Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Experimental onset threshold and magnetic pressure pile-up for 3D reconnection

Abstract

Magnetic reconnection changes the topology of magnetic field lines to a lower-energy state. This process can liberate stored magnetic field energy and accelerate particles during unsteady, explosive events. This is one of the most important processes in astrophysical, space and laboratory plasmas. The abrupt onset and cessation has been a long-standing puzzle. We show the first three-dimensional (3D) laboratory example of the onset and stagnation of magnetic reconnection between magnetized and parallel current channels (flux ropes) driven by magnetohydrodynamic (MHD) attraction and a 3D plasma-current-driven instability. Antiparallel magnetic field lines carried by these colliding flux ropes annihilate and drive an electric field. The inflow soon exceeds a threshold for the formation of a reconnection current layer. Magnetic flux and pressure pile up just outside this layer, and eventually become large enough to support MHD back-reaction forces that stall the inflow and stagnate the reconnection process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the RSX experiment.
Figure 2: Current density Jz(x,y) derived from magnetic data for Bz0=100 gauss in the xy cutplane at z=48 cm.
Figure 3: Magnetic field evaluated on a line s that crosses the interaction region between the two colliding flux ropes.
Figure 4: Reconnection onset threshold and rate.
Figure 5: J×B forces stagnate reconnection process.
Figure 6: Computer FLIP3D simulations using a visco-resistive MHD model and realistic boundary conditions of the two RSX flux ropes that mutually attract.

Similar content being viewed by others

References

  1. Biskamp, D. Magnetic Reconnection in Plasmas (Cambridge Univ. Press, 2000).

    Book  Google Scholar 

  2. Priest, E. R. & Forbes, T. Magnetic Reconnection (Cambridge Univ. Press, 2000).

    Book  Google Scholar 

  3. Mozer, F. S., Phan, T. D. & Bale, S. D. The complex structure of the reconnecting magnetopause. Phys. Plasmas 10, 2480–2485 (2003).

    Article  ADS  Google Scholar 

  4. Kulsrud, R. M. Plasma Physics for Astrophysics (Princeton Univ. Press, 2005).

    Google Scholar 

  5. Taylor, J. B. Relaxation and magnetic reconnection in plasmas. Rev. Mod. Phys. 58, 741–763 (1986).

    Article  ADS  Google Scholar 

  6. Yamada, M. Review of controlled laboratory experiments on physics of magnetic reconnection. J. Geophys. Res. 104, 14529–14541 (1999).

    Article  ADS  Google Scholar 

  7. Parker, E. N. Sweet’s mechanism for merging magnetic fields in conducting fluids. J. Geophys. Res. 62, 509–520 (1957).

    Article  ADS  Google Scholar 

  8. Sweet, P. A. The Neutral Point Theory of Solar Flares (Cambridge Univ. Press, 1958).

    Book  Google Scholar 

  9. Xiao, C. J. et al. In situ evidence for the structure of a magnetic null in a 3D reconnection event in the Earth’s magnetotail. Nature Phys. 2, 478–483 (2006).

    Article  ADS  Google Scholar 

  10. Gekelman, W. & Pfister, H. Experimental observations of the tearing of an electron current sheet. Phys. Fluids 31, 2017–2025 (1988).

    Article  ADS  Google Scholar 

  11. Linton, M. G. Dynamics of magnetic flux tubes in space and laboratory plasmas. Phys. Plasmas 13, 058301 (2006).

    Article  ADS  Google Scholar 

  12. Furno, I. et al. Current-driven rotating-kink mode in a plasma column with a non-line-tied free end. Phys. Rev. Lett. 97, 015002–015004 (2006).

    Article  ADS  Google Scholar 

  13. Sun, X., Intrator, T.P., Dorf, L., Furno, I. & Lapenta, G. Transition of MHD kink stability properties between line-tied and non line tied boundary conditions. Phys. Rev. Lett. 100, 205004 (2008).

    Article  ADS  Google Scholar 

  14. Haerendel, G., Paschmann, G., Sckopke, N. & Rosenbauer, H. The frontside boundary layer of the magnetosphere and the problem of reconnection. J. Geophys. Res. 83, 3195–3216 (1978).

    Article  ADS  Google Scholar 

  15. Roederer, J. G. Global problems in magnetospheric plasma physics and prospects for their solution. Space Sci. Rev. 21, 23–71 (1977).

    Article  ADS  Google Scholar 

  16. Phan, T. D. et al. A magnetic reconnection X-line extending more than 309 Earth radii in the solar wind. Nature 439, 175–178 (2006).

    Article  ADS  Google Scholar 

  17. Egedal, J. et al. Laboratory observations of spontaneous magnetic reconnection. Phys. Rev. Lett. 98, 015003 (2007).

    Article  ADS  Google Scholar 

  18. Baum, P. J. Plasma instability at an X-type magnetic neutral point. Phys. Fluids 16, 1501–1504 (1973).

    Article  ADS  Google Scholar 

  19. Frank, A. G. Magnetic reconnection and current sheet formation in 3D magnetic configurations. Plasma Phys. Control Fusion 41, A687–A697 (1999).

    Article  ADS  Google Scholar 

  20. Wan, W. & Lapenta, G. Micro–macro coupling in plasma self-organization processes during island coalescence. Phys. Rev. Lett. 100 035004 (2008).

  21. Biskamp, D. & Welter, H. Coalescence of magnetic islands. Phys. Rev. Lett. 44, 1069–1071 (1980).

    Article  ADS  Google Scholar 

  22. Knoll, D. A. & Chacon, L. Coalescence of magnetic islands in the low-resistivity, Hall-MHD regime. Phys. Rev. Lett. 96, 135001–135004 (2006).

    Article  ADS  Google Scholar 

  23. Furno, I. et al. Reconnection scaling experiment: A new device for three-dimensional magnetic reconnection studies. Rev. Sci. Instrum. 74, 2324–2331 (2003).

    Article  ADS  Google Scholar 

  24. Intrator, T. et al. Long lifetime current driven rotating kink modes in a non line-tied plasma column with a free end. J. Geophys. Res. 112, A05S90 (2007).

    Article  Google Scholar 

  25. Hemsing, E. W., Furno, I. & Intrator, T. P. Fast camera images of flux ropes during plasma relaxation. IEEE Trans. Plasma Sci. 33, 448–449 (2005).

    Article  ADS  Google Scholar 

  26. Intrator, T. P., Sun, X., Dorf, L., Furno, I. & Lapenta, G. A three dimensional probe positioner. Rev. Sci. Instrum. 79, 10F129 (2008).

    Article  Google Scholar 

  27. Ryutov, D. D., Furno, I., Intrator, T. P., Abbate, S. & Madziwa-Nussinov, T. Phenomenological theory of the kink instability in a slender plasma column. Phys. Plasmas 13, 032105 (2006).

    Article  ADS  Google Scholar 

  28. Lapenta, G., Furno, I., Intrator, T. & Delzanno, G. L. Kink instability of flux ropes anchored at one end and free at the other. J. Geophys. Res. 111, A12S06 (2006).

    Article  ADS  Google Scholar 

  29. Ji, H. et al. New insights into dissipation in the electron layer during magnetic reconnection. Geophys. Res. Lett. 35, L13106 (2008).

    Article  ADS  Google Scholar 

  30. Birn, J. & Priest, E. R. Reconnection of Magnetic Fields (Cambridge Univ. Press, 2007).

    Book  Google Scholar 

  31. Hesse, M., Kuznetsova, M. & Birn, J. The role of electron heat flux in guide-field magnetic reconnection. Phys. Plasmas 11, 5387–5397 (2004).

    Article  ADS  Google Scholar 

  32. Anderson, C. & Priest, E. R. Time dependent magnetic annhilation at a stagnation point. J. Geophys. Res. 98, 19395–19407 (1993).

    Article  ADS  Google Scholar 

  33. Dorelli, J. C. & Birn, J. Whistler mediated magnetic reconnection in large systems: Magnetic flux pileup and the formation of thin current sheets. J. Geophys. Res. 108, 1133 (2003).

    Article  Google Scholar 

  34. Zweibel, E. G. & Rhoads, J. E. Magnetic merging in colliding flux tubes. Astrophys. J. 440, 407–414 (1995).

    Article  ADS  Google Scholar 

  35. Simakov, A. N., Chacon, L. & Knoll, D. A. Semi analytical model for flux pileup limited, dynamically reconnecting systems in resistive magnetohydrodynamics. Phys. Plasmas 13, 082103 (2006).

    Article  ADS  Google Scholar 

  36. Brackbill, J. U. FLIP MHD: A particle-in-cell method for magnetohydrodynamics. J. Comput. Phys. 96, 163–192 (1991).

    Article  ADS  Google Scholar 

  37. Milano, L. J., Dmitruk, P., Mandrini, C. H. & Gomez, D. O. Quasi separatrix layers in a reduced magnetohydrodynamic model of a coronal loop. Astrophys. J. 521, 889–897 (1999).

    Article  ADS  Google Scholar 

  38. Rogers, B. N., Denton, R. E., Drake, J. F. & Shay, M. A. Role of dispersive waves in collisionless magnetic reconnection. Phys. Rev. Lett. 87, 195004 (2001).

    Article  ADS  Google Scholar 

  39. Wang, Y., Kulsrud, R. & Ji, H. An analytic study of the perpendicularly propagating electromagnetic drift instabilities in the magnetic reconnection experiment. Phys. Plasmas 15, 122105 (2008).

    Article  ADS  Google Scholar 

  40. Mozer, F. S., Angelopoulos, V., Bonnell, J., Glassmeier, K. H. & McFadden, J. P. THEMIS observations of modified Hall fields in asymmetric magnetic field reconnection. Geophys. Res. Lett. 35, L17S04 (2008).

    Article  Google Scholar 

  41. Cramer, N, F. & Donnelly, I. J. Surface and discrete Alfvén waves in a current carrying plasma. Plasma Phys. Control. Fusion 26, 1285–1298 (1984).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Los Alamos Laboratory Directed Research and Development program under LANS Contract No. DE-AC52-06NA25396, and the Physics Frontier Center for Magnetic Self Organization in Laboratory and Astrophysical Plasmas, jointly funded by the National Science Foundation and the Department of Energy. We appreciate insightful comments from S. C. Hsu.

Author information

Authors and Affiliations

Authors

Contributions

T.P.I. realized that our data showed 3D-instability-driven reconnection onset and stagnation and wrote this article, X.S. acquired most of the data and did substantial data analyses, G.L. carried out computational simulations of the RSX experiment, I.F. and L.D built much of the RSX experiment and discussed the results with T.P.I. and X.S. and solidified the arguments and presentation.

Corresponding author

Correspondence to T. P. Intrator.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Intrator, T., Sun, X., Lapenta, G. et al. Experimental onset threshold and magnetic pressure pile-up for 3D reconnection. Nature Phys 5, 521–526 (2009). https://doi.org/10.1038/nphys1300

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1300

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing