Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Angle dependence of quantum oscillations in YBa2Cu3O6.59 shows free-spin behaviour of quasiparticles

Abstract

Measurements of quantum oscillations in the cuprate superconductors afford an opportunity to assess the extent to which their electronic properties yield to a description rooted in Fermi-liquid theory. However, such an analysis is hampered by the small number of oscillatory periods observed in the accessible magnetic field range. Here we employ a genetic algorithm to globally model the field, angular and temperature dependence of the quantum oscillations observed in the resistivity of YBa2Cu3O6.59. This approach successfully fits an entire data set to a Fermi surface consisting of two small, quasi-two-dimensional cylinders, rather than the large Fermi surface predicted by conventional electronic-structure calculations. A key result is the first identification of the effects of Zeeman splitting, indicating that the quasiparticles behave as nearly free spins, constraining the source of the Fermi-surface reconstruction to something other than a spin-density wave with moments perpendicular to the magnetic field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Field dependence of the -axis resistance of YBa2Cu3O6.59.
Figure 2: Fits to the angle and temperature dependence of the oscillatory component.
Figure 3: Oscillatory amplitude as a function of angle from the  axis.
Figure 4: Oscillatory component versus angle and field.

Similar content being viewed by others

References

  1. Doiron-Leyraud, N. et al. Quantum oscillations and the Fermi surface in an underdoped high T c superconductor. Nature 447, 565–568 (2007).

    Article  ADS  Google Scholar 

  2. Jaudet, C. et al. de Haas–van Alphen oscillations in the underdoped high-temperature superconductor YBa2Cu3O6.5 . Phys. Rev. Lett. 100, 187005 (2008).

    Article  ADS  Google Scholar 

  3. Sebastian, S. E. et al. Multi-component Fermi surface in an underdoped high temperature superconductor. Nature 454, 200–203 (2008).

    Article  ADS  Google Scholar 

  4. Bangura, A. F. et al. Small Fermi surface pockets in underdoped high temperature superconductors: Observation of Shubnikov–de Haas oscillations in YBa2Cu4O8 . Phys. Rev. Lett. 100, 047004 (2008).

    Article  ADS  Google Scholar 

  5. Yelland, E. A. et al. Quantum oscillations in the underdoped cuprate YBa2Cu4O8 . Phys. Rev. Lett. 100, 047003 (2008).

    Article  ADS  Google Scholar 

  6. Vignolle, B. et al. Quantum oscillations in an overdoped high-T c superconductor. Nature 455, 952–955 (2008).

    Article  ADS  Google Scholar 

  7. Helm, T. et al. Evolution of the Fermi surface of the electron-doped high-temperature superconductor Nd2−xCexCuO4 revealed by Shubnikov–de Haas oscillations. Phys. Rev. Lett. 103, 157002 (2009).

    Article  ADS  Google Scholar 

  8. Audouard, A. et al. Multiple frequencies in quantum oscillations from underdoped YBa2Cu3O6.5 . Phys. Rev. Lett. 103, 157003 (2009).

    Article  ADS  Google Scholar 

  9. Sebastian, S. E. et al. Compensated electron and hole pockets in an underdoped high T c superconductor. Phys. Rev. B 81, 214524 (2010).

    Article  ADS  Google Scholar 

  10. Bergemann, C., Mackenzie, A. P., Julian, S. R., Forsythe, D. & Ohmichi, E. Quasi-two-dimensional Fermi liquid properties of the unconventional superconductor Sr2RuO4 . Adv. Phys. 52, 639–725 (2003).

    Article  ADS  Google Scholar 

  11. Bergemann, C., Julian, S. R., Mackenzie, A. P., NishiZaki, S. & Maeno, Y. Detailed topography of the Fermi surface of Sr2RuO4 . Phys. Rev. Lett. 84, 2662–2665 (2000).

    Article  ADS  Google Scholar 

  12. Yamaji, K. On the angle dependence of the magnetoresistance in quasi-two-dimensional organic superconductors. J. Phys. Soc. Jpn 58, 1520–1523 (1989).

    Article  ADS  Google Scholar 

  13. Singleton, J. Studies of quasi-two-dimensional organic conductors based on BEDT-TTF using high magnetic fields. Rep. Prog. Phys. 63, 1111–1207 (2000).

    Article  ADS  Google Scholar 

  14. Shoenberg, D. Magnetic Oscillations in Metals (Cambridge Univ. Press, 1984).

    Book  Google Scholar 

  15. Engelsberg, S. & Simpson, G. Influence of electron–phonon interactions on the de Haas–van Alphen effect. Phys. Rev. B 2, 1657–1665 (1970).

    Article  ADS  Google Scholar 

  16. Fowler, M. & Prange, R. E. Electron–phonon renormalization effects in high magnetic field. The de Haas–van Alphen effect. Physics 1, 315–328 (1965).

    Article  Google Scholar 

  17. Harrison, N. & McDonald, R. D. Determining the in-plane Fermi surface topology in underdoped high T c superconductors using angle-dependent magnetic quantum oscillations. J. Phys. Condens. Matter 21, 192201 (2009).

    Article  ADS  Google Scholar 

  18. Sebastian, S. E. et al. Fermi liquid behaviour in an underdoped high T c superconductor. Phys. Rev. B 81, 140505 (2010).

    Article  ADS  Google Scholar 

  19. Carrington, A. et al. Quantum oscillation studies of the Fermi surface of LaFePO. Physica C 469, 459–468 (2009).

    Article  ADS  Google Scholar 

  20. Walstedt, R. E., Bell, R. F., Schneemeyer, L. F. & Espinosa, G. Diamagnetism in the normal state of YBCO. Phys. Rev. B 45, 8074–8084 (1992).

    Article  ADS  Google Scholar 

  21. Sebastian, S. E. et al. Spin-order driven Fermi surface reconstruction revealed by quantum oscillations in an underdoped high T c superconductor. Phys. Rev. Lett. 103, 256405 (2009).

    Article  ADS  Google Scholar 

  22. Norman, M. R. & Lin, J. Spin zeros and the origin of Fermi surface reconstruction in the cuprates. Phys. Rev. B 82, 060509 (2010).

    Article  ADS  Google Scholar 

  23. Garcia-Aldea, D. & Chakravarty, S. Singlet versus triplet particle–hole condensates in quantum oscillations in cuprates. Phys. Rev. B 82, 184526 (2010).

    Article  ADS  Google Scholar 

  24. Ramazashvili, R. Quantum oscillations in antiferromagnetic conductors with small carrier pockets. Preprint at http://arxiv.org/abs/1006.0167v1 (2010).

Download references

Acknowledgements

The authors would like to thank S. Julian, A. Mackenzie, R. Ramazashvili, L. Taillefer, S. Kivelson, S. Sebastian, G. Lonzarich, M. Berciu, S. Sachdev, S. Chakravarty, P. C. E Stamp, L. Thompson and M. Norman for many conversations. Research support was provided by the Canadian Institute for Advanced Research, the Natural Science and Engineering Research Council, the French Agence Nationale pour la Recherche DELICE and Euromagnet II.

Author information

Authors and Affiliations

Authors

Contributions

B.J.R., B.V., J.D. and C.P. made the high-field resistivity measurements at the Laboratoire National des Champs Magnétiques Intenses in Toulouse, France; B.J.R. carried out the data analysis; B.J.R., R.L., W.N.H. and D.A.B. prepared the samples at the University of British Columbia (crystal growth, annealing, de-twinning and contacts); B.J.R. and D.A.B. wrote the manuscript and D.A.B. supervised the project.

Corresponding author

Correspondence to D. A. Bonn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 263 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramshaw, B., Vignolle, B., Day, J. et al. Angle dependence of quantum oscillations in YBa2Cu3O6.59 shows free-spin behaviour of quasiparticles. Nature Phys 7, 234–238 (2011). https://doi.org/10.1038/nphys1873

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1873

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing