Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Short gamma-ray bursts from binary neutron star mergers in globular clusters

Abstract

Observations by the Swift gamma-ray-burst (GRB) mission located short GRBs in (or near) elliptical galaxies, that are no longer active in star formation. This suggested that short GRBs are produced when neutron stars (NSs) merge with other NSs or with black holes (BHs). However, the spatial offset of some short GRBs from their host galaxies is not consistent with double-neutron-star (DNS) systems formed from massive binary stars, which appear to remain in galactic disks. Instead, short GRBs may arise from NS mergers in compact binary systems that are naturally produced in globular clusters, in which extreme densities of very old stars can create and exchange compact binaries efficiently. Here we present a simple scaling from the DNS binary observed in the globular cluster M15 in our own Galaxy to the numbers expected for globular clusters around galaxies generally. We present numerical simulations that demonstrate that DNS production in globular clusters may account for 10–30% of the observed short GRBs. The much more numerous DNS merger rates predicted for galactic disks suggests their associated short GRBs are significantly more beamed, perhaps by the aligned spins and greater magnetic field of their secondary NSs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cross-sections calculated for an incoming NS to exchange into a cluster compact binary composed of a NS and a secondary with masses indicated.
Figure 2: Distribution of binary period versus eccentricity for DNS systems formed by NS exchange into LMXBs with 0.4M secondaries.

Similar content being viewed by others

References

  1. Costa, E. et al. Discovery of an X-ray afterglow associated with the gamma-ray burst of 28 February 1997. Nature 387, 783–785 (1997).

    Article  ADS  Google Scholar 

  2. van Paradijs, J. et al. Transient optical emission from the error box of the γ-ray burst of 28 February 1997. Nature 386, 686–689 (1997).

    Article  ADS  Google Scholar 

  3. MacFayden, A. I. & Woosley, S. E. Collapsars: Gamma-ray bursts and explosions in “failed supernovae”. Astrophys. J. 524, 262–289 (1999).

    Article  ADS  Google Scholar 

  4. Kouveliotou, C. et al. Identification of two classes of gamma-ray bursts. Astrophys. J. 413, L101–L104 (1993).

    Article  ADS  Google Scholar 

  5. Gehrels, N. et al. The Swift gamma-ray burst mission. Astrophys. J. 611, 1005–1020 (2004).

    Article  ADS  Google Scholar 

  6. Gehrels, N. et al. A short γ-ray burst apparently associated with an elliptical galaxy at redshift z=0.225 . Nature 437, 851–854 (2005).

    Article  ADS  Google Scholar 

  7. Bloom, J. S. et al. Closing in on a short-hard burst progenitor: Constraints from early-time optical imaging and spectroscopy of a possible host Galaxy of GRB 050509b. Preprint at <http://arxiv.org/abs/astro-ph/0505480> (2005).

  8. Krimm, H. et al. GRB050724: Refined analysis of the Swift-BAT possible short burst. GCN Circ. 3667,(2005).

  9. Antonelli, L. A., Romano, P., Moretti, A., Covino, S. & Burrows, D. GRB 050724: Swift XRT refined position. GCN Circ. 3678,(2005).

  10. Berger, E. et al. A merger origin for short gamma-ray bursts inferred from the afterglow and host galaxy of GRB 050724. Nature 238, 988–990 (2005).

    Article  ADS  Google Scholar 

  11. Eichler, D., Livio, M., Piran, T. & Schramm, D. Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars. Nature 340, 126–128 (1989).

    Article  ADS  Google Scholar 

  12. Bloom, J. S., Sigurdsson, S. & Pols, O. R. The spatial distribution of coalescing neutron star binaries: implications for gamma-ray bursts. Mon. Not. R. Astron. Soc. 305, 763–769 (1999).

    Article  ADS  Google Scholar 

  13. Hulse, R. A. & Taylor, J. H. Discovery of a pulsar in a binary system. Astrophys. J. 195, L51–L53 (1975).

    Article  ADS  Google Scholar 

  14. Bhattacharya, D. & van den Heuvel, E. P. J. Formation and evolution of binary and millisecond radio pulsars. Phys. Rep. 203, 1–124 (1991).

    Article  ADS  Google Scholar 

  15. Portegies Zwart, S. F. & Yungelson, L. R. Formation and evolution of binary neutron stars. Astron. Astrophys. 332, 173–188 (1998).

    ADS  Google Scholar 

  16. Dewi, J. D. M., Podsiadlowski, Ph. & Pols, O. R. The spin period-eccentricity relation of double neutron stars: evidence for weak supernova kicks? Mon. Not. R. Astron. Soc. 363, L71–L75 (2005).

    Article  ADS  Google Scholar 

  17. Gladders, M., Berger, E., Morrell, N. & Roth, M. GRB050813: Magellan detection of a high redshift cluster. GCN Circ. 3798,(2005).

  18. Anderson, S. B., Gorham, P. W., Kulkarni, S. R., Prince, T. A. & Wolszczan, A. Discovery of two radio pulsars in the globular cluster M15. Nature 346, 42–44 (1990).

    Article  ADS  Google Scholar 

  19. Phinney, E. S. & Sigurdsson, S. Ejection of pulsars and binaries to the outskirts of globular clusters. Nature 349, 220–223 (1991).

    Article  ADS  Google Scholar 

  20. Hansen, B. M. & Murali, C. Gamma-ray bursts from stellar collisions. Astrophys. J. 505, L15–L18 (1998).

    Article  ADS  Google Scholar 

  21. Grindlay, J. E. et al. Chandra study of a complete sample of millisecond pulsars in 47 Tucanae and NGC 6397. Astrophys. J. 581, 470–484 (2002).

    Article  ADS  Google Scholar 

  22. Bogdanov, S., Grindlay, J. E. & van den Berg, M. An X-ray variable millisecond pulsar in the globular cluster 47 Tucanae: closing the link to low mass X-ray binaries. Astrophys. J. 630, 1029–1036 (2005).

    Article  ADS  Google Scholar 

  23. Camilo, F. & Rasio, F. A. in Binary Radio Pulsars (eds Rasio, F. A. & Stairs, I. H.) 147–163 (ASP Conf. Series, Vol. 328, ASP, San Francisco, 2005).

    Google Scholar 

  24. Cole, S. et al. The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions. Mon. Not. R. Astron. Soc. 326, 255–273 (2001).

    Article  ADS  Google Scholar 

  25. Schmidt, M. Luminosities and space densities of short gamma-ray bursts. Astrophys. J. 559, L79–L82 (2001).

    Article  ADS  Google Scholar 

  26. Kramer, M. et al. The characteristics of millisecond pulsar emission. I. spectra of pulse shapes and the beaming fraction. Astrophys. J. 501, 270–285 (1998).

    Article  ADS  Google Scholar 

  27. Trager, S. C., Djorgovski, S. & King, I. R. in Structure and Dynamics of Globular Clusters (eds Djorgovski, S. G. & Meylan, G.) 347–355 (ASP Conf. Series, Vol. 50, ASP, San Francisco, 1993).

    Google Scholar 

  28. McMillan, S. & Hut, P. Binary–single-star scattering. VI. Automatic determination of interaction cross sections. Astrophys. J. 467, 348–358 (1996).

    Article  ADS  Google Scholar 

  29. Portegies Zwart, S. F., McMillan, S. L. W., Hut, P. & Makino, J. Star cluster ecology—IV. Dissection of an open star cluster: photometry. Mon. Not. R. Astron. Soc. 321, 199–226 (2001).

    Article  ADS  Google Scholar 

  30. Heinke, C. O. et al. A deep Chandra survey of the globular cluster 47 Tucanae: catalog of point sources. Astrophys. J. 625, 796–824 (2005).

    Article  ADS  Google Scholar 

  31. Pfahl, E., Rappaport, S. & Podsiadlowski, P. A comprehensive study of neutron star retention in globular clusters. Astrophys. J. 573, 283–305 (2002).

    Article  ADS  Google Scholar 

  32. Dull, J. D. et al. The dynamics of M15: observations of the velocity dispersion profile and Fokker-Planck models. Astrophys. J. 481, 267–281 (1997).

    Article  ADS  Google Scholar 

  33. Guetta, D. & Piran, T. The BATSE-Swift luminosity and redshift distributions of short-duration GRBs. Preprint at <http://arxiv.org/abs/astro-ph/0511239> (2005).

  34. Freire, P. C. et al. Detection of ionized gas in the globular cluter 47 Tucanae. Astrophys. J. 557, L105–L108 (2001).

    Article  ADS  Google Scholar 

  35. Graziani, C. et al. GRB050709: a possible short-hard GRB localized by HETE. GCN Circ. 3570,(2005).

Download references

Acknowledgements

J.G. thanks N. Gehrels for an initial discussion of the first short GRB observed with Swift. This work was supported in part for J.G. by NASA grant NNG04GK33G and for S.M. by NASA grant NNG04GL50G. S.P.Z. is supported in part by the Royal Netherlands Academy of Arts and Sciences (KNAW) and the Netherlands Advanced School for Astronomy (NOVA). The authors thank Ed van den Heuvel for comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Grindlay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grindlay, J., Zwart, S. & McMillan, S. Short gamma-ray bursts from binary neutron star mergers in globular clusters. Nature Phys 2, 116–119 (2006). https://doi.org/10.1038/nphys214

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys214

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing