (2008).

    Article  ADS  Google Scholar 

  37. van der Marel, D. et al. Nature 425, 271–274 (2003).

    Article  ADS  Google Scholar 

  38. Wu, D. et al. Phys. Rev. B 79, 155103 (2009).

    Article  ADS  Google Scholar 

  39. Taillefer, L. Ann. Rev. Cond. Mat. Phys. 1, 51–70 (2010).

    Article  ADS  Google Scholar 

  40. Monthoux, P., Pines, D. & Lonzarich, G. G. Nature 450, 1177–1183 (2007).

    Article  ADS  Google Scholar 

  41. Abanov, A., Chubukov, A. V. & Norman, M. R. Phys. Rev. B 78, 220507 (2008).

    Article  ADS  Google Scholar 

  42. Tsai, W. F. et al. Phys. Rev. B 77, 214502 (2008).

    Article  ADS  Google Scholar 

  43. Charnukha, A. et al. Nature Commun. 2, 219 (2011).

    Article  Google Scholar 

  44. Singley, E. J. et al. Phys. Rev. B 65, 161101 (2002).

    Article  ADS  Google Scholar 

  45. Shim, J. H. et al. Science 318, 1615–1617 (2007)

    Article  ADS  Google Scholar 

  46. Basov, D. N. et al. Rev. Mod. Phys (in the press).

  47. Degiorgi, L. Adv. Phys. 47, 207–316 (1998).

    Article  ADS  Google Scholar 

  48. Erwin, S. C. & Pickett, W. E. Phys. Rev. B 46, 14257 (1992).

    Article  ADS  Google Scholar 

  49. Nakai, Y. et al. Phys. Rev. Lett. 105, 107003 (2010).

    Article  ADS  Google Scholar 

  50. Geballe, T. H. & Marezio, M. Physica C 469, 680–684 (2009).

    Article  ADS  Google Scholar 

  51. Tu, J. J. et al. Phys. Rev. B 82, 174509 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.V.C. is supported by the NSF. D.N.B. is supported by the NSF, AFOSR and DOE.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. N. Basov or Andrey V. Chubukov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basov, D., Chubukov, A. Manifesto for a higher Tc. Nature Phys 7, 272–276 (2011). https://doi.org/10.1038/nphys1975

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1975

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing