Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-organized adaptation of a simple neural circuit enables complex robot behaviour

Abstract

Controlling sensori-motor systems in higher animals or complex robots is a challenging combinatorial problem, because many sensory signals need to be simultaneously coordinated into a broad behavioural spectrum. To rapidly interact with the environment, this control needs to be fast and adaptive. Present robotic solutions operate with limited autonomy and are mostly restricted to few behavioural patterns. Here we introduce chaos control as a new strategy to generate complex behaviour of an autonomous robot. In the presented system, 18 sensors drive 18 motors by means of a simple neural control circuit, thereby generating 11 basic behavioural patterns (for example, orienting, taxis, self-protection and various gaits) and their combinations. The control signal quickly and reversibly adapts to new situations and also enables learning and synaptic long-term storage of behaviourally useful motor responses. Thus, such neural control provides a powerful yet simple way to self-organize versatile behaviours in autonomous agents with many degrees of freedom.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The six-legged walking machine AMOS-WD06 and the sensor-driven neural control set-up.
Figure 2: Control of unstable periodic orbits in the chaotic CPG module.
Figure 3: Chaos-controlled CPG generates sensor-induced behavioural patterns of the hexapod AMOS-WD06.
Figure 4: Learning sensor–motor mappings.

Similar content being viewed by others

References

  1. Bernstein, N. A. The Coordination and Regulation of Movements (Pergamon, 1967).

    Google Scholar 

  2. Grillner, S. Biological pattern generation: The cellular and computational logic of networks in motion. Neuron 52, 751–766 (2006).

    Article  Google Scholar 

  3. Büschges, A. Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion. J. Neurophysiol. 93, 1127–1135 (2005).

    Article  Google Scholar 

  4. Pearson, K. G. & Franklin, R. Characteristics of leg movements and patterns of coordination in locusts walking on rough terrain. Int. J. Robot. Res. 3, 101–112 (1984).

    Article  Google Scholar 

  5. Ijspeert, A. J. Central pattern generators for locomotion control in animals and robots: A review. Neural Netw. 21, 642–653 (2008).

    Article  Google Scholar 

  6. Brooks, R. A. A robust layered control systems for a mobile robot. IEEE Trans. Robot. Autom. 2, 14–23 (1986).

    Article  Google Scholar 

  7. Kurazume, R., Yoneda, K. & Hirose, S. Feedforward and feedback dynamic trot gait control for quadruped walking vehicle. Auton. Robots 12, 157–172 (2002).

    Article  Google Scholar 

  8. Shkolnik, A. & Tedrake, R. Proc. IEEE Int. Conf. on Robotics and Automation 4331–4336 (IEEE Press, 2007).

    Google Scholar 

  9. Ijspeert, A. J., Crespi, A., Ryczko, D. & Cabelguen, J. M. From swimming to walking with a salamander robot driven by a spinal cord model. Science 315, 1416–1420 (2007).

    Article  ADS  Google Scholar 

  10. Kimura, H., Fukuoka, Y. & Cohen, A. H. Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. Int. J. Robot. Res. 26, 475–490 (2007).

    Article  Google Scholar 

  11. Collins, J. J. & Richmond, S. A. Hard-wired central pattern generators for quadrupedal locomotion. Biol. Cybern. 71, 375–385 (1994).

    Article  Google Scholar 

  12. Ayers, J. & Witting, J. Biomimetic approaches to the control of underwater walking machines. Phil. Trans. R. Soc. A 365, 273–295 (2007).

    Article  ADS  Google Scholar 

  13. Ishiguro, A., Fujii, A. & Eggenberger Hotz, P. Neuromodulated control of bipedal locomotion using a polymorphic CPG circuit. Adapt. Behav. 11, 7–17 (2003).

    Article  Google Scholar 

  14. Kuniyoshi, Y. & Sangawa, S. Early motor development from partially ordered neural-body dynamics: Experiments with a cortico-spinal-musculo-skeletal model. Biol. Cybern. 95, 589–605 (2006).

    Article  Google Scholar 

  15. Buchli, J., Righetti, L. & Ijspeert, A. J. Engineering entrainment and adaptation in limit cycle systems—from biological inspiration to applications in robotics. Biol. Cybern. 95, 645–664 (2006).

    Article  Google Scholar 

  16. Arena, P., Fortuna, L., Frasca, M. & Sicurella, G. An adaptive, self-organizing dynamical system for hierarchical control of bio-inspired locomotion. IEEE Trans. Syst. Man Cybern. B 34, 1823–1837 (2004).

    Article  Google Scholar 

  17. Rabinovich, M. I. & Abarbanel, H. D. I. The role of chaos in neural systems. Neuroscience 87, 5–14 (1998).

    Article  Google Scholar 

  18. Wilson, D. M. Insect walking. Annu. Rev. Entomol. 11, 103–122 (1966).

    Article  Google Scholar 

  19. Manoonpong, P., Pasemann, F. & Wörgötter, F. Sensor-driven neural control for omnidirectional locomotion and versatile reactive behaviours of walking machines. Robot. Auton. Syst. 56, 265–288 (2008).

    Article  Google Scholar 

  20. Orlovsky, G. N., Deliagina, T. G. & Grillner, S. Neuronal Control of Locomotion: From Mollusk to Man (Oxford Univ. Press, 1999).

    Book  Google Scholar 

  21. Ott, E., Grebogi, C. & Yorke, J. A. Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  22. Schmelcher, P. & Diakonos, F. K. General approach to the localization of unstable periodic orbits in chaotic systems. Phys. Rev. E 57, 2739–2746 (1998).

    Article  ADS  Google Scholar 

  23. Schöll, E. & Schuster, H.G. Handbook of Chaos Control (Wiley–VCH, 2007).

    Book  Google Scholar 

  24. Schuster, H. G. Deterministic Chaos. An Introduction (Wiley–VCH, 2005).

    Book  Google Scholar 

  25. Schimansky-Geier, L., Fiedler, B., Kurths, J. & Schöll, E. Analysis and Control of Complex Nonlinear Processes in Physics, Chemistry and Biology (World Scientific, 2007).

    Book  Google Scholar 

  26. Pasemann, F. Complex dynamics and the structure of small neural networks. Network 13, 195–216 (2002).

    Article  Google Scholar 

  27. van Vreeswijk, C. & Sompolinsky, H. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274, 1724–1726 (1996).

    Article  ADS  Google Scholar 

  28. Brunel, N. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8, 183–208 (2000).

    Article  Google Scholar 

  29. Zillmer, R., Brunel, N. & Hansel, D. Very long transients, irregular firing, and chaotic dynamics in networks of randomly connected inhibitory integrate-and-fire neurons. Phys. Rev. E 79, 031909 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  30. Jahnke, S., Memmesheimer, R.-M. & Timme, M. Stable irregular dynamics in complex neural networks. Phys. Rev. Lett. 100, 048102 (2008).

    Article  ADS  Google Scholar 

  31. Jahnke, S., Memmesheimer, R.-M. & Timme, M. How chaotic is the balanced state? Front. Comput. Neurosci. 3, 13 (2009).

    Article  Google Scholar 

  32. Hoyt, D. F. & Taylor, C. R. Gaits and the energetics of locomotion in horses. Nature 292, 239–240 (1981).

    Article  ADS  Google Scholar 

  33. Srinivasan, M. & Ruina, A. Computer optimization of a minimal biped model discovers walking and running. Nature 439, 72–75 (2006).

    Article  ADS  Google Scholar 

  34. Delcomyn, F. Walking robots and the central and peripheral control of locomotion in insects. Auton. Robots 7, 259–270 (1999).

    Article  Google Scholar 

  35. Klaassen, B., Linnemann, R., Spenneberg, D. & Kirchner, F. Biomimetic walking robot SCORPION: Control and modelling. Robot. Auton. Syst. 41, 69–76 (2002).

    Article  Google Scholar 

  36. Asa, K., Ishimura, K. & Wada, M. Behavior transition between biped and quadruped walking by using bifurcation. Robot. Auton. Syst. 57, 155–160 (2009).

    Article  Google Scholar 

  37. Pearson, K. G. & Iles, J. F. Nervous mechanisms underlying intersegmental coordination of leg movements during walking in the cockroach. J. Exp. Biol. 58, 725–744 (1973).

    Google Scholar 

  38. Gabriel, J. P. & Büschges, A. Control of stepping velocity in a single insect leg during walking. Phil. Trans. R. Soc. A 365, 251–271 (2007).

    Article  ADS  Google Scholar 

  39. Pfeifer, R., Lungarella, M. & Iida, F. Self-organization, embodiment, and biologically inspired robotics. Science 318, 1088–1093 (2007).

    Article  ADS  Google Scholar 

  40. Beer, R. D., Quinn, R. D., Chiel, H. J. & Ritzmann, R. E. Biologically inspired approaches to robotics. Commun. ACM 40, 30–38 (1997).

    Article  Google Scholar 

  41. Korn, H. & Faure, P. Is there chaos in the brain? II. Experimental evidence and related models. C. R. Biol. 326, 787–840 (2003).

    Article  Google Scholar 

  42. Iida, F. & Pfeifer, R. Sensing through body dynamics. Robot. Auton. Syst. 54, 631–640 (2006).

    Article  Google Scholar 

  43. Pitti, A., Lungarella, M. & Kuniyoshi, Y. Exploration of natural dynamics through resonance and chaos. Proc. 9th Conf. on Intelligent Autonomous Systems 558–565 (IOS Press, 2006).

    Google Scholar 

  44. Wehner, R. Desert ant navigation: How miniature brains solve complex tasks. J. Comput. Physiol. A 189, 579–588 (2003).

    Article  ADS  Google Scholar 

  45. McVea, D. A. & Pearson, K. G. Long-lasting memories of obstacles guide leg movements in the walking cat. J. Neurosci. 26, 1175–1178 (2007).

    Article  Google Scholar 

  46. Manoonpong, P., Pasemann, F. & Roth, H. Modular reactive neurocontrol for biologically-inspired walking machines. Int. J. Robot. Res. 26, 301–331 (2007).

    Article  Google Scholar 

  47. Widrow, B. & Hoff, M. E. Adaptive switching circuit. IRE WESCON Conv. Rec. 4, 96–104 (1960).

    Google Scholar 

Download references

Acknowledgements

We thank F. Pasemann, T. Geisel, A. Büschges and A. J. Ijspeert for fruitful discussions and acknowledge financial support by the Ministry for Education and Science (BMBF), Germany, through the Bernstein Center for Computational Neuroscience, grant numbers 01GQ0432 (F.W.) and 01GQ0430 (M.T.) as well as by the Max Planck Society (M.T.). F.W. acknowledges financial support by the European Commission ‘PACO-PLUS’.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived and designed the experiments, contributed materials and analysis tools and analysed the data. S.St. carried out the numerical experiments. P.M. developed the robotic system. P.M. and S.St. carried out the robotic experiments. M.T., F.W. and S.St. worked out the theory. M.T. and F.W. supervised the numerical and robotic experiments. M.T., F.W. and P.M. wrote the manuscript.

Corresponding author

Correspondence to Poramate Manoonpong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1097 kb)

Supplementary Movie

Supplementary Movie 1 (MPG 9832 kb)

Supplementary Movie

Supplementary Movie 2 (MPG 23572 kb)

Supplementary Movie

Supplementary Movie 3 (MPG 13139 kb)

Supplementary Movie

Supplementary Movie 4 (MPG 20444 kb)

Supplementary Movie

Supplementary Movie 5 (MPG 42928 kb)

Supplementary Movie

Supplementary Movie 6 (MPG 15003 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steingrube, S., Timme, M., Wörgötter, F. et al. Self-organized adaptation of a simple neural circuit enables complex robot behaviour. Nature Phys 6, 224–230 (2010). https://doi.org/10.1038/nphys1508

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1508

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing