Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optical lattice clocks with non-interacting bosons and fermions

Abstract

Quantum statistics fundamentally controls the way particles interact; bosons tend to bunch together, whereas fermions repulse each other. As a consequence, statistically different isotopes are found in different macroscopic quantum states at ultracold temperatures. This is related to the total atomic spin, which forces atoms to couple to ambient fields. In designing high-precision atomic clocks that operate at a fractional uncertainty of 10−15 or less, quantum statistics and therefore the spins of the interrogated atoms have an essential role in determining the clocks’ ultimate performance. Here, we discuss the design of optical lattice clocks in view of the quantum statistics and lattice geometries. We propose two configurations that both make the interrogated atoms non-interacting: spin-polarized fermions in a one-dimensional (1D) and bosons in a 3D lattice. A 3D clock with bosonic 88Sr is demonstrated for the first time, in addition to a 1D clock with fermionic 87Sr. The sequential operation of the two clocks enables us to evaluate the clock stability with an uncertainty below 1×10−15 and to determine the isotope shift with significant reduction of the uncertainty related to atomic collisions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geometries for optical lattice clocks.
Figure 2: Energy levels for 87Sr and 88Sr atoms and clock spectra.
Figure 3: Rabi oscillations and a spectrum of the clock transition for spin-polarized 87Sr.
Figure 4: Experimental set-up.
Figure 5: Stability and isotope shift of two optical lattice clocks.

Similar content being viewed by others

References

  1. Dehmelt, H. G. Mono-ion oscillator as potential ultimate laser frequency standard. IEEE Trans. Instrum. Meas. 31, 83–87 (1982).

    Article  ADS  Google Scholar 

  2. Rosenband, T. et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808–1812 (2008).

    Article  ADS  Google Scholar 

  3. Katori, H. in The 6th Symp. on Frequency Standards and Metrology (ed. Gill, P.) 323–330 (World Scientific, 2002).

    Book  Google Scholar 

  4. Takamoto, M., Hong, F. L., Higashi, R. & Katori, H. An optical lattice clock. Nature 435, 321–324 (2005).

    Article  ADS  Google Scholar 

  5. Katori, H., Takamoto, M., Pal’chikov, V. G. & Ovsiannikov, V. D. Ultrastable optical clock with neutral atoms in an engineered light shift trap. Phys. Rev. Lett. 91, 173005 (2003).

    Article  ADS  Google Scholar 

  6. Baillard, X. et al. Accuracy evaluation of an optical lattice clock with bosonic atoms. Opt. Lett. 32, 1812–1814 (2007).

    Article  ADS  Google Scholar 

  7. Takamoto, M. et al. Improved frequency measurement of a one-dimensional optical lattice clock with a spin-polarized fermionic 87Sr isotope. J. Phys. Soc. Jpn. 75, 104302 (2006).

    Article  ADS  Google Scholar 

  8. Baillard, X. et al. An optical lattice clock with spin-polarized 87Sr atoms. Eur. Phys. J. D 48, 11–17 (2008).

    Article  ADS  Google Scholar 

  9. Barber, Z. W. et al. Optical lattice induced light shifts in an Yb atomic clock. Phys. Rev. Lett. 100, 103002 (2008).

    Article  ADS  Google Scholar 

  10. Ludlow, A. D. et al. Sr lattice clock at 1×10−16 fractional uncertainty by remote optical evaluation with a Ca clock. Science 319, 1805–1808 (2008).

    Article  ADS  Google Scholar 

  11. Blatt, S. et al. New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks. Phys. Rev. Lett. 100, 140801 (2008).

    Article  ADS  Google Scholar 

  12. Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold Bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998).

    Article  ADS  Google Scholar 

  13. Pereira Dos Santos, F. et al. Controlling the cold collision shift in high precision atomic interferometry. Phys. Rev. Lett. 89, 233004 (2002).

    Article  ADS  Google Scholar 

  14. Wilpers, G. et al. Optical clock with ultracold neutral atoms. Phys. Rev. Lett. 89, 230801 (2002).

    Article  ADS  Google Scholar 

  15. Killian, T. C. et al. Cold collision frequency shift of the 1S–2S transition in hydrogen. Phys. Rev. Lett. 81, 3807–3810 (1998).

    Article  ADS  Google Scholar 

  16. Gupta, S. et al. Radio-frequency spectroscopy of ultracold fermions. Science 300, 1723–1726 (2003).

    Article  ADS  Google Scholar 

  17. Jeltes, T. et al. Comparison of the Hanbury Brown–Twiss effect for bosons and fermions. Nature 445, 402–405 (2007).

    Article  ADS  Google Scholar 

  18. Gibble, K. & Verhaar, B. J. Eliminating cold-collision frequency shifts. Phys. Rev. A 52, 3370–3373 (1995).

    Article  ADS  Google Scholar 

  19. Taichenachev, A. V. et al. Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks. Phys. Rev. Lett. 96, 083001 (2006).

    Article  ADS  Google Scholar 

  20. Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).

    Article  ADS  Google Scholar 

  21. Mukaiyama, T., Katori, H., Ido, T., Li, Y. & Kuwata-Gonokami, M. Recoil-limited laser cooling of 87Sr atoms near the Fermi temperature. Phys. Rev. Lett. 90, 113002 (2003).

    Article  ADS  Google Scholar 

  22. Lemonde, P. & Wolf, P. Optical lattice clock with atoms confined in a shallow trap. Phys. Rev. A 72, 033409 (2005).

    Article  ADS  Google Scholar 

  23. Taichenachev, A. V., Yudin, V. I. & Oates, C. W. Optical lattice polarization effects on magnetically induced optical atomic clock transitions. Phys. Rev. A 76, 023806 (2007).

    Article  ADS  Google Scholar 

  24. Rauschenbeutel, A., Schadwinkel, H., Gomer, V. & Meschede, D. Standing light fields for cold atoms with intrinsically stable and variable time phases. Opt. Commun. 148, 45–48 (1998).

    Article  ADS  Google Scholar 

  25. Ovsiannikov, V., D. et al. Magic-wave-induced 1S0−3P0 transition in even isotopes of alkaline-earth-metal-like atoms. Phys. Rev. A 75, 020501 (2007).

    Article  ADS  Google Scholar 

  26. Ido, T., Isoya, Y. & Katori, H. Optical-dipole trapping of Sr atoms at a high phase-space density. Phys. Rev. A 61, 061403 (2000).

    Article  ADS  Google Scholar 

  27. Santarelli, G. et al. Frequency stability degradation of an oscillator slaved to a periodically interrogated atomic resonator. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 887–894 (1998).

    Article  Google Scholar 

  28. Schneider, T., Peik, E. & Tamm, C. Sub-Hertz optical frequency comparisons between two trapped 171Yb+ ions. Phys. Rev. Lett. 94, 230801 (2005).

    Article  ADS  Google Scholar 

  29. Hachisu, H. et al. Trapping of neutral mercury atoms and prospects for optical lattice clocks. Phys. Rev. Lett. 100, 053001 (2008).

    Article  ADS  Google Scholar 

  30. Mueller-Seydlitz, T. et al. Atoms in the lowest motional band of a three-dimensional optical lattice. Phys. Rev. Lett. 78, 1038–1041 (1997).

    Article  ADS  Google Scholar 

  31. Brusch, A., Le Targat, R., Baillard, X., Fouch, M. & Lemonde, P. Hyperpolarizability effects in a Sr optical lattice clock. Phys. Rev. Lett. 96, 103003 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank F.-L. Hong (AIST) for discussions on frequency measurements. This work is supported by SCOPE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetoshi Katori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akatsuka, T., Takamoto, M. & Katori, H. Optical lattice clocks with non-interacting bosons and fermions. Nature Phys 4, 954–959 (2008). https://doi.org/10.1038/nphys1108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1108

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing