Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-performance crosslinked colloidal quantum-dot light-emitting diodes

Abstract

Colloidal quantum-dot light-emitting diodes have recently received considerable attention due to their ease of colour tunability, high brightness and narrow emission bandwidth. Although there have been rapid advances in luminance, efficiency and lifetime, device performance is still limited by the large energy barriers for hole and electron injection into the quantum-dot layer. Here, we show that by crosslinking the colloidal quantum-dot layer, the charge injection barrier in a red-light-emitting quantum-dot light-emitting diode may be considerably reduced by using a sol–gel TiO2 layer for electron transport. The device architecture is compatible with all-solution device fabrication and the resulting device shows a high luminance (12,380 cd m−2), low turn-on voltage (1.9 V) and high power efficiency (2.41 lm W−1). Incorporation of the technology into a display device with an active matrix drive backplane suggests that the approach has promise for use in high-performance, easy-to-fabricate, large-area displays and illumination sources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and energy levels of the QD-LED.
Figure 2: Current density versus voltage characteristics of the QD-LED.
Figure 3: Performance and JV characteristics for QD-LEDs with different PEDOT:PSS conductivities.
Figure 4: Electroluminescence performance of QD-LEDs.
Figure 5: Efficiency and electroluminescence image of QD-LEDs.

Similar content being viewed by others

References

  1. Colvin, V. L., Schlamp, M. C. & Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994).

    Article  ADS  Google Scholar 

  2. Dabbousi, B. O., Bawendi, M. G., Onitsuka, O. & Rubner, M. F. Electroluminescence from CdSe quantum-dot/polymer composites. Appl. Phys. Lett. 66, 1316–1318 (1995).

    Article  ADS  Google Scholar 

  3. Schlamp, M. C., Peng, X. & Alivisatos, A. P. Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer. J. Appl. Phys. 82, 5837–5842 (1997).

    Article  ADS  Google Scholar 

  4. Mattoussi, H. et al. Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals. J. Appl. Phys. 83, 7965–7974 (1998).

    Article  ADS  Google Scholar 

  5. Coe, S., Woo, W.-K., Bawendi, M. & Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800–803 (2002).

    Article  ADS  Google Scholar 

  6. Tessler, N., Medvedev, V., Kazes, M., Kan, S. & Banin, U. Efficient near-infrared polymer nanocrystal light-emitting diodes. Science 295, 1506–1508 (2002).

    Article  ADS  Google Scholar 

  7. Chaudhary, S., Ozkan, M. & Chan, W. C. W. Trilayer hybrid polymer–quantum dot light-emitting diodes. Appl. Phys. Lett. 84, 2925–2927 (2004).

    Article  ADS  Google Scholar 

  8. Coe-Sullivan, S., Steckel, J. S., Woo, W.-K., Bawendi, M. G. & Bulović, V. Large-area ordered quantum-dot monolayers via phase separation during spin-casting. Adv. Funct. Mater. 15, 1117–1124 (2005).

    Article  Google Scholar 

  9. Caruge, J.-M., Halpert, J. E., Bulović, V. & Bawendi, M. G. NiO as an inorganic hole-transporting layer in quantum dot light-emitting devices. Nano Lett. 6, 2991–2994 (2003).

    Article  ADS  Google Scholar 

  10. Mueller, A. H. et al. Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers. Nano Lett. 5, 1039–1044 (2005).

    Article  ADS  Google Scholar 

  11. Sun, Q. et al. Bright, multicolored light-emitting diodes based on quantum dots. Nature Photon. 1, 717–722 (2007).

    Article  ADS  Google Scholar 

  12. Caruge, J. M., Halpert, J. E., Wood, V., Bulović, V. & Bawendi, M. G. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nature Photon. 2, 247–250 (2008).

    Article  Google Scholar 

  13. Redecker, M., Bradley, D. D. C., Inbasekaran, M., Wu, W. W. & Woo, E. P. High mobility hole transport fluorene-triarylamine copolymers. Adv. Mater. 11, 241–246 (1999).

    Article  Google Scholar 

  14. Lim, J. et al. Preparation of highly luminescent nanocrystals and their application to light-emitting diodes. Adv. Mater. 19, 1927–1932 (2007).

    Article  ADS  Google Scholar 

  15. Kim, J. Y. et al. New architecture for high efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Adv. Mater. 18, 572–576 (2006).

    Article  Google Scholar 

  16. Hikmet, R. A. M., Talapin, D. V. & Weller, H. Study of conduction mechanism and electroluminescence in CdSe/ZnS quantum dot composites. J. Appl. Phys. 93, 3509–3514 (2003).

    Article  ADS  Google Scholar 

  17. Kepler, R. G. et al. Electron and hole mobility in tris(8-hydroxyquinolinolato-N1,O8) aluminum. Appl. Phys. Lett. 66, 3618–3620 (1995).

    Article  ADS  Google Scholar 

  18. Soreni-Harari, M. et al. Tunning energy level in nanocrystal quantum dots through surface manipulations. Nano Lett. 8, 678–684 (2008).

    Article  ADS  Google Scholar 

  19. Coe-Sullivan S., Woo, W.-K., Steckel, J. S., Bawendi, M. & Bulović, V. Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices. Org. Electron. 4, 123–130 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank J. Lee, J. M. Lee, J. Chung and I. Song for helpful discussion, S. Jun and H. Jang for providing quantum dots and J. W. Kim, Y. T. Chun, J.-Y. Kwon and Y. G. Lee for fabricating the QD–LED device with the a-Si TFT backplane.

Author information

Authors and Affiliations

Authors

Contributions

K.-S.C., E.K.L., W.-J.J. and B.L.C. carried out the experiment and contributed to the writing of the paper. E.J. synthesized the quantum dots. T.-H.K., S.J.L., S.-J.K., J.Y.H. and B.-K.K. assisted with the experiment and the device analysis. J.M.K. contributed to the writing of the paper and the project planning.

Corresponding author

Correspondence to Byoung Lyong Choi.

Supplementary information

Supplementary information

Supplementary information (PDF 520 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, KS., Lee, E., Joo, WJ. et al. High-performance crosslinked colloidal quantum-dot light-emitting diodes. Nature Photon 3, 341–345 (2009). https://doi.org/10.1038/nphoton.2009.92

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.92

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing