Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reconfigurable, braced, three-dimensional DNA nanostructures

Abstract

DNA nanotechnology makes use of the exquisite self-recognition of DNA in order to build on a molecular scale1. Although static structures may find applications in structural biology2,3,4 and computer science5, many applications in nanomedicine and nanorobotics require the additional capacity for controlled three-dimensional movement6. DNA architectures can span three dimensions4,7,8,9,10 and DNA devices are capable of movement10,11,12,13,14,15,16, but active control of well-defined three-dimensional structures has not been achieved. We demonstrate the operation of reconfigurable DNA tetrahedra whose shapes change precisely and reversibly in response to specific molecular signals. Shape changes are confirmed by gel electrophoresis and by bulk and single-molecule Förster resonance energy transfer measurements. DNA tetrahedra are natural building blocks for three-dimensional construction9; they may be synthesized rapidly with high yield of a single stereoisomer, and their triangulated architecture conveys structural stability. The introduction of shape-changing structural modules opens new avenues for the manipulation of matter on the nanometre scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA tetrahedron synthesis.
Figure 2: Cycling between the open and closed states of a tetrahedron with a single reconfigurable edge.
Figure 3: State-switching in a tetrahedron with two reconfigurable edges, each independently addressable.

Similar content being viewed by others

References

  1. Seeman, N. C. DNA in a material world. Nature 421, 427–431 (2003).

    Article  Google Scholar 

  2. Seeman, N. C. Nucleic acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982).

    Article  CAS  Google Scholar 

  3. Malo, J. et al. Engineering a 2D protein–DNA crystal. Angew. Chem. Int. Edn 44, 3057–3061 (2005).

    Article  CAS  Google Scholar 

  4. Douglas, S. M., Chou, J. J. & Shih, W. M. DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc. Natl Acad. Sci. USA 104, 6644–6648 (2007).

    Article  CAS  Google Scholar 

  5. Winfree, E., Liu, F. R., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

    Article  CAS  Google Scholar 

  6. Bath, J. & Turberfield, A. J. DNA nanomachines. Nature Nanotech. 2, 275–284 (2007).

    Article  CAS  Google Scholar 

  7. Chen, J. H. & Seeman, N. C. Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991).

    Article  CAS  Google Scholar 

  8. Shih, W. M., Quispe, J. D. & Joyce, G. F. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427, 618–621 (2004).

    Article  CAS  Google Scholar 

  9. Goodman, R. P. et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310, 1661–1665 (2005).

    Article  CAS  Google Scholar 

  10. Aldaye, F. A. & Sleiman, H. F. Modular access to structurally switchable 3D discrete DNA assemblies. J. Am. Chem. Soc. 129, 13376–13377 (2007).

    Article  CAS  Google Scholar 

  11. Yurke, B., Turberfield, A. J., Mills, A. P., Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    Article  CAS  Google Scholar 

  12. Yan, H., Zhang, X. P., Shen, Z. Y. & Seeman, N. C. A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62–65 (2002).

    Article  CAS  Google Scholar 

  13. Yin, P., Yan, H., Daniell, X. G., Turberfield, A. J. & Reif, J. H. A unidirectional DNA walker that moves autonomously along a track. Angew. Chem. Int. Edn 43, 4906–4911 (2004).

    Article  CAS  Google Scholar 

  14. Bath, J., Green, S. J. & Turberfield, A. J. A free-running DNA motor powered by a nicking enzyme. Angew. Chem. Int. Edn 44, 4358–4361 (2005).

    Article  CAS  Google Scholar 

  15. Tian, Y., He, Y., Chen, Y., Yin, P. & Mao, C. D. Molecular devices—a DNAzyme that walks processively and autonomously along a one-dimensional track. Angew. Chem. Int. Edn 44, 4355–4358 (2005).

    Article  CAS  Google Scholar 

  16. Venkataraman, S., Dirks, R. M., Rothemund, P. W. K., Winfree, E. & Pierce, N. A. An autonomous polymerization motor powered by DNA hybridization. Nature Nanotech. 2, 490–494 (2007).

    Article  Google Scholar 

  17. Goodman, R. P., Berry, R. M. & Turberfield, A. J. The single-step synthesis of a DNA tetrahedron. Chem. Commun., 1372–1373 (2004).

  18. Seeman, N. C. & Kallenbach, N. R. DNA branched junctions. Annu. Rev. Biophys. Biomol. Struct. 23, 53–86 (1994).

    Article  CAS  Google Scholar 

  19. Turberfield, A. J. et al. DNA fuel for free-running nanomachines. Phys. Rev. Lett. 90, 118102 (2003).

    Article  CAS  Google Scholar 

  20. Stryer, L. & Haugland, R. P. Energy transfer: a spectroscopic ruler. Proc. Natl Acad. Sci. USA 58, 719–726 (1967).

    Article  CAS  Google Scholar 

  21. Kapanidis, A. N. et al. Fluorescence-aided molecule sorting: Analysis of structure and interactions by alternating-laser excitation of single molecules. Proc. Natl Acad. Sci. USA 101, 8936–8941 (2004).

    Article  CAS  Google Scholar 

  22. Lee, N. K. et al. Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophys J. 88, 2939–2953 (2005).

    Article  CAS  Google Scholar 

  23. Purcell, E. M. Life at low Reynolds number. Am. J. Phys. 45, 3–11 (1977).

    Article  Google Scholar 

  24. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  25. Craighead, H. G. Nanoelectromechanical systems. Science 290, 1532–1535 (2000).

    Article  CAS  Google Scholar 

  26. Erben, C. M., Goodman, R. P. & Turberfield, A. J. Single-molecule protein encapsulation in a rigid DNA cage. Angew. Chem. Int. Edn 45, 7414–7417 (2006).

    Article  CAS  Google Scholar 

  27. Rus, D. & Vona, M. Crystalline robots: self-reconfiguration with compressible unit modules. Autonomous Robots 10, 107–124 (2001).

    Article  Google Scholar 

  28. Goodman, R. P. NANEV: a program employing evolutionary methods for the design of nucleic acid nanostructures. Biotechniques 38, 548–550 (2005).

    Article  CAS  Google Scholar 

  29. Dirks, R. M., Bois, J. S., Schaeffer, J. M., Winfree, E. & Pierce, N. A. Thermodynamic analysis of interacting nucleic acid strands. SIAM Rev. 49, 65–88 (2007).

    Article  Google Scholar 

  30. Kapanidis, A. N. et al. Retention of transcription initiation factor σ70 in transcription elongation: single-molecule analysis. Mol. Cell 20, 347–356 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the UK Engineering and Physical Sciences Research Council, Biotechnology and Biological Sciences Research Council, Medical Research Council, and the Ministry of Defence through the Bionanotechnology Interdisciplinary Research Collaboration. A.N.K. was also supported by Engineering and Physical Sciences Research Council (EPSRC) grant EP/D058775 and Marie Curie EU grant MIRG-CT-2005-031079. M.H. was supported by a fellowship from the German Academic Exchange Service (DAAD), and R.P.G. was supported by a Junior Research Fellowship at Balliol College, Oxford. Correspondence and request for materials should be addressed to A.J.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Turberfield.

Supplementary information

Supplementary Information

Supplementary figures (PDF 246 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodman, R., Heilemann, M., Doose, S. et al. Reconfigurable, braced, three-dimensional DNA nanostructures. Nature Nanotech 3, 93–96 (2008). https://doi.org/10.1038/nnano.2008.3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing