Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phase-locking of magnetic vortices mediated by antivortices

Abstract

Synchronized spin-valve oscillators may lead to nanosized microwave generators that do not require discrete elements such as capacitors or inductors. Uniformly magnetized oscillators have been synchronized, but offer low power. Gyrating magnetic vortices offer greater power, but vortex synchronization has yet to be demonstrated. Here we find that vortices can interact with each other through the mediation of antivortices, leading to synchronization when they are closely spaced. The synchronization does not require a magnetic field, making the system attractive for electronic device integration. Also, because each vortex is a topological soliton, this work presents a model experimental system for the study of interacting solitons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The studied system.
Figure 2: Power outputs of arrays of 2 × 2 nanocontacts with different intercontact distances.
Figure 3: Vortex–antivortex lattice ground state in zero field.
Figure 4: In-plane field excitation of system eigenmodes.

Similar content being viewed by others

References

  1. Shinjo, T., Okuno, T., Hassdorf, R., Shigeto, K. & Ono, T. Magnetic vortex core observation in circular dots of permalloy. Science 289, 930–932 (2000).

    Article  CAS  Google Scholar 

  2. Wachowiak, A. et al. Direct observation of internal spin structure of magnetic vortex cores. Science 298, 577–580 (2002).

    Article  CAS  Google Scholar 

  3. Pribiag, V. S. et al. Magnetic vortex oscillator driven by d.c. spin-polarized current. Nature Phys. 3, 498–503 (2007).

    Article  CAS  Google Scholar 

  4. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  CAS  Google Scholar 

  5. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    Article  CAS  Google Scholar 

  6. Katine, J. A., Albert, F. J., Buhrman, R. A., Myers, E. B. & Ralph, D. C. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 4212–4215 (2000).

    Article  Google Scholar 

  7. Grollier, J. et al. Spin-polarized current induced switching in Co/Cu/Co pillars. Appl. Phys. Lett. 78, 3663–3665 (2001).

    Article  CAS  Google Scholar 

  8. Tsoi, M. et al. Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80, 4281–4284 (1998).

    Article  CAS  Google Scholar 

  9. Kiselev, S. I. et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003).

    Article  CAS  Google Scholar 

  10. Pufall, M. R., Rippard, W. H., Schneider, M. L. & Russek, S. E. Low-field current-hysteretic oscillations in spin-transfer nanocontacts. Phys. Rev. B 75, 140404(R) (2007).

    Article  Google Scholar 

  11. Mistral Q. et al. Current-driven vortex oscillations in metallic nanocontacts. Phys. Rev. Lett. 100, 257201 (2008).

    Article  CAS  Google Scholar 

  12. Mancoff, F. B., Rizzo, N. D., Engel, B. N. & Tehrani, S. Phase-locking in double-point-contact spin-transfer devices. Nature 437, 393–395 (2005).

    Article  CAS  Google Scholar 

  13. Kaka, S. et al. Mutual phase-locking of microwave spin torque nano-oscillators. Nature 437, 389–392 (2005).

    Article  CAS  Google Scholar 

  14. Bouzehouane, K. et al. Nanolithography based on real-time electrically controlled indentation with an atomic force microscope for nanocontact elaboration. Nano Lett. 3, 1599–1602 (2003).

    Article  CAS  Google Scholar 

  15. Georges, B., Grollier, J., Cros, V. & Fert, A. Impact of the electrical connection of spin transfer nano-oscillators on their synchronization: an analytical study. Appl. Phys. Lett. 92, 232504 (2008).

    Article  Google Scholar 

  16. Huber, D. L. Dynamics of spin vortices in two-dimensional planar magnets. Phys. Rev. B 26, 3758–3765 (1982).

    Article  CAS  Google Scholar 

  17. Bishop, J. E. L., Galkin, A. Y. & Ivanov, B. A. Ground states of an array of magnetic dots with Ising-type anisotropy and subject to a normal magnetic field. Phys. Rev. B 65, 174403 (2002).

    Article  Google Scholar 

  18. Guslienko, K. Y. Magnetostatic interdot coupling in two-dimensional magnetic dot arrays. Appl. Phys. Lett. 75, 394–396 (1999).

    Article  CAS  Google Scholar 

  19. Usov, N. A. & Peschany, S. E. Magnetization curling in a fine cylindrical particle. J. Magn. Magn. Mater. 118, L290–L294 (1993).

    Article  Google Scholar 

  20. Van Waeyenberge, B. et al. Magnetic vortex core reversal by excitation with short bursts of an alternating field. Nature 444, 461–464 (2006).

    Article  CAS  Google Scholar 

  21. Yamada, K. et al. Electrical switching of the vortex core in a magnetic disk. Nature Mater. 6, 269–273 (2007).

    Article  CAS  Google Scholar 

  22. Paraoanu, G.S. Running-phase state in a Josephson washboard potential. Phys. Rev. B 72, 134528 (2005).

    Article  Google Scholar 

  23. Tatarkova, S. A., Sibbett, W. & Dholakia, K. Brownian particle in an optical potential of the washboard type. Phys. Rev. Lett. 91, 038101 (2003).

    Article  Google Scholar 

  24. Kosterlitz, M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181–1203 (1973).

    Article  CAS  Google Scholar 

  25. Bose, S. N. Plancks gesetz und lichtquantenhypothese. Z. Phys. 26, 178–181 (1924).

    Article  CAS  Google Scholar 

  26. Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

    Article  CAS  Google Scholar 

  27. Guslienko, K. Y. Magnetic vortex state stability, reversal and dynamics in restricted geometries. J. Nanosci. Nanotech. 8, 2745–2760 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.R. is supported by the the EU network SPINSWITCH (MRTN-CT-2006-035327). The authors acknowledge financial support from the ANR agency (NANOMASER PNANO-06-067-04 and ALICANTE PNANO-06-064-03) and EU grant MASTER No. NMP-FP7-212257.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ruotolo.

Supplementary information

Supplementary information

Supplementary information (PDF 392 kb)

Supplementary movie

Supplementary movie 1 (MOV 3419 kb)

Supplementary movie

Supplementary movie 2 (MOV 887 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruotolo, A., Cros, V., Georges, B. et al. Phase-locking of magnetic vortices mediated by antivortices. Nature Nanotech 4, 528–532 (2009). https://doi.org/10.1038/nnano.2009.143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.143

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing