Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-performance multiple-donor bulk heterojunction solar cells

Subjects

Abstract

Broadening the absorption bandwidth of polymer solar cells by incorporating multiple absorber donors into the bulk-heterojunction active layer is an attractive means of resolving the narrow absorption of organic semiconductors. However, this leads to a much more complicated system, and previous efforts have met with only limited success. Here, several dual-donor and multi-donor bulk-heterojunction polymer solar cells based on a pool of materials with different absorption ranges and preferred molecular structures were studied. The study shows clearly that compatible polymer donors can coexist harmoniously, but the mixing of incompatible polymers can lead to severe molecular disorder and limit device performance. These results provide guidance for the general use of multiple-donor bulk heterojunctions to overcome the absorption limitation and achieve both high performance and fabrication simplicity for organic solar cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Band structure, band position and absorption spectrum of the model materials used.
Figure 2: JV and EQE characterization of (PDBTTT-C:PBDTT-DPP):PC70BM and (PTB7:PBDTT-SeDPP):PC70BM ternary BHJ solar cell systems.
Figure 3: Photo-CELIV measurements of (PDBTTT-C:PBDTT-DPP):PC70BM and (PTB7:PBDTT-SeDPP):PC70BM ternary BHJ solar cell systems.
Figure 4: Photo-CELIV measurements of (P3HT:PBDTT-DPP):PC70BM and (P3HT:PBDTT-SeDPP):PC70BM ternary BHJ solar cell systems.
Figure 5: GIWAXS patterns and RSoXS profiles.

Similar content being viewed by others

References

  1. Li, G., Zhu, R. & Yang, Y. Polymer solar cells. Nature Photon. 6, 153–161 (2012).

    Article  ADS  Google Scholar 

  2. Gunes, S., Neugebauer, H. & Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev. 107, 1324–1338 (2007).

    Article  Google Scholar 

  3. Peumans, P., Yakimov, A. & Forrest, S. R. Small molecular weight organic thin-film photodetectors and solar cells. J. Appl. Phys. 93, 3693–3723 (2003).

    Article  ADS  Google Scholar 

  4. Halls, J. J. M. et al. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995).

    Article  ADS  Google Scholar 

  5. Shaheen, S. E. et al. 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 78, 841 (2001).

    Article  ADS  Google Scholar 

  6. Brabec, J., Sariciftci, N. S. & Hummelen, J. C. Plastic solar cells. Adv. Funct.Mater. 11, 15–26 (2001).

    Article  Google Scholar 

  7. Clarke, T. M. & Durrant, J. R. Charge photogeneration in organic solar cells. Chem. Rev. 110, 6736–6767 (2010).

    Article  Google Scholar 

  8. Kniepert, J., Schubert, M., Blakesley, J. C. & Neher, D. Photogeneration and recombination in P3HT/PCBM solar cells probed by time-delayed collection field experiments. J. Phys. Chem. C 2, 700–705 (2011).

    Google Scholar 

  9. Li, G. et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Mater. 4, 864–868 (2005).

    Article  ADS  Google Scholar 

  10. Liang, Y. et al. For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22, 135–138 (2010).

    Article  Google Scholar 

  11. Dou, L. et al. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nature Photon. 6, 180–185 (2012).

    Article  ADS  Google Scholar 

  12. Chen, H. et al. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photon. 3, 649–653 (2009).

    Article  ADS  Google Scholar 

  13. Small, C. E. et al. High-efficiency inverted dithienogermole-thienopyrrolodione-based polymer solar cells. Nature Photon. 6, 115–120 (2011).

    Article  ADS  Google Scholar 

  14. He, Z. et al. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nature Photon. 6, 593–597 (2012).

    ADS  Google Scholar 

  15. You, J. et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nature Commun. 4, 1446 (2013).

    Article  ADS  Google Scholar 

  16. Green, M. A. et al. Solar cell efficiency tables (version 39). Prog. Photovolt. Res. Appl. 20, 12–20 (2012).

    Article  Google Scholar 

  17. Li, G. et al. Solvent annealing effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes. Adv. Funct. Mater. 17, 1636–1644 (2007).

    Article  Google Scholar 

  18. Ameri, T., Khoram, P., Min, J. & Brabec, C. J. Organic ternary solar cells: a review. Adv. Mater. 25, 4245–4266 (2013).

    Article  Google Scholar 

  19. Dou, L. et al. Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells. J. Am. Chem. Soc. 134, 10071–1007 (2012).

    Article  Google Scholar 

  20. Liang, Y. & Yu, L. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance. Acc. Chem. Res. 43, 1227–1236 (2010).

    Article  Google Scholar 

  21. Hou, J. et al. Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells. J. Am. Chem. Soc. 131, 15586–15587 (2009).

    Article  Google Scholar 

  22. Jankovic, V. et al. Active layer-incorporated, spectrally-tuned Au/SiO2 core/shell nanorod-based light trapping for organic photovoltaics. ACS Nano 7, 3815–3822 (2013).

    Article  Google Scholar 

  23. Dou, L. et al. A selenium-substituted low-bandgap polymer with versatile photovoltaic applications. Adv. Mater. 25, 825–831 (2013).

    Article  ADS  Google Scholar 

  24. Huang, Y. et al. Small- and wide-angle X-ray scattering characterization of bulk heterojunction polymer solar cells with different fullerene derivatives. J. Phys. Chem. C 116, 10238–10244 (2012).

    Article  Google Scholar 

  25. Liang, Y. Y. et al. Development of new semiconducting polymers for high performance solar cells. J. Am. Chem. Soc. 131, 56–57 (2009).

    Article  Google Scholar 

  26. Liang, Y. Y. et al. Highly efficient solar cell polymers developed via fine tuning of structural and electronic properties. J. Am. Chem. Soc. 131, 7792–7799 (2009).

    Article  Google Scholar 

  27. Piliego, C. et al. Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. J. Am. Chem. Soc. 132, 7595–7597 (2010).

    Article  Google Scholar 

  28. Bartelt, J. A. et al. The importance of fullerene percolation in the mixed regions of polymer–fullerene bulk heterojunction solar cells. Adv. Energy Mater. 3, 364–374 (2013).

    Article  Google Scholar 

  29. Rivnay, J. et al. Drastic control of texture in a high performance n-type polymeric semiconductor and implications for charge transport. Macromolecules 44, 5246–5255 (2011).

    Article  ADS  Google Scholar 

  30. Pivrikas, A., Sariciftci, N. S., Juška, G. & Österbacka, R. A review of charge transport and recombination in polymer/fullerene organic solar cells. Prog. Photovolt. Res. Appl. 15, 677–696 (2007).

    Article  Google Scholar 

  31. Mozer, A. J. et al. Charge transport and recombination in bulk heterojunction solar cells studied by the photoinduced charge extraction in linearly increasing voltage technique. Appl. Phys. Lett. 86, 112104 (2005).

    Article  ADS  Google Scholar 

  32. Khlyabich, P. P., Burkhart, B. & Thompson, B. C. Efficient ternary blend bulk heterojunction solar cells with tunable open-circuit voltage. J. Am. Chem. Soc. 133, 14534–14537 (2011).

    Article  Google Scholar 

  33. Khlyabich, P. P., Burkhart, B. & Thompson, B. C. Compositional dependence of the open-circuit voltage in ternary blend bulk heterojunction solar cells based on two donor polymers. J. Am. Chem. Soc. 134, 9074–9077 (2012).

    Article  Google Scholar 

  34. Maurano, A. et al. Recombination dynamics as a key determinant of open circuit voltage in organic bulk heterojunction solar cells: a comparison of four different donor polymers. Adv. Mater. 22, 4987–4992 (2010).

    Article  Google Scholar 

  35. Vandewal, K., Tvingstedt, K., Gadisa, A., Inganäs, O. & Manca, J. V. On the origin of the open-circuit voltage of polymer–fullerene solar cells. Nature Mater. 8, 904–909 (2009).

    Article  ADS  Google Scholar 

  36. Street, R. A., Davies, D., Khlyabich, P. P., Burkhart, B. & Thompson, B. C. Origin of the tunable open-circuit voltage in ternary blend bulk heterojunction organic solar cells. J. Am. Chem. Soc. 135, 986–989 (2013).

    Article  Google Scholar 

  37. Shuttle, C. G. et al. Experimental determination of the rate law for charge carrier decay in a polythiophene fullerene solar cell. Appl. Phys. Lett. 92, 093311 (2008).

    Article  ADS  Google Scholar 

  38. Shuttle, C. G. et al. Charge extraction analysis of charge carrier densities in a polythiophene/fullerene solar cell: analysis of the origin of the device dark current. Appl. Phys. Lett. 93, 183501 (2008).

    Article  ADS  Google Scholar 

  39. Shuttle, C. G., Hamilton, R., O'Regan, B. C. Nelson, J. A. & Durrant, J. R. Charge-density-based analysis of the current–voltage response of polythiophene/fullerene photovoltaic devices. Proc. Natl Acad. Sci. USA 107, 16448–16452 (2010).

    Article  ADS  Google Scholar 

  40. Chen, W. et al. Hierarchical nanomorphologies promote exciton dissociation in polymer/fullerene bulk heterojunction solar cells. Nano Lett. 11, 3707–3713 (2011).

    Article  ADS  Google Scholar 

  41. Rivnay, J., Noriega, R., Kline, R. J., Salleo, A. & Toney, M. F. Quantitative analysis of lattice disorder and crystallite size in organic semiconductor thin films. Phys Rev. B 84, 045203 (2011).

    Article  ADS  Google Scholar 

  42. Chen, W., Nikiforov, M. P., Darling, S. B. Morphology characterization in organic and hybrid solar cells. Energy Environ. Sci. 5, 8045–8074 (2012).

    Article  Google Scholar 

  43. Löslein, H. et al. Transient absorption spectroscopy studies on polythiophene–fullerene bulk heterojunction organic blend films sensitized with a low-bandgap polymer. Macromol. Rapid. 34, 1090–1097 (2013).

    Article  Google Scholar 

  44. Brunner-Popela, J. & Glatter, O. Small-angle scattering of interacting particles. I. Basic principles of a global evaluation technique. J. Appl. Crystallogr. 30, 431–442 (1997).

    Article  Google Scholar 

  45. Weyerich, B., Brunner-Popela, J. & Glatter, O. Small-angle scattering of interacting particles. II. Generalized indirect Fourier transformation under consideration of the effective structure factor for polydisperse systems. J. Appl. Crystallogr. 32, 197–209 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Office of Naval Research (Program manager P. Armistead, award nos. N00014-11-1-0250 and N00014-14-1-0648). The authors thank W.L. Kwan, Z. Hong, J. You, R. Zhu, B. Street and S.A. Hawks for technical discussions. W.C. acknowledges financial support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences (award no. KC020301). The authors also thank J. Strzalka and C. Wang for assistance with GISAXS and RSoXS measurements. Use of the Advanced Photon Source (APS) at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (contract no. DE-AC02-06CH11357). The ALS at Lawrence Berkeley National Laboratory is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (contract no. DE-AC02-05CH11231).

Author information

Authors and Affiliations

Authors

Contributions

Y.(M.)Y., G.L. and Y.Y. conceived and developed the ideas. Y.(M.)Y. designed the experiments and performed device fabrication, electrical characterization (CELIV, TPV and highly sensitive PSR) and data analysis. W.C. performed GIWAXS and RSoXS measurements and analysed the data. L.D. and W.-H.C. synthesized and provided the low-bandgap polymers of PBDTT-DPP and PBDTT-SeDPP. S.D. assisted with highly sensitive PSR measurements. Y.(M.)Y., G.L. and Y.Y. wrote the manuscript. B.B. and W.C. contributed to revision of the manuscript. The projects were supervised by Y.Y. and G.L.

Corresponding authors

Correspondence to Gang Li or Yang Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3252 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Chen, W., Dou, L. et al. High-performance multiple-donor bulk heterojunction solar cells. Nature Photon 9, 190–198 (2015). https://doi.org/10.1038/nphoton.2015.9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing