Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Trionic optical potential for electrons in semiconductors

Abstract

Laser-induced optical potentials for atoms have led to remarkable advances in precision measurement, quantum information and towards addressing fundamental questions in condensed-matter physics. Here, we describe analogous optical potentials for electrons in quantum wells and wires that can be generated by optically driving the transition between a single electron and a three-body electron–exciton bound state, known as a trion. The existence of a bound trion state adds a term to the a.c. Stark shift of the material proportional to the light intensity at the position of the electron. According to our theoretical calculations, this shift can be large relative to the thermal equilibrium temperature of the electron, resulting in a relatively strong optical potential that could be used to trap, guide and manipulate individual electrons within a semiconductor quantum well or wire. These potentials can be thought of as artificial nanostructures on the scale of 100 nm that can be spin dependent and reconfigurable in real time. Our results suggest the possibility of integrating ultrafast optics and gate voltages in new resolved-carrier semiconductor optoelectronic devices, with potential applications in fields such as nanoelectronics, spintronics and quantum information processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interference pattern for two laser beams incident on the semiconductor structure.
Figure 2: Scheme of energy-level shifts for an empty quantum well |0〉 and for a quantum well with one electron at re, in the red- and blue-detuning case.
Figure 3: Potential depth as a function of laser intensity for various detunings.

Similar content being viewed by others

References

  1. Burstein, E., Weisbuch, C. & North Atlantic Treaty Organization Scientific Affairs Division, Confined Electrons and Photons: New Physics and Applications (Plenum Press, 1995).

    Book  Google Scholar 

  2. Lampert, M. A. Mobile and immobile effective-mass-particle complexes in nonmetallic solids. Phys. Rev. Lett. 1, 450–453 (1958).

    Article  ADS  Google Scholar 

  3. Finkelstein, G. et al. Charged exciton dynamics in GaAs quantum wells. Phys. Rev. B 58, 12637–12640 (1998).

    Article  ADS  Google Scholar 

  4. Sanvitto, D. et al. Observation of charge transport by negatively charged excitons. Science 294, 837–839 (2001).

    Article  ADS  Google Scholar 

  5. Ciulin, V. et al. Radiative lifetime of negative trions in GaAs and CdTe quantum wells. Phys. Status Solidi A 178, 495–499 (2000).

    Article  ADS  Google Scholar 

  6. Bar-Joseph, I. Trions in GaAs quantum wells. Semicond. Sci. Technol. 20, R29–R39 (2005).

    Article  ADS  Google Scholar 

  7. Freeman, R. R., Bucksbaum, P. H. & McIlrath, T. J. The ponderomotive potential of high-intensity light and its role on the multiphoton ionization of atoms. IEEE J. Quantum Electron. 24, 1461–1469 (1988).

    Article  ADS  Google Scholar 

  8. Binder, R. & Lindberg, M. Optical electron–hole tweezers in semiconductors. J. Phys. Condens. Matter 18, 729–740 (2006).

    Article  ADS  Google Scholar 

  9. Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).

    Article  MathSciNet  Google Scholar 

  10. Combescot, M. & Tribollet, J. Trion oscillator strength. Solid State Commun. 128, 273–277 (2003).

    Article  ADS  Google Scholar 

  11. Mysyrowicz, A., Hulin, D., Antonetti, A. & Migus, A. Dressed excitons in a multiple-quantum-well structure—evidence for an optical stark-effect with femtosecond response-time. Phys. Rev. Lett. 56, 2748–2751 (1986).

    Article  ADS  Google Scholar 

  12. Combescot, M. & Combescot, R. Excitonic stark shift—a coupling to semivirtual biexcitons. Phys. Rev. Lett. 61, 117–120 (1988).

    Article  ADS  Google Scholar 

  13. Anderson, B. P. & Kasevich, M. A. Macroscopic quantum interference from atomic tunnel arrays. Science 282, 1686–1689 (1998).

    Article  ADS  Google Scholar 

  14. BenDahan, M., Peik, E., Reichel, J., Castin, Y. & Salomon, C. Bloch oscillations of atoms in an optical potential. Phys. Rev. Lett. 76, 4508–4511 (1996).

    Article  ADS  Google Scholar 

  15. Greiner, M., Mandel, O., Esslinger, T., Hansch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    Article  ADS  Google Scholar 

  16. High, A. A., Novitskaya, E. E., Butov, L. V., Hanson, M. & Gossard, A. C. Control of exciton fluxes in an excitonic integrated circuit. Science 321, 229–231 (2008).

    Article  ADS  Google Scholar 

  17. Ware, M. E. et al. Polarized fine structure in the photoluminescence excitation spectrum of a negatively charged quantum dot. Phys. Rev. Lett. 95, 177403 (2005).

    Article  ADS  Google Scholar 

  18. Chakraborty, S., Maasilta, I. J., Tessmer, S. H. & Melloch, M. R. Imaging a two-dimensional electron system with a scanning charged probe. Phys. Rev. B 69, 073308 (2004).

    Article  ADS  Google Scholar 

  19. Lundstrom, T., Schoenfeld, W., Lee, H. & Petroff, P. M. Exciton storage in semiconductor self-assembled quantum dots. Science 286, 2312–2314 (1999).

    Article  Google Scholar 

  20. Portella-Oberli, M. T. et al. Dynamics of trion formation in InxGa1−xAs quantum wells. Phys. Rev. Lett. 102, 096402 (2009).

    Article  ADS  Google Scholar 

  21. Guillet, T., Grousson, R., Voliotis, V., Wang, X. L. & Ogura, M. Local disorder and optical properties in V-shaped quantum wires: Toward one-dimensional exciton systems. Phys. Rev. B 68, 045319 (2003).

    Article  ADS  Google Scholar 

  22. Crottini, A., Staehli, J. L., Deveaud, B., Wang, X-L. & Ogura, M. Near-field imaging of one-dimensional excitons delocalized over mesoscopic distances. Phys. Rev. B 63, 121313 (2001).

    Article  ADS  Google Scholar 

  23. Langbein, W. & Hvam, J. M. Dephasing in the quasi-two-dimensional exciton-biexciton system. Phys. Rev. B 61, 1692–1695 (2000).

    Article  ADS  Google Scholar 

  24. Ropers, C. et al. Atomic scale structure and optical emission of AlxGa1−xAs/GaAs quantum wells. Phys. Rev. B 75, 115317 (2007).

    Article  ADS  Google Scholar 

  25. Kuljanishvili, I. et al. Scanning-probe spectroscopy of semiconductor donor molecules. Nature Phys. 4, 227–233 (2008).

    Article  ADS  Google Scholar 

  26. Broocks, K. A. et al. Linear and ultrafast optical spectroscopy in the regime of the quantum Hall effect. Phys. Status Solidi B 245, 321–330 (2008).

    Article  ADS  Google Scholar 

  27. Bethe, H. A. & Salpeter, E. E. Quantum Mechanics of One- and Two-Electron Atoms (Springer-Verlag; Academic, 1957).

    Book  Google Scholar 

  28. Flores-Riveros, A. Generalized Hylleraas-Gaussian basis sets applied to the variational treatment of two-electron atoms. Int. J. Quantum Chem. 66, 287–300 (1998).

    Article  Google Scholar 

  29. Schuetz, M. J. A. Trionic Optical Potentials for Charge Carriers in Semiconductors (Michigan State University, 2009).

    Google Scholar 

Download references

Acknowledgements

We thank C. W. Lai and S. H. Tessmer for discussions on the experimental realizations. We acknowledge support by the National Science Foundation (C.P., M.G.M. and M.J.A.S.), the German Studienstiftung Program (M.S.) and the Fulbright Foundation (M.J.A.S.).

Author information

Authors and Affiliations

Authors

Contributions

M.J.A.S. carried out calculations; C.P. and M.G.M. proposed the concept; C.P., M.G.M. and M.J.A.S. wrote the manuscript.

Corresponding author

Correspondence to Martin J. A. Schuetz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5178 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuetz, M., Moore, M. & Piermarocchi, C. Trionic optical potential for electrons in semiconductors. Nature Phys 6, 919–923 (2010). https://doi.org/10.1038/nphys1775

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1775

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing