Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nodal quasiparticle meltdown in ultrahigh-resolution pump–probe angle-resolved photoemission

Abstract

High-transition-temperature cuprate superconductors are characterized by a strong momentum-dependent anisotropy between the low-energy excitations along the Brillouin zone diagonal (nodal direction) and those along the Brillouin zone face (antinodal direction)—the most striking example of which is the d -wave superconducting gap, with the largest magnitude found in the antinodal direction and no gap in the nodal direction. Furthermore, whereas antinodal quasiparticle excitations occur only below the transition temperature (Tc), superconductivity is thought to be indifferent to nodal excitations that are regarded as robust and insensitive to Tc. Here we reveal an unexpected link between nodal quasiparticles and superconductivity using high-resolution time- and angle-resolved photoemission on optimally doped Bi2Sr2CaCu2O8+δ. We observe a suppression of the nodal quasiparticle spectral weight following pump laser excitation, and measure its recovery dynamics. This suppression is greatly enhanced in the superconducting state. These results reduce the nodal–antinodal dichotomy and challenge the conventional view of nodal excitation neutrality in superconductivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nodal QP spectral weight suppression after an infrared pump pulse.
Figure 2: Comparison between equilibrium-temperature-driven and optical-pump-driven spectral-weight suppression.
Figure 3: Time dependence of the pump-induced spectral changes for an equilibrium temperature of T=20 K.

Similar content being viewed by others

References

  1. Damascelli, A., Hussain, Z. & Shen, Z-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

    Article  ADS  Google Scholar 

  2. Feng, D. L. et al. Signature of superfluid density in the single-particle excitation spectrum of Bi2Sr2CaCu2O8+δ . Science 289, 277–281 (2000).

    Article  ADS  Google Scholar 

  3. Ding, H. et al. Coherent quasiparticle weight and its connection to high-Tc superconductivity from angle-resolved photoemission. Phys. Rev. Lett. 87, 227001 (2001).

    Article  ADS  Google Scholar 

  4. Garg, A., Randeria, M. & Trivedi, N. Strong correlations make high-temperature superconductors robust against disorder. Nature Phys. 4, 762–765 (2008).

    Article  ADS  Google Scholar 

  5. Pan, S. H. et al. Microscopic electronic inhomogeneity in the high-Tc superconductor Bi2Sr2CaCu2O8+x . Nature 413, 282–285 (2001).

    Article  ADS  Google Scholar 

  6. McElroy, K. et al. Coincidence of checkerboard charge order and antinodal state decoherence in strongly underdoped superconducting Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 94, 197005 (2005).

    Article  ADS  Google Scholar 

  7. Ando, Y., Lavrov, A. N., Komiya, S., Segawa, K. & Sun, X. F. Mobility of the doped holes and the antiferromagnetic correlations in underdoped high-Tc cuprates. Phys. Rev. Lett. 87, 017001 (2001).

    Article  ADS  Google Scholar 

  8. Zhou, X. J. et al. High-temperature superconductors: Universal nodal Fermi velocity. Nature 423, 398 (2003).

    Article  ADS  Google Scholar 

  9. Gweon, G-H. et al. An unusual isotope effect in a high-transition-temperature superconductor. Nature 430, 187–190 (2004).

    Article  ADS  Google Scholar 

  10. Shen, K. M. et al. Nodal quasiparticles and antinodal charge ordering in Ca2−xNaxCuO2Cl2 . Science 307, 901–904 (2005).

    Article  ADS  Google Scholar 

  11. Vershinin, M. et al. Local ordering in the pseudogap state of the high-tc superconductor Bi2Sr2CaCu2O8+δ . Science 303, 1995–1998 (2004).

    Article  ADS  Google Scholar 

  12. Valla, T. et al. Evidence for quantum critical behavior in the optimally doped cuprate Bi2Sr2CaCu2O8+δ . Science 285, 2110–2113 (1999).

    Article  Google Scholar 

  13. Yusof, Z. M. et al. Quasiparticle liquid in the highly overdoped Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 88, 167006 (2002).

    Article  ADS  Google Scholar 

  14. Wei, J. et al. Superconducting coherence peak in the electronic excitations of a single-layer Bi2Sr1.6La0.4CuO6+δ cuprate superconductor. Phys. Rev. Lett. 101, 097005 (2008).

    Article  ADS  Google Scholar 

  15. Kondo, T., Khasanov, R., Takeuchi, T., Schmalian, J. & Kaminski, A. Competition between the pseudogap and superconductivity in the high-Tc copper oxides. Nature 457, 296–300 (2009).

    Article  ADS  Google Scholar 

  16. Perfetti, L. et al. Ultrafast electron relaxation in superconducting Bi2Sr2CaCu2O8+δ by time-resolved photoelectron spectroscopy. Phys. Rev. Lett. 99, 197001 (2007).

    Article  ADS  Google Scholar 

  17. Schmitt, F. et al. Transient electronic structure and melting of a charge density wave in TbTe3 . Science 321, 1649–1652 (2008).

    Article  ADS  Google Scholar 

  18. Rettig, L. et al. Electron–phonon coupling and momentum dependent electron dynamics in EuFe2As2 using time- and angle-resolved photoemission spectroscopy. Preprint at http://arxiv.org/abs/1008.1561v2 (2010).

  19. Lanzara, A. et al. Evidence for ubiquitous strong electron–phonon coupling in high-temperature superconductors. Nature 412, 510–514 (2001).

    Article  ADS  Google Scholar 

  20. Han, S. G., Vardeny, Z. V., Wong, K. S., Symko, O. G. & Koren, G. Femtosecond optical detection of quasiparticle dynamics in high-Tc YBa2Cu3O7−δ superconducting thin films. Phys. Rev. Lett. 65, 2708–2711 (1990).

    Article  ADS  Google Scholar 

  21. Stevens, C. J. et al. Evidence for two-component high-temperature superconductivity in the femtosecond optical response of YBa2Cu3O7−δ . Phys. Rev. Lett. 78, 2212–2215 (1997).

    Article  ADS  Google Scholar 

  22. Demsar, J., Podobnik, B., Kabanov, V. V., Wolf, T. & Mihailovic, D. Superconducting gap Δc, the pseudogap Δp, and pair fluctuations above Tc in overdoped Y1−xCaxBa2Cu3O7−δ from femtosecond time-domain spectroscopy. Phys. Rev. Lett. 82, 4918–4921 (1999).

    Article  ADS  Google Scholar 

  23. Kaindl, R. A. et al. Ultrafast mid-infrared response of YBa2Cu3O7−δ . Science 287, 470–473 (2000).

    Article  ADS  Google Scholar 

  24. Averitt, R. D. et al. Nonequilibrium superconductivity and quasiparticle dynamics in YBa2Cu3O7−δ . Phys. Rev. B 63, 140502(R) (2001).

    Article  ADS  Google Scholar 

  25. Segre, G. P. et al. Photoinduced changes of reflectivity in single crystals of YBa2Cu3O6.5 (ortho ii). Phys. Rev. Lett. 88, 137001 (2002).

    Article  ADS  Google Scholar 

  26. Gedik, N., Orenstein, J., Liang, R., Bonn, D. A. & Hardy, W. N. Diffusion of nonequilibrium quasi-particles in a cuprate superconductor. Science 300, 1410–1412 (2003).

    Article  ADS  Google Scholar 

  27. Gedik, N. et al. Single-quasiparticle stability and quasiparticle-pair decay in YBa2Cu3O6.5 . Phys. Rev. B 70, 014504 (2004).

    Article  ADS  Google Scholar 

  28. Kusar, P. et al. Controlled vaporization of the superconducting condensate in cuprate superconductors by femtosecond photoexcitation. Phys. Rev. Lett. 101, 227001 (2008).

    Article  ADS  Google Scholar 

  29. Liu, Y. H. et al. Direct observation of the coexistence of the pseudogap and superconducting quasiparticles in Bi2Sr2CaCu2O8+y by time-resolved optical spectroscopy. Phys. Rev. Lett. 101, 137003 (2008).

    Article  ADS  Google Scholar 

  30. Mannella, N. et al. Correction of nonlinearity effects in detectors for electron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 141, 45–59 (2004).

    Article  Google Scholar 

  31. Norman, M. R. et al. Destruction of the Fermi surface in underdoped high-Tc superconductors. Nature 392, 157–160 (1998).

    Article  ADS  Google Scholar 

  32. Casey, P. A., Koralek, J. D., Plumb, N. C., Dessau, D. S. & Anderson, P. W. Accurate theoretical fits to laser-excited photoemission spectra in the normal phase of high-temperature superconductors. Nature Phys. 4, 210–212 (2008).

    Article  ADS  Google Scholar 

  33. Randeria, M. et al. Momentum distribution sum rule for angle-resolved photoemission. Phys. Rev. Lett. 74, 4951–4954 (1995).

    Article  ADS  Google Scholar 

  34. Basov, D. N. et al. Sum rules and interlayer conductivity of high-Tc cuprates. Science 283, 49–52 (1999).

    Article  ADS  Google Scholar 

  35. Molegraaf, H. J. A., Presura, C., van der Marel, D., Kes, P. H. & Li, M. Superconductivity-induced transfer of in-plane spectral weight in Bi2Sr2CaCu2O8+δ . Science 295, 2239–2241 (2002).

    Article  ADS  Google Scholar 

  36. Phillips, P., Galanakis, D. & Stanescu, T. D. Absence of asymptotic freedom in doped Mott insulators: Breakdown of strong coupling expansions. Phys. Rev. Lett. 93, 267004 (2004).

    Article  ADS  Google Scholar 

  37. Kaindl, R. A., Carnahan, M. A., Chemla, D. S., Oh, S. & Eckstein, J. N. Dynamics of Cooper pair formation in Bi2Sr2CaCu2O8+δ . Phys. Rev. B 72, 060510(R) (2005).

    Article  ADS  Google Scholar 

  38. Carnahan, M. A. et al. Nonequilibrium thz conductivity of Bi2Sr2CaCu2O8+δ . Physica C 408–410, 729–730 (2004).

    Article  ADS  Google Scholar 

  39. Jacobs, T., Sridhar, S., Li, Q., Gu, G. D. & Koshizuka, N. In-plane and c-axis microwave penetration depth of Bi2Sr2CaCu2O8+δ crystals. Phys. Rev. Lett. 75, 4516–4519 (1995).

    Article  ADS  Google Scholar 

  40. Emery, V. J. & Kivelson, S. A. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995).

    Article  ADS  Google Scholar 

  41. Corson, J., Mallozzi, R., Orenstein, J., Eckstein, J. N. & Bozovic, I. Vanishing of phase coherence in underdoped Bi2Sr2CaCu2O8+δ . Nature 398, 221–223 (1999).

    Article  ADS  Google Scholar 

  42. Khodas, M. & Tsvelik, A. M. Influence of thermal phase fluctuations on the spectral function for a two-dimensional d-wave superconductor. Phys. Rev. B 81, 094514 (2010).

    Article  ADS  Google Scholar 

  43. Graf, J. et al. Vacuum space charge effect in laser-based solid-state photoemission spectroscopy. J. Appl. Phys. 107, 014912 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Z. Hussain for support in the initial stage of the project and J. Orenstein and W. Zhang for useful discussions. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

J.G. and C.J. designed and built the laser-ARPES system. R.A.K. contributed to the design concept of the laser-ARPES system. J.G. carried out the experiment. J.G., C.J. and C.L.S. were responsible for data analysis. H.E. prepared the samples. A.L. was responsible for the experimental concept, planning, and infrastructure. All authors contributed to the interpretation and manuscript.

Corresponding author

Correspondence to A. Lanzara.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 348 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graf, J., Jozwiak, C., Smallwood, C. et al. Nodal quasiparticle meltdown in ultrahigh-resolution pump–probe angle-resolved photoemission. Nature Phys 7, 805–809 (2011). https://doi.org/10.1038/nphys2027

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2027

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing