Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coherent superposition of laser-driven soft-X-ray harmonics from successive sources

Abstract

High-order harmonic generation from atoms ionized by femtosecond laser pulses has been a promising approach for the development of coherent short-wavelength sources. However, the realization of a powerful harmonic X-ray source has been hampered by a phase velocity mismatch between the driving wave and its harmonics, limiting their coherent build-up to a short propagation length and thereby compromising the efficiency of a single source. Here, we report coherent superposition of laser-driven soft-X-ray (SXR) harmonics, at wavelengths of 2–5 nm, generated in two successive sources by one and the same laser pulse. Observation of constructive and destructive interference suggests the feasibility of quasi-phase-matched SXR harmonic generation by a focused laser beam in a gas medium of modulated density. Our proof-of-concept study opens the prospect of enhancing the photon flux of SXR harmonic sources to levels enabling researchers to tackle a range of applications in physical as well as life sciences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High-order harmonic generation from successive sources.
Figure 2: Scaling of SXR harmonic yield with particle density.
Figure 3: Destructive and constructive interference of SXR harmonics from successive sources.
Figure 4: SXR harmonics generated in successive sources.

Similar content being viewed by others

References

  1. Macklin, J. J., Kmetec, J. D. & Gordon III, C. L. High-order harmonic generation using intense femtosecond pulses. Phys. Rev. Lett. 70, 766–769 (1993).

    Article  ADS  Google Scholar 

  2. L’Huillier, A. & Balcou, Ph. High-order harmonic generation in rare gases with a 1-ps 1053-nm laser. Phys. Rev. Lett. 70, 774–777 (1993).

    Article  ADS  Google Scholar 

  3. Spielmann, Ch. et al. Generation of coherent X-rays in the water window using 5-femtosecond laser pulses. Science 278, 661–664 (1997).

    Article  ADS  Google Scholar 

  4. Constant, E. et al. Optimizing high harmonic generation in absorbing gases: Model and experiment. Phys. Rev. Lett. 82, 1668–1671 (1999).

    Article  ADS  Google Scholar 

  5. Schnürer, M. et al. Absorption-limited generation of coherent ultrashort soft-X-ray pulses. Phys. Rev. Lett. 83, 722–725 (1999).

    Article  ADS  Google Scholar 

  6. Takahashi, E., Nabekawa, Y. & Midorikawa, K. Generation of 10-μJ coherent extreme-ultraviolet light by use of high-order harmonics. Opt. Lett. 27, 1920–1922 (2002).

    Article  ADS  Google Scholar 

  7. Hergott, J.-F. et al. Extreme-ultraviolet high-order harmonic pulses in the microjoule range. Phys. Rev. A 66, 021801(R) (2002).

    Article  ADS  Google Scholar 

  8. Gibson, E. A. et al. Coherent soft X-ray generation in the water window with quasi-phase matching. Science 302, 95–98 (2003).

    Article  ADS  Google Scholar 

  9. Seres, E., Seres, J., Krausz, F. & Spielmann, Ch. Generation of coherent soft-X-ray radiation extending far beyond the titanium L edge. Phys. Rev. Lett. 92, 163002 (2004).

    Article  ADS  Google Scholar 

  10. Seres, J. et al. Source of coherent kiloelectronvolt X-rays. Nature 433, 596 (2005).

    Article  ADS  Google Scholar 

  11. Seres, E., Seres, J. & Spielmann, Ch. X-ray absorption spectroscopy in the keV range with laser generated high harmonic radiation. Appl. Phys. Lett. 89, 181919 (2006).

    Article  ADS  Google Scholar 

  12. Pfeifer, T., Spielmann, Ch. & Gerber, G. Femtosecond X-ray science. Rep. Prog. Phys. 69, 443–505 (2006).

    Article  ADS  Google Scholar 

  13. Kobayashi, Y., Sekikawa, T., Nabekawa, Y. & Watanabe, S. 27-fs extreme ultraviolet pulse generation by high-order harmonics. Opt. Lett. 23, 64–66 (1998).

    Article  ADS  Google Scholar 

  14. Tzallas, P., Charalambidis, D., Papadogiannis, N. A., Witte, K. & Tsakiris, G. Direct observation of attosecond light bunching. Nature 426, 267–271 (2003).

    Article  ADS  Google Scholar 

  15. Sekikawa, T., Kosuge, A., Kanai, T. & Watanabe, S. Nonlinear optics in the extreme ultraviolet. Nature 432, 605–608 (2004).

    Article  ADS  Google Scholar 

  16. Nikolopoulos, L. A. A. et al. Second-order autocorrelation of an XUV attosecond pulse train. Phys. Rev. Lett. 94, 113905 (2005).

    Article  ADS  Google Scholar 

  17. Nabekawa, Y. et al. Interferometric autocorrelation of an attosecond pulse train in the single-cycle regime. Phys. Rev. Lett. 97, 153904 (2006).

    Article  ADS  Google Scholar 

  18. Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    Article  ADS  Google Scholar 

  19. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

    Article  ADS  Google Scholar 

  20. Drescher, M. et al. Time-resolved atomic inner-shell spectroscopy. Nature 419, 803–807 (2002).

    Article  ADS  Google Scholar 

  21. Uiberacker, M. et al. Attosecond real-time observation of electron tunnelling in atoms. Nature 466, 627–632 (2007).

    Article  ADS  Google Scholar 

  22. Agostini, P. & DiMauro, L. F. The physics of attosecond light pulses. Rep. Prog. Phys. 67, 813–855 (2004).

    Article  ADS  Google Scholar 

  23. Corkum, P. B. & Krausz, F. Attosecond science. Nature Phys. 3, 381–387 (2007).

    Article  ADS  Google Scholar 

  24. Brabec, T. & Krausz, F. Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000).

    Article  ADS  Google Scholar 

  25. Zhang, X. et al. Quasi-phase-matching and quantum-path control of high-harmonic generation using counterpropagating light. Nature Phys. 3, 270–275 (2007).

    Article  ADS  Google Scholar 

  26. Lytle, A. L. et al. Probe of high-order harmonic generation in a hollow waveguide geometry using counterpropagating light. Phys. Rev. Lett. 98, 123904 (2007).

    Article  ADS  Google Scholar 

  27. Geissler, M., Tempea, G. & Brabec, T. Phase-matched high-order harmonic generation in the non adiabatic limit. Phys. Rev. A 62, 033817 (2000).

    Article  ADS  Google Scholar 

  28. Paul, A. et al. Quasi-phase-matched generation of coherent extreme ultraviolet light. Nature 421, 51–54 (2003).

    Article  ADS  Google Scholar 

  29. Lompre, L. A. et al. High-order harmonic generation in xenon: intensity and propagation effects. J. Opt. Soc. Am. B 7, 754–761 (1990).

    Article  ADS  Google Scholar 

  30. Seres, J. et al. Sub-10-fs, terawatt-scale Ti:sapphire laser system. Opt. Lett. 28, 1832–1834 (2003).

    Article  ADS  Google Scholar 

  31. Hauri, C. P. et al. Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation. Appl. Phys. B 79, 673–677 (2004).

    Article  ADS  Google Scholar 

  32. Seres, J. et al. Generation of coherent keV x-rays with intense femtosecond laser pulses. New J. Phys. 8, 251 (2006).

    Article  ADS  Google Scholar 

  33. Tempea, G., Geissler, M., Schnürer, M. & Brabec, T. Self-phase-matched high harmonic generation. Phys. Rev. Lett. 84, 4329–4332 (2000).

    Article  ADS  Google Scholar 

  34. Lindner, F. et al. Gouy phase shift for few-cycle laser pulses. Phys. Rev. Lett. 92, 113001 (2004).

    Article  ADS  Google Scholar 

  35. Balcou, P., Dederichs, A. S., Gaarde, M. B. & L’Huillier, A. Quantum-path analysis and phase matching of high-order harmonic generation and high-order frequency mixing processes in strong laser fields. J. Phys. B 32, 2973–2989 (1999).

    Article  ADS  Google Scholar 

  36. Fuji, T. et al. Parametric amplification of few-cycle carrier-envelope phase-stable pulses at 2.1 μm. Opt. Lett. 31, 1103–1105 (2006).

    Article  ADS  Google Scholar 

  37. Hauri, C. P. et al. Intense self-compressed, self-phase-stabilized few-cycle pulses at 2 μm from an optical filament. Opt. Lett. 32, 868–870 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study has been sponsored by the Austrian Science Fund (grant Nos F016 P02, P03 and Z63), the DFG grant SP 687/1-3 and the DFG Cluster of Excellence Munich Centre for Advanced Photonics—MAP (http://www.munich-photonics.de). We gratefully acknowledge gas-flow simulations by K. Schmid and friendly support from A. Baltuska.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Krausz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seres, J., Yakovlev, V., Seres, E. et al. Coherent superposition of laser-driven soft-X-ray harmonics from successive sources. Nature Phys 3, 878–883 (2007). https://doi.org/10.1038/nphys775

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys775

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing