Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Charge-controlled magnetism in colloidal doped semiconductor nanocrystals

Abstract

Electrical control over the magnetic states of doped semiconductor nanostructures could enable new spin-based information processing technologies. To this end, extensive research has recently been devoted to examination of carrier-mediated magnetic ordering effects in substrate-supported quantum dots at cryogenic temperatures, with carriers introduced transiently by photon absorption. The relatively weak interactions found between dopants and charge carriers have suggested that gated magnetism in quantum dots will be limited to cryogenic temperatures. Here, we report the observation of a large, reversible, room-temperature magnetic response to charge state in free-standing colloidal ZnO nanocrystals doped with Mn2+ ions. Injected electrons activate new ferromagnetic Mn2+–Mn2+ interactions that are strong enough to overcome antiferromagnetic coupling between nearest-neighbour dopants, making the full magnetic moments of all dopants observable. Analysis shows that this large effect occurs in spite of small pairwise electron–Mn2+ exchange energies, because of competing electron-mediated ferromagnetic interactions involving distant Mn2+ ions in the same nanocrystal.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural characterization and charge-induced magnetic effects at 298 K and 2 K.
Figure 2: Reversibility and Mn2+ concentration dependence of charge-controlled magnetism.
Figure 3: Influence of Jfar on dimer magnetization.
Figure 4: Density functional theory results.
Figure 5: Colloidal analogues to bound magnetic polarons.

Similar content being viewed by others

References

  1. Zutic, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  CAS  Google Scholar 

  2. Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  CAS  Google Scholar 

  3. Jonker, B. T. et al. Robust electrical spin injection into a semiconductor heterostructure. Phys. Rev. B 62, 8180–8183 (2000).

    Article  CAS  Google Scholar 

  4. Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999).

    Article  CAS  Google Scholar 

  5. Rüster, C. et al. Very large magnetoresistance in lateral ferromagnetic (Ga,Mn)As wires with nanoconstrictions. Phys. Rev. Lett. 91, 216602 (2003).

    Article  Google Scholar 

  6. Abolfath, R. M., Petukhov, A. G. & Zutic, I. Piezomagnetic quantum dots. Phys. Rev. Lett. 101, 207202 (2008).

    Article  Google Scholar 

  7. Fernández-Rossier, J. & Brey, L. Ferromagnetism mediated by few electrons in a semimagnetic quantum dot. Phys. Rev. Lett. 93, 117201 (2004).

    Article  Google Scholar 

  8. Govorov, A. O. Voltage-tunable ferromagnetism in semimagnetic quantum dots with few particles: magnetic polarons and electrical capacitance. Phys. Rev. B 72, 075359 (2005).

    Article  Google Scholar 

  9. Qu, F. & Hawrylak, P. Magnetic exchange interactions in quantum dots containing electrons and magnetic ions. Phys. Rev. Lett. 95, 217206 (2005).

    Article  Google Scholar 

  10. Qu, F. & Hawrylak, P. Theory of electron mediated Mn–Mn interactions in quantum dots. Phys. Rev. Lett. 96, 157201 (2006).

    Article  Google Scholar 

  11. Abolfath, R. M., Hawrylak, P. & Zutic, I. Electronic states of magnetic quantum dots. New J. Phys. 9, 353 (2007).

    Article  Google Scholar 

  12. Léger, Y., Besombes, L., Fernandez-Rossier, J., Maingault, L. & Mariette, H. Electrical control of a single Mn atom in a quantum dot. Phys. Rev. Lett. 97, 107401 (2006).

    Article  Google Scholar 

  13. Besombes, L., Léger, Y., Maingault, L. & Mariette, H. Spin properties of charged Mn-doped quantum dot. J. Appl. Phys. 101, 081713 (2007).

    Article  Google Scholar 

  14. Seufert, J. et al. Dynamical spin response in semimagnetic quantum dots. Phys. Rev. Lett. 88, 027402 (2002).

    Article  CAS  Google Scholar 

  15. Bacher, G. Optical spectroscopy on epitaxially grown II–VI single quantum dots (review). Top. Appl. Phys. 90, 147–185 (2003).

    Article  CAS  Google Scholar 

  16. Maksimov, A. A. et al. Magnetic polarons in a single diluted magnetic semiconductor quantum dot. Phys. Rev. B 62, R7767–R7770 (2000).

    Article  CAS  Google Scholar 

  17. Norberg, N. S. et al. Synthesis of colloidal Mn2+:ZnO quantum dots and high-TC ferromagnetic nanocrystalline thin films. J. Am. Chem. Soc. 126, 9387–9398 (2004).

    Article  CAS  Google Scholar 

  18. Liu, W. K., Whitaker, K. M., Kittilstved, K. R. & Gamelin, D. R. Stable photogenerated carriers in magnetic semiconductor nanocrystals. J. Am. Chem. Soc. 128, 3910–3911 (2006).

    Article  CAS  Google Scholar 

  19. Liu, W. K. et al. Room-temperature electron spin dynamics in free-standing ZnO quantum dots. Phys. Rev. Lett. 98, 186804 (2007).

    Article  Google Scholar 

  20. Whitaker, K. M., Ochsenbein, S. T., Pollinger, V. Z. & Gamelin, D. R. Electron confinement effects in the EPR spectra of colloidal n-type ZnO quantum dots. J. Phys. Chem. C 112, 14331–14335 (2008).

    Article  CAS  Google Scholar 

  21. Haase, M., Weller, H. & Henglein, A. Photochemistry and radiation chemistry of colloidal semiconductors. 23. Electron storage on ZnO particles and size quantization. J. Phys. Chem. 92, 482–487 (1988).

    Article  CAS  Google Scholar 

  22. Shim, M. & Guyot-Sionnest, P. Organic-capped ZnO nanocrystals: synthesis and n-type character. J. Am. Chem. Soc. 123, 11651–11654 (2001).

    Article  CAS  Google Scholar 

  23. Germeau, A. et al. Optical transitions in artificial few-electron atoms strongly confined inside ZnO nanocrystals. Phys. Rev. Lett. 90, 097401 (2003).

    Article  CAS  Google Scholar 

  24. Furdyna, J. K. & Kossut, J. (eds) Diluted Magnetic Semiconductors (Academic Press, 1988).

    Google Scholar 

  25. Kolesnik, S . et al. Determination of antiferromagnetic interactions in Zn(Mn)O, Zn(Co)O and Zn(Mn)Te by inelastic neutron scattering. J. Appl. Phys. 99, 08M122 (2006).

    Article  Google Scholar 

  26. Droubay, T. C. et al. Correlated substitution in paramagnetic Mn2+-doped ZnO epitaxial films. Phys. Rev. B 79, 155203 (2009).

    Article  Google Scholar 

  27. Schwartz, D. A., Norberg, N. S., Nguyen, Q. P., Parker, J. M. & Gamelin, D. R. Magnetic quantum dots: synthesis, spectroscopy and magnetism of Co2+- and Ni2+-doped ZnO nanocrystals. J. Am. Chem. Soc. 125, 13205–13218 (2003).

    Article  CAS  Google Scholar 

  28. Taft, K. L. et al. [Fe(OMe)2(O2CCH2Cl)]10, a molecular ferric wheel. J. Am. Chem. Soc. 116, 823–832 (1994).

    Article  CAS  Google Scholar 

  29. Kahn, O. Molecular Magnetism (VCH, 1993).

    Google Scholar 

  30. Shapira, Y. et al. Nearest-neighbor exchange constant and Mn distribution in Zn1–xMnxTe from high-field magnetization step and low-field susceptibility. Phys. Rev. B 33, 356–365 (1986).

    Article  CAS  Google Scholar 

  31. Andrearczyk, T. et al. Spin-related magnetoresistance of n-type ZnO:Al and Zn1–xMnxO:Al thin films. Phys. Rev. B 72, 121309 (2005).

    Article  Google Scholar 

  32. Merkulov, I. A. et al. Kinetic exchange between the conduction band electrons and magnetic ions in quantum-confined structures. Phys. Rev. Lett. 83, 1431–1434 (1999).

    Article  CAS  Google Scholar 

  33. Bussian, D. A. et al. Tunable magnetic exchange interactions in manganese-doped inverted core–shell ZnSe–CdSe nanocrystals. Nature Mater. 8, 35–40 (2009).

    Article  CAS  Google Scholar 

  34. Myers, R. C., Poggio, M., Stern, N. P., Gossard, A. C. & Awschalom, D. D. Antiferromagnetic s–d exchange coupling in GaMnAs. Phys. Rev. Lett. 95, 017204 (2005).

    Article  CAS  Google Scholar 

  35. Besombes, L. et al. Probing the spin state of a single magnetic ion in an individual quantum dot. Phys. Rev. Lett. 93, 207403 (2004).

    Article  CAS  Google Scholar 

  36. Badaeva, E., Feng, Y., Gamelin, D. R. & Li, X. Investigation of pure and Co2+-doped ZnO quantum dot electronic structures using density functional theory: choosing the right functional. New J. Phys. 10, 055013 (2008).

    Article  Google Scholar 

  37. Badaeva, E. et al. Theoretical characterization of electronic transitions in Co2+- and Mn2+-doped ZnO nanocrystals. J. Phys. Chem. C 113, 8710–8717 (2009).

    Article  CAS  Google Scholar 

  38. Maingault, L., Besombes, L., Léger, Y., Bougerol, C. & Mariette, H. Inserting one single Mn ion into a quantum dot. Appl. Phys. Lett. 89, 193109 (2006).

    Article  Google Scholar 

  39. Leger, Y., Besombes, L., Maingault, L., Ferrand, D. & Mariette, H. Geometrical effects on the optical properties of quantum dots doped with a single magnetic atom. Phys. Rev. Lett. 95, 047403 (2005).

    Article  CAS  Google Scholar 

  40. Frisch, M. J. et al. Gaussian Development Version (Gaussian, Inc., 2007).

  41. Kisi, E. H. & Elcombe, M. M. u Parameters for the wurtzite structure of ZnS and ZnO using powder neutron diffraction. Acta Cryst. C45, 1867–1870 (1989).

    CAS  Google Scholar 

  42. Borras-Almenar, J. J., Clemente-Juan, J. M., Coronado, E. & Tsukerblat, B. S. MAGPACK: A package to calculate the energy levels, bulk magnetic properties and inelastic neutron scattering spectra of high nuclearity spin clusters. J. Comput. Chem. 22, 985–991 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Science Foundation (CHE 0628252-CRC to D.G. and X.L., DGE-0504573 (IGERT) to K.W.). Additional support from Gaussian Inc, the Research Corporation (Cottrell Scholar, D.G.), the Dreyfus Foundation (Teacher/Scholar, D.G.) and the University of Washington is gratefully acknowledged. E.B. thanks the Center for Nanotechnology at the University of Washington for UIF fellowship support. S.O. was supported by a fellowship for prospective researchers by the Swiss National Science Foundation (contract no. PBBE2-115064). EPR instrumentation support from the Center for Ecogenetics and Environmental Health UW Center grant no. P30 ES07033 from the National Institutes of Environmental Health Sciences, NIH, is gratefully acknowledged. TEM data were collected at Environmental Molecular Science Laboratory (PNNL), a national scientific user facility sponsored by the Department of Energy, and C. Wang (PNNL) is thanked for valuable assistance with this instrument.

Author information

Authors and Affiliations

Authors

Contributions

S.O., K.W. and W.L. performed the experiments. Y.F. and E.B. performed the DFT calculations. All authors discussed the experimental and computational results and analysis. S.O, Y.F., K.W., E.B., W.L., X.L. and D.G. co-wrote the paper.

Corresponding author

Correspondence to Daniel R. Gamelin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ochsenbein, S., Feng, Y., Whitaker, K. et al. Charge-controlled magnetism in colloidal doped semiconductor nanocrystals. Nature Nanotech 4, 681–687 (2009). https://doi.org/10.1038/nnano.2009.221

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.221

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing