Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

d-wave duality and its reflections in high-temperature superconductors

Abstract

The Bardeen–Cooper–Schrieffer theory describes the formation of electron pairs, or Cooper pairs, and their instant condensation into a superconducting state. Helium atoms are ‘preformed’ bosons and, in addition to their superfluid state, can also form a quantum solid that lacks phase coherence. Here I show that the fate of Cooper pairs can be more varied than the Bardeen–Cooper–Schrieffer or helium paradigms. In copper oxide d-wave superconductors, Cooper pairs are non-local objects, with both centre-of-mass and relative motions. As the level of doping of charge carriers decreases, the centre-of-mass fluctuations force a correlated d-wave superconductor into a state with enhanced diamagnetism and robust but short-ranged superconducting order. At extreme underdoping, the relative fluctuations take over and two pseudogaps—‘small’ (charge) and ‘large’ (spin)—emerge naturally, as Cooper pairs ‘disintegrate’ and charge detaches from spin-singlet bonds. The ensuing ground state(s) are governed by antiferromagnetic rather than by superconducting correlations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Connection between Ĥ and LX Yd.
Figure 2: Phase diagram of cuprates.
Figure 3: Three fundamental states of d-wave duality.

Similar content being viewed by others

References

  1. Fischer, Ø. et al. Scanning tunnelling spectroscopy of high-temperature superconductors. Rev. Mod. Phys. 79, 353–419 (2007).

    Article  ADS  Google Scholar 

  2. Kivelson, S. A. et al. How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys. 75, 1201–1241 (2003).

    Article  ADS  Google Scholar 

  3. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  ADS  Google Scholar 

  4. Zaanen, J. Stripes defeat the Fermi liquid. Nature 404, 714–715 (2000).

    Article  Google Scholar 

  5. Chakravarty, S. et al. Hidden order in the cuprates. Phys. Rev. B 63, 094503 (2001).

    Article  ADS  Google Scholar 

  6. Li, L. et al. Low-temperature vortex liquid in La2−xSrxCuO4 . Nature Phys. 3, 311–314 (2007).

    Article  ADS  Google Scholar 

  7. Melikyan, A. & Tešanović, Z. A model of phase fluctuations in a lattice d-wave superconductor: Application to the Cooper pair CDW in underdoped cuprates. Phys. Rev. B 71, 214511 (2005).

    Article  ADS  Google Scholar 

  8. Valla, T. et al. The ground state of the pseudogap in cuprate superconductors. Science 314, 1914–1916 (2006).

    Article  ADS  Google Scholar 

  9. Tanaka, K. et al. Distinct Fermi-momentum-dependent energy gaps in deeply underdoped Bi2212. Science 314, 1910–1913 (2006).

    Article  ADS  Google Scholar 

  10. Yu, L. et al. Spectroscopic distinction between the normal state pseudogap and the superconducting gap of cuprate high Tc superconductors. Preprint at <http://arxiv.org/abs/cond-mat/0705.0111> (2007).

  11. Boyer, M. C. et al. Imaging the two gaps of the high-Tc superconductor Pb–Bi2Sr2CuO6+x . Nature Phys. 3, 807–812 (2007).

    Article  ADS  Google Scholar 

  12. Fisher, M. P. A. & Lee, D. H. Correspondence between two-dimensional bosons and a bulk superconductor in a magnetic field. Phys. Rev. B 39, 2756–2759 (1989).

    Article  ADS  Google Scholar 

  13. Pereg-Barnea, T. & Franz, M. Duality and the vibrational modes of a Cooper-pair Wigner crystal. Phys. Rev. B 74, 014518–014531 (2006).

    Article  ADS  Google Scholar 

  14. Negele, J. W. & Orland, H. Quantum Many-Particle Systems (Addison-Wesley, New York, 1988).

    MATH  Google Scholar 

  15. Kotliar, G. & Liu, J. Superexchange mechanism and d-wave superconductivity. Phys. Rev. B 38, 5142–5145 (1988).

    Article  ADS  Google Scholar 

  16. Haule, K. & Kotliar, G. Strongly correlated superconductivity: A plaquette dynamical mean-field theory study. Phys. Rev. B 76, 104509–104545 (2007).

    Article  ADS  Google Scholar 

  17. Tešanović, Z. Extreme type-II superconductors in a magnetic field: A theory of critical fluctuations. Phys. Rev. B 59, 6449–6474 (1999).

    Article  ADS  Google Scholar 

  18. Nguyen, A. K. & Sudbø, A. A new broken U(1)-symmetry in extreme type-II superconductors. Europhys. Lett. 46, 780–786 (1999).

    Article  ADS  Google Scholar 

  19. Herbut, I. F. A Modern Approach to Critical Phenomena (Cambridge Univ. Press, Cambridge, 2007).

    Book  Google Scholar 

  20. Appelquist, T. W., Bowick, M., Karabali, D. & Wijewardhana, L. C. R. Spontaneous chiral-symmetry breaking in 3-dimensional QED. Phys. Rev. D 33, 3704–3713 (1986).

    Article  ADS  Google Scholar 

  21. Shenker, S. H. & Fradkin, E. Phase diagrams of lattice gauge theories with Higgs fields. Phys. Rev. D 19, 3682–3697 (1979).

    Article  ADS  Google Scholar 

  22. Bartosch, L., Balents, L. & Sachdev, S. Detecting the quantum zero-point motion of vortices in the cuprate superconductors. Ann. Phys. 321, 1528–1546 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank N. P. Ong, L. Li, M. Franz, A. Melikyan, S. Sachdev, A. Sudbø and O. Vafek for discussions. This work was supported in part by NSF grant DMR-0531159.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zlatko Tešanović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tešanović, Z. d-wave duality and its reflections in high-temperature superconductors. Nature Phys 4, 408–414 (2008). https://doi.org/10.1038/nphys910

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys910

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing