Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anyons in a weakly interacting system

Abstract

In quantum theory, indistinguishable particles in three-dimensional space behave in only two distinct ways. On interchange, their wavefunction maps either to itself if the particles are bosons, or to minus itself if they are fermions. In two dimensions, a more exotic possibility arises: on exchange of two particles known as anyons, the wavefunction acquires the phase . Such fractional exchange statistics are normally regarded as the hallmark of strong correlations. Here, we describe a theoretical proposal for a system whose excitations are anyons with the exchange phase θ=π/4 and charge ±e/2, but at the same time can be built by filling a set of single-particle states of essentially non-interacting electrons. The system consists of an artificially structured type-II superconducting film adjacent to a two-dimensional electron gas in the integer quantum Hall regime with unit filling fraction. The proposed set-up enables manipulation of these anyons and could prove useful in schemes for fault-tolerant topological quantum computation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the proposed device.
Figure 2: Properties of the continuum model.
Figure 3: Properties of the lattice model.

Similar content being viewed by others

References

  1. Laughlin, R. B. Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1399 (1983).

    Article  ADS  Google Scholar 

  2. Arovas, D., Schrieffer, J. R. & Wilzcek, F. Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53, 722–723 (1984).

    Article  ADS  Google Scholar 

  3. Wen, X. G. Mean-field theory of spin-liquid states with finite energy gap and topological orders. Phys. Rev. Lett. 44, 2664–2672 (1991).

    ADS  Google Scholar 

  4. Kitaev, A. Yu. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  5. Freedman, M., Nayak, C., Shtengel, K., Walker, K. & Wang, Z. A class of P,T-invariant topological phases of interacting electrons. Ann. Phys. 310, 428–492 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  6. Kitaev, A. Yu. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  7. Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).

    Article  ADS  Google Scholar 

  8. Jackiw, R. & Rebbi, C. Solitons with fermion number 1/2. Phys. Rev. D 13, 3398–3409 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  9. Hou, C.-Y., Chamon, C. & Mudry, C. Electron fractionalization in two-dimensional graphene-like structures. Phys. Rev. Lett. 98, 186809 (2007).

    Article  ADS  Google Scholar 

  10. Bending, S. J., von Klitzing, K. & Ploog, K. Weak localization in a distribution of magnetic flux tubes. Phys. Rev. Lett. 65, 1060–1063 (1990).

    Article  ADS  Google Scholar 

  11. Geim, A. K., Bending, S. J. & Grigorieva, I. V. Asymmetric scattering and diffraction of two-dimensional electrons at quantized tubes of magnetic flux. Phys. Rev. Lett. 69, 2252–2255 (1992).

    Article  ADS  Google Scholar 

  12. Danckwerts, M., Goñi, A. R., Thomsen, C., Eberl, K. & Rojo, A. G. Enhanced vortex damping by eddy currents in superconductor-semiconductor hybrids. Phys. Rev. Lett. 84, 3702–3705 (2000).

    Article  ADS  Google Scholar 

  13. Rammer, J. & Shelankov, A. L. Weak localization in inhomogeneous magnetic fields. Phys. Rev. B 36, 3135–3146 (1987).

    Article  ADS  Google Scholar 

  14. Nielsen, M. & Hedegard, P. Two-dimensional electron transport in the presence of magnetic flux vortices. Phys. Rev. B 51, 7679–7699 (1995).

    Article  ADS  Google Scholar 

  15. Berciu, M., Rappoport, T. G. & Janko, B. Manipulating spin and charge in magnetic semiconductors using superconducting vortices. Nature 435, 71–75 (2005).

    Article  ADS  Google Scholar 

  16. Welp, U., Xiao, Z. L., Novosad, V. & Vlasko-Vlasov, V. K. Commensurability and strong vortex pinning in nanopatterned Nb films. Phys. Rev. B 71, 014505 (2005).

    Article  ADS  Google Scholar 

  17. Wilczek, F. Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957–959 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  18. Kirtley, J. R. et al. Direct imaging of integer and half-integer Josephson vortices in high-T c grain boundaries. Phys. Rev. Lett. 76, 1336–1339 (1996).

    Article  ADS  Google Scholar 

  19. Tafuri, F., Kirtley, J. R., Medaglia, P. G., Orgiani, P. & Balestrino, G. Magnetic imaging of pearl vortices in artificially layered (Ba0.9Nd0.1CuO2+x)m/(CaCuO2)n systems. Phys. Rev. Lett. 92, 157006 (2004).

    Article  ADS  Google Scholar 

  20. Bluhm, H., Sebastian, S. E., Guikema, J. W., Fisher, I. R. & Moler, K. A. Scanning Hall probe imaging of ErNi2B2C. Phys. Rev. B 73, 014514 (2006).

    Article  ADS  Google Scholar 

  21. Gardner, B. W. et al. Manipulation of single vortices in YBa2Cu3O6.354 with a locally applied magnetic field. Appl. Phys. Lett. 80, 1010–1014 (2002).

    Article  ADS  Google Scholar 

  22. Gardner, B. W. et al. Vortex-antivortex annihilation in underdoped YBa2Cu3O6.354 . Physica C 388–389, 725–726 (2003).

    Article  ADS  Google Scholar 

  23. Moore, G. & Read, N. Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362–396 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  24. Nayak, C. & Wilczek, F. 2n-quasihole states realize 2n−1-dimensional spinor braiding statistics in paired quantum Hall states. Nucl. Phys. B 479, 529–553 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  25. Read, N. & Green, D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61, 10267–10297 (2000).

    Article  ADS  Google Scholar 

  26. Laughlin, R. B. Quantized Hall conductivity in two dimensions. Phys. Rev. B 23, 5632–5633 (1981).

    Article  ADS  Google Scholar 

  27. Halperin, B. I. Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25, 2185–2190 (1982).

    Article  ADS  Google Scholar 

  28. Wilczek, F. Fractional Statistics and Anyon Superconductivity (World Scientific, Singapore, 1990).

    Book  Google Scholar 

  29. Peierls, R. Zur Theorie des Diamagnetismus von Leitungselektronen. Z. Physik 80, 763–791 (1933).

    Article  ADS  Google Scholar 

  30. Das Sarma, S., Freedman, M. & Nayak, C. Topologically protected qubits from a possible non-abelian fractional quantum Hall state. Phys. Rev. Lett. 94, 166802 (2005).

    Article  ADS  Google Scholar 

  31. Bonderson, P., Kitaev, A. & Shtengel, K. Detecting non-abelian statistics in the ν=5/2 fractional quantum Hall state. Phys. Rev. Lett. 96, 016803 (2006).

    Article  ADS  Google Scholar 

  32. Willett, R. et al. Observation of an even-denominator quantum number in the fractional quantum Hall effect. Phys. Rev. Lett. 59, 1776–1780 (1987).

    Article  ADS  Google Scholar 

  33. Krauth, H. in Handbook of Applied Superconductivity Vol. 1 (ed. Seeber, B.) (IOP, London, 1998).

    Google Scholar 

  34. Niu, H. J. & Hampshire, D. P. Disordered nanocrystalline superconducting PbMo6S8 with a very large upper critical field. Phys. Rev. Lett. 91, 027002 (2003).

    Article  ADS  Google Scholar 

  35. Hoogenboom, B. W., Kugler, M., Revaz, B., Maggio-Aprile, I. & Fischer, Ø. Shape and motion of vortex cores in Bi2Sr2CaCu2O8+δ . Phys. Rev. B 62, 009179 (2000).

    Article  ADS  Google Scholar 

  36. Bartosch, L., Balents, L. & Sachdev, S. Detecting the quantum zero-point motion of vortices in the cuprate superconductors. Ann. Phys. 321, 1528–1546 (2006).

    Article  ADS  Google Scholar 

  37. Pearl, J. Current distribution in superconducting films carrying quantized fluxoids. Appl. Phys. Lett. 5, 65–66 (1964).

    Article  ADS  Google Scholar 

  38. Tinkham, M. Introduction to Superconductivity (McGraw-Hill, New York, 1996).

    Google Scholar 

Download references

Acknowledgements

The authors are indebted to M. Berciu and A. Vishwanath for some key suggestions and wish to thank I. Affleck, D. Fisher, D. Haldane, C. Kallin, A. Kitaev, K. Shtengel, D. Scalapino and Z. Tesanovic for stimulating discussions and correspondence. The work reported here was supported by NSERC, CIAR and the Killam Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Franz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weeks, C., Rosenberg, G., Seradjeh, B. et al. Anyons in a weakly interacting system. Nature Phys 3, 796–801 (2007). https://doi.org/10.1038/nphys730

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys730

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing