Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanoparticles can cause DNA damage across a cellular barrier

Abstract

The increasing use of nanoparticles in medicine has raised concerns over their ability to gain access to privileged sites in the body. Here, we show that cobalt–chromium nanoparticles (29.5 ± 6.3 nm in diameter) can damage human fibroblast cells across an intact cellular barrier without having to cross the barrier. The damage is mediated by a novel mechanism involving transmission of purine nucleotides (such as ATP) and intercellular signalling within the barrier through connexin gap junctions or hemichannels and pannexin channels. The outcome, which includes DNA damage without significant cell death, is different from that observed in cells subjected to direct exposure to nanoparticles. Our results suggest the importance of indirect effects when evaluating the safety of nanoparticles. The potential damage to tissues located behind cellular barriers needs to be considered when using nanoparticles for targeting diseased states.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CoCr particles and their respective ions cause DNA damage in human fibroblasts.
Figure 2: Behaviour of CoCr particles in the BeWo cell barrier.
Figure 3: Fibroblast DNA damage after indirect exposure through the BeWo barrier is dependent on intercellular signalling through connexin channels within the barrier.
Figure 4: DNA damage caused by either indirect exposure to CoCr nanoparticles or direct exposure to ATP (beneath the barrier) is dependent on pannexin channel signalling.
Figure 5: ATP, transferrin and Co(ii) as signals passing through the barrier.
Figure 6: Schematic of the proposed mechanism by which CoCr nanoparticles cause DNA damage to human fibroblasts across a BeWo cell barrier.

Similar content being viewed by others

References

  1. Tiede, K. et al. Detection and characterization of engineered nanoparticles in food and the environment. Food Addit. Contam. 25, 795–821 (2008).

    Article  CAS  Google Scholar 

  2. Asiyanbola, B. & Soboyejo, W. For the surgeon: an introduction to nanotechnology. J. Surg. Educ. 65, 155–161 (2008).

    Article  Google Scholar 

  3. Park, J. H. et al. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nature Mater. 8, 331–336 (2009).

    Article  CAS  Google Scholar 

  4. Sajja, H. K. et al. Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. Curr. Drug Discov. Technol. 6, 43–51 (2009).

    Article  CAS  Google Scholar 

  5. Faraji, A. H. & Wipf, P. Nanoparticles in cellular drug delivery. Bioorg. Med. Chem. 17, 2950–2962 (2009).

    Article  CAS  Google Scholar 

  6. Nel, A., Xia, T., Madler, L. & Li, N. Toxic potential of materials at the nanolevel. Science 311, 622–627 (2006).

    Article  CAS  Google Scholar 

  7. Nanoscience and Nanotechnologies: Opportunities and Uncertainties (The Royal Society, London, 2004); available at <www.royalsoc.ac.uk/policy>.

  8. Bosman, S. J. et al. Development of mammalian embryos exposed to mixed-size nanoparticles. Clin. Exp. Obstet. Gynecol. 32, 222–224 (2005).

    CAS  Google Scholar 

  9. Stone, V., Johnston, H. & Clift, M. J. Air pollution, ultrafine and nanoparticle toxicology: cellular and molecular interactions. IEEE Trans. Nanobiosci. 6, 331–340 (2007).

    Article  Google Scholar 

  10. Seaton, A. & Donaldson, K. Nanoscience, nanotoxicology and the need to think small. Lancet 365, 923–924 (2005).

    Article  Google Scholar 

  11. Stern, S. T. & McNeil, S. E. Nanotechnology safety concerns revisited. Toxicol. Sci. 101, 4–21 (2008).

    Article  CAS  Google Scholar 

  12. Myllynen. P. K. et al. Kinetics of gold nanoparticles in the human placenta. Reprod. Toxicol. 26, 130–137 (2008).

    Article  CAS  Google Scholar 

  13. Singh, S. & Nalwa, H. S. Nanotechnology and health safety—toxicity and risk assessments of nanostructured materials on human health. J. Nanosci. Nanotechnol. 7, 3048–3070 (2007).

    Article  CAS  Google Scholar 

  14. Keegan, G. M., Learmonth, I. D. & Case, C. P. Orthopaedic metals and their potential toxicity in the arthroplasty patient: a review of current knowledge and future strategies. J. Bone Joint Surg. Br. 89, 567–573 (2007).

    Article  CAS  Google Scholar 

  15. Case, C. P. et al. Widespread dissemination of metal debris from implants. J. Bone Joint Surg. Br. 76, 701–712 (1994).

    Article  CAS  Google Scholar 

  16. Papageorgiou, I. et al The effect of nano- and micron-sized particles of cobalt–chromium alloy on human fibroblasts in vitro. Biomaterials 28, 2946–2958 (2007).

    Article  CAS  Google Scholar 

  17. Drewlo, S., Baczyk, D., Dunk, C. & Kingdom J. Fusion assays and models for the trophoblast. Methods Mol. Biol. 475, 363–382 (2008).

    Article  Google Scholar 

  18. Liu, F., Soares, M. J. & Audus, K. L. Permeability properties of monolayers of the human trophoblast cell line BeWo. Am. J. Physiol. 273, C1596–1604 (1997).

    Article  CAS  Google Scholar 

  19. Parry, S. & Zhang, J. Multidrug resistance proteins affect drug transmission across the placenta. Am. J. Obstet. Gynecol. 196, 476.e1–6 (2007).

    Article  Google Scholar 

  20. Bhat, P. & Anderson, D. A. Hepatitis B virus translocates across a trophoblastic barrier. J. Virol. 81, 7200–7207 (2007).

    Article  CAS  Google Scholar 

  21. AshaRani, P. V., Low Kah Mun, G., Hande, M. P. & Valiyaveettil, S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 24, 279–290 (2009).

    Article  Google Scholar 

  22. Derfus, A. M., Chan, W. C. W. & Bhatia, S. N. Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv. Mater. 16, 961–966 (2004).

    Article  CAS  Google Scholar 

  23. Shestopalov, V. I. & Panchin, Y. Pannexins and gap junction protein diversity. Cell Mol. Life Sci. 65, 376–394 (2008).

    Article  CAS  Google Scholar 

  24. Evans, W. H., De Vuyst, E. & Leybaert, L. The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem. J. 397, 1–14 (2006).

    Article  CAS  Google Scholar 

  25. Stahlut, M., Petersen, J. S., Hennan, J. K. & Ramirez, M. T. The antiarrhythmic peptide rotigaptide (ZP123) increases connexin 43 protein expression in neonatal rat ventricular cardiomyocytes. Cell Commun. Adhes. 14, 239–249 (2006).

    Google Scholar 

  26. Clarke, C., Williams, O. J., Martin, P. E. & Evans, W. H. ATP release by cardiac myocytes in a simulated ischaemia model. Inhibition by a connexin mimetic peptide and enhancement by an antiarrhythmic peptide. Eur. J. Pharmacol. 605, 9–14 (2009).

    Article  CAS  Google Scholar 

  27. Pelegrin, P. & Surprenant, A. Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J. 25, 5071–5082 (2006).

    Article  CAS  Google Scholar 

  28. Michel, A. D. et al. Direct labelling of the human P2X7 receptor and identification of positive and negative cooperativity of binding. Br. J. Pharmacol. 151, 103–114 (2007).

    Article  CAS  Google Scholar 

  29. Schwiebert, E. M. & Zsembery, A. Extracellular ATP as a signalling molecule for epithelial cells. Biochim. Biophys. Acta 1615, 7–32 (2003).

    Article  CAS  Google Scholar 

  30. Liu, J. et al. Calcineurin is a common target of cyclophilin–cyclosporin A and FKBP–FK506 complexes. Cell 66, 807–815 (1991).

    Article  CAS  Google Scholar 

  31. Crabtree, G. R. Calcium, calcineurin and the control of transcription. J. Biol. Chem. 276, 2313–2316 (2001).

    Article  CAS  Google Scholar 

  32. Surprenant, A. & North, R. A. Signaling at purinergic P2X receptors. Annu. Rev. Physiol. 71, 333–359 (2008).

    Article  Google Scholar 

  33. Lai, C. P. et al. Tumor-suppressive effects of pannexin 1 in C6 glioma cells. Cancer Res. 67, 1545–1554 (2007).

    Article  CAS  Google Scholar 

  34. Papageorgiou, I. et al. Genotoxic effects of particles of surgical cobalt chrome alloy on human cells of different age in vitro. Mutat. Res. 619, 45–58 (2007).

    Article  CAS  Google Scholar 

  35. Schins, R. P. & Knaapen, A. M. Genotoxicity of poorly soluble particles. Inhal. Toxicol. 19, 189–198 (2007).

    Article  CAS  Google Scholar 

  36. Xia, T., Kovochich, M., Liong, M., Zink, J. I. & Nel, A. E. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano. 2, 85–96 (2008).

    Article  CAS  Google Scholar 

  37. Baumann, M. U., Zamudio, S. & Illsley, N. P. Hypoxic upregulation of glucose transporters in BeWo choriocarcinoma cells is mediated by hypoxia-inducible factor-1. Am. J. Physiol. Cell Physiol. 293, C477–485 (2007).

    Article  CAS  Google Scholar 

  38. Bao, L., Locovei, S. & Dahl, G. Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett. 572, 65–68 (2004).

    Article  CAS  Google Scholar 

  39. Mothersill, C. & Seymour, C. B. Radiation-induced bystander effects and the DNA paradigm: an ‘out of field’ perspective. Mutat. Res. 597, 5–10 (2006).

    Article  CAS  Google Scholar 

  40. Ballarini, F. et al. Modelling radiation-induced bystander effect and cellular communication. Radiat. Prot. Dosimetry 122, 244–251 (2006).

    Article  CAS  Google Scholar 

  41. Huppertz, B. The anatomy of the normal placenta. J. Clin. Pathol. 61, 1296–1302 (2008).

    Article  CAS  Google Scholar 

  42. Kibschull, M., Gellhaus, A. & Winterhager, E. Analogous and unique functions of connexins in mouse and human placental development. Placenta 29, 848–854 (2008).

    Article  CAS  Google Scholar 

  43. Malassiné, A. & Cronier, L. Involvement of gap junctions in placental functions and development. Biochim. Biophys. Acta 1719, 117–124 (2005).

    Article  Google Scholar 

  44. Aplin, J. D., Jones, C. J. & Harris, L. K. Adhesion molecules in human trophoblast—a review. 1. Villous trophoblast. Placenta 30, 293–298 (2009).

    Article  CAS  Google Scholar 

  45. Warrell, D. A., Cox, T. M., Firth, J. D. & Benz, E. J. Jr Oxford Textbook of Medicine (Oxford Univ. Press, 2009).

    Google Scholar 

  46. Wells, P. G. et al. Molecular and biochemical mechanisms in teratogenesis involving reactive oxygen species. Toxicol. Appl. Pharmacol. 207, 354–366 (2005).

    Article  Google Scholar 

  47. McArdle, H. J., Anderson, H. S., Jones, H. & Gambling, L. Copper and iron transport across the placenta: regulation and interactions. J. Neuroendocrinol. 20, 427–431 (2008).

    Article  CAS  Google Scholar 

  48. Sagot, P. et al. Prenatal diagnosis of tetraploidy. Fetal Diagn. Ther. 8, 182–186 (1993).

    Article  CAS  Google Scholar 

  49. Doherty, A. T. et al. Increased chromosome translocations and aneuploidy in peripherable blood lymphocytes of patients having revision arthroplasty of the hip. J. Bone Joint Surg. Br. 83, 1075–1081 (2001).

    Article  CAS  Google Scholar 

  50. Hardin, J. W. & Hilbe, J. M. Generalized Linear Models and Extensions 2nd edn (Stata Press, 2007).

    Google Scholar 

Download references

Acknowledgements

Advice and discussion was kindly provided by A. Poole and A. Halestrap (University of Bristol). Support from the Research Foundation Non-medical Committee of the charitable trusts for the University Hospitals Bristol is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

C.P.C., G.B., A.S., M.S. and L.C. conceived and designed the experiments. G.B., A.S., L.C., B.F., G.L., S.D., L.H., P.V., J.L. and K.H. performed the experiments. C.P.C., G.B., A.S., L.C., M.S., W.H.E., A.-M.S., G.L., S.D., L.H., P.V., J.L. and K.H. analysed the data. M.S., W.H.E., A.M.S. and E.I. contributed materials and analysis tools. C.P.C., G.B., A.S., W.H.E. and S.M. co-wrote the paper.

Corresponding author

Correspondence to Charles Patrick Case.

Supplementary information

Supplementary information

Supplementary information (PDF 1259 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhabra, G., Sood, A., Fisher, B. et al. Nanoparticles can cause DNA damage across a cellular barrier. Nature Nanotech 4, 876–883 (2009). https://doi.org/10.1038/nnano.2009.313

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.313

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing