Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation of the triplet exciton in EuS-coated single-walled nanotubes

Abstract

Photon absorption by carbon nanotubes creates bound electron–hole pairs called excitons1,2,3,4,5,6,7,8, which can exist in spin-polarized triplet or spin-unpolarized singlet configurations. Triplet excitons are optically inactive owing to the weak spin–orbit coupling in nanotubes. This prevents the optical injection of electron spin into nanotubes for spintronic applications9 and limits the efficiency of photocurrent generation10. Here, we show that it is possible to optically excite the triplet exciton by using a ferromagnetic semiconductor as a spin filter11 to mix the singlet and triplet excitons. The triplet contribution to the photocurrent is detected, representing the first direct evidence of the triplet exciton in carbon nanotubes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Carbon nanotube optical transition energies and measurement geometry.
Figure 2: Europium sulphide (EuS) energy diagram and capacitive photocurrent spectrum.
Figure 3: Capacitive photocurrent spectrum of EuS-coated single-walled nanotube.
Figure 4: Magnetic field orientation dependence of the triplet peak height.

Similar content being viewed by others

References

  1. Ando, T. Excitons in carbon nanotubes. J. Phys. Soc. Jpn 66, 1066–1073 (1997).

    Article  CAS  Google Scholar 

  2. Wang, F., Dukovic, G., Brus, L. E. & Heinz, T. F. Optical resonances in carbon nanotubes arise from excitons. Science 308, 838–841 (2005).

    Article  CAS  Google Scholar 

  3. Maultzsch, J. et al. Exciton binding energies in carbon nanotubes from two-photon photoluminescence. Appl. Phys. Lett. 72, 241402 (2005).

    Google Scholar 

  4. Zhao, H. & Mazumdar, S. Electron–electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes. Phys. Rev. Lett. 93, 157402 (2004).

    Article  Google Scholar 

  5. Ando, T. Effects of valley mixing and exchange on excitons in carbon nanotubes with Aharonov–Bohm flux. J. Phys. Soc. Jpn 75, 024707 (2006).

    Article  Google Scholar 

  6. Spataru, C. D., Ismail-Beigi, S., Benedict, L. X. & Louie, S. G. Excitonic effects and optical spectra of single-walled carbon nanotubes. Phys. Rev. Lett. 92, 077402 (2004).

    Article  Google Scholar 

  7. Perebeinos, V., Tersoff, J. & Avouris, P. Radiative lifetime of excitons in carbon nanotubes. Nano Lett. 5, 2495–2499 (2005).

    Article  CAS  Google Scholar 

  8. Barros, E. B. et al. Selection rules for one- and two-photon absorption by excitons in carbon nanotubes. Phys. Rev. B 73, 241406(R) (2006).

    Article  Google Scholar 

  9. Tsukagoshi, K., Alphenaar, B. W. & Ago, H. Coherent transport of electron spin in ferromagnetically contacted carbon nanotube. Nature 401, 572–574 (1999).

    Article  CAS  Google Scholar 

  10. Hu, X. & Hu, B. Photovoltaic processes of singlet and triplet excited states in organic solar cells. Adv. Funct. Mater. 18, 2611–2617 (2008).

    Article  Google Scholar 

  11. Moodera, J. S., Santos, T. S. & Nagahama, T. The phenomena of spin-filter tunneling. J. Phys. Condens. Matt. 18, 1–24 (2006).

    Article  Google Scholar 

  12. Tretiak, S. Triplet state absorption in carbon nanotubes: A TD–DFT study. Nano Lett. 7, 2201–2206 (2007).

    Article  CAS  Google Scholar 

  13. Srivastava, A., Htoon, H., Klimov, V. I. & Kono, J. Direct observation of dark excitons in individual carbon nanotubes: Inhomogeneity in the exchange splitting. Phys. Rev. Lett. 101, 087402 (2008).

    Article  Google Scholar 

  14. Mohite, A. D., Gopinath, P., Shah, H. M. & Alphenaar, B. W. Exciton dissociation and Stark effect in the carbon nanotube photocurrent spectrum. Nano Lett. 8, 142–146 (2008).

    Article  CAS  Google Scholar 

  15. Mohite, A., Lin, J.-T., Sumanasekera, G. & Alphenaar, B. W. Field enhanced photocurrent spectroscopy of excitonic states in single-wall carbon nanotubes. Nano Lett. 6, 1369–1373 (2006).

    Article  CAS  Google Scholar 

  16. Mohite, A. D. et al. Photocurrent spectroscopy of double-wall carbon nanotubes. Chem. Phys. Lett. 412, 190–194 (2005).

    Article  CAS  Google Scholar 

  17. Mohite, A., Gopinath, P., Chakraborty, S. & Alphenaar, B. W. Displacement current detection of photoconduction in carbon nanotubes. Appl. Phys. Lett. 86, 061114 (2005).

    Article  Google Scholar 

  18. Vaddiraju, S. et al. Mechanism of 1D crystal growth in reactive vapor transport: indium nitride nanowires. Nano Lett. 5, 1625–1631 (2005).

    Article  CAS  Google Scholar 

  19. Mauger, A. & Godart, C. The magnetic, optical and transport properties of representatives of a class of magnetic semiconductors: the europium chalcogenides. Phys. Rep. 141, 51–176 (1986).

    Article  CAS  Google Scholar 

  20. Dimmock, J. O. Optical properties of the europium chalcogenides. IBM J. Res. Develop. 14, 301–308 (1970).

    Article  CAS  Google Scholar 

  21. Dukovic, G. et al. Structural dependence of excitonic optical transitions and band-gap energies in carbon nanotubes. Nano Lett. 5, 2314–2318 (2005).

    Article  CAS  Google Scholar 

  22. Lefebvre, J. & Finnie, P. Polarized photoluminescence excitation spectroscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 98, 167406 (2007).

    Article  CAS  Google Scholar 

  23. Ajiki, H. & Ando, T. Electronic states of carbon nanotubes. J. Phys. Soc. Jpn 62, 1255–1266 (1993).

    Article  CAS  Google Scholar 

  24. Zaric, S. et al. Excitons in carbon nanotubes with broken time-reversal symmetry. Phys. Rev. Lett. 96, 016406 (2006).

    Article  CAS  Google Scholar 

  25. McGuire, T. R. Magnetic properties of some divalent europium compounds. J. Appl. Phys. 34, 1345–1346 (1963).

    Article  CAS  Google Scholar 

  26. Hao, X., Moodera, J. S. & Meservey, R. A thin film superconductor in an exchange field. Phys. Rev. Lett. 67, 1342–1345 (1991).

    Article  CAS  Google Scholar 

  27. Ohno, Y. et al. Excitonic transition energies in single walled carbon nanotubes: dependence on environmental dielectric constant. Phys. Stat. Sol. B 244, 4002–4005 (2007).

    Article  CAS  Google Scholar 

  28. Kavarnos, G., Cole, T., Scribe, P., Dalton, J. & Turro, N. External heavy-atom induced spin–orbital coupling. Spectroscopic study of naphthonorbornanes. J. Am. Chem. Soc. 93, 1032–1034 (1971).

    Article  Google Scholar 

  29. Romanova, Z., Deshayes, K. & Piotrowiak, P. Remote intermolecular ‘heavy-atom effect’: spin–orbit coupling across the wall of a hemicarcerand. J. Am. Chem. Soc. 123, 2444–2445 (2001).

    Article  CAS  Google Scholar 

  30. Hu, B., Wu, Y., Zhang, Z., Dai, S. & Shen, J. Effects of ferromagnetic nanowires on singlet and triplet exciton fractions in fluorescent and phosphorescent organic semiconductors. Appl. Phys. Lett. 88, 022114 (2006).

    Article  Google Scholar 

  31. Shao, Y. & Yang, Y. Efficient organic heterojunction photovoltaic cells based on triplet materials. Adv. Mater. 17, 2841–2844 (2005).

    Article  CAS  Google Scholar 

  32. Freitag, M., Martin, Y., Misewich, J. A., Martel, R. & Avouris, P. H. Photoconductivity of single carbon nanotubes. Nano Lett. 3, 1067–1071 (2003).

    Article  CAS  Google Scholar 

  33. Hoijtink, G. J. The influence of paramagnetic molecules on singlet–triplet transitions. Mol. Phys. 3, 67–70 (1960).

    Article  CAS  Google Scholar 

  34. Murrell, J. N. The effect of paramagnetic molecules on the intensity of spin-forbidden absorption bands of aromatic molecules. Mol. Phys. 3, 319–329 (1960).

    Article  CAS  Google Scholar 

  35. Evans, D. F. Magnetic perturbation of singlet–triplet transitions. J. Chem. Soc. 3885–3888 (1957).

    Article  CAS  Google Scholar 

  36. Pierce, D. T. et al. GaAs spin polarized electron source. Rev. Sci. Instrum. 51, 478–499 (1980).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S. Tretiak for theoretical guidance, and for his critical reading of this manuscript. Financial support was provided by the Office of Naval Research ONR N00014-06-1-0228 and ONR N00014-06-1-0235, the National Science Foundation NSF DMR 0504158 and the U.S. Department of Energy DE-FG02-07ER46375.

Author information

Authors and Affiliations

Authors

Contributions

B.W.A. conceived the experiment and wrote the manuscript. A.D.M. performed the device fabrication and optical characterization. T.S.S. and J.S.M. performed material deposition. B.W.A., A.D.M. and J.S.M. designed the experiment, discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Bruce W. Alphenaar.

Supplementary information

Supplementary information

Supplementary information (PDF 462 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohite, A., Santos, T., Moodera, J. et al. Observation of the triplet exciton in EuS-coated single-walled nanotubes. Nature Nanotech 4, 425–429 (2009). https://doi.org/10.1038/nnano.2009.122

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.122

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing