Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Time-domain control of ultrahigh-frequency nanomechanical systems

Abstract

Nanoelectromechanical systems could have applications in fields as diverse as ultrasensitive mass detection1,2,3 and mechanical computation4,5,6, and can also be used to explore fundamental phenomena such as quantized heat conductance7 and quantum-limited displacement8,9. Most nanomechanical studies to date have been performed in the frequency domain. However, applications in computation10 and information storage11 will require transient excitation and high-speed time-domain operation of nanomechanical systems. Here we show a time-resolved optical approach to the transduction of ultrahigh-frequency nanoelectromechanical systems, and demonstrate that coherent control of nanomechanical oscillation is possible through appropriate pulse programming. A series of cantilevers with resonant frequencies ranging from less than 10 MHz to over 1 GHz are characterized using the same pulse parameters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Apparatus and response to an impulse excitation.
Figure 2: Spatiotemporal characterization of cantilever response.
Figure 3: Resonant frequencies.
Figure 4: Coherent control of nanoelectromechanical oscillations using a rectangular voltage pulse shape.

Similar content being viewed by others

References

  1. Ekinci, K. L., Yang, Y. T. & Roukes, M. L. Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. J. Appl. Phys. 95, 2682–2689 (2004).

    Article  Google Scholar 

  2. Yang, Y. T., Callegari, C., Feng, X. L., Ekinci, K. L. & Roukes, M. L. Zeptogram-scale nanomechanical mass sensing. Nano Lett. 6, 583–586 (2006).

    Article  Google Scholar 

  3. Jensen, K., Kim, K. & Zettl, A. An atomic-resolution nanomechanical mass sensor. Nature Nanotech. 3, 533–537 (2008).

    Article  Google Scholar 

  4. Masmanidis, S. C. et al. Multifunctional nanomechanical systems via tunably coupled piezo-electric actuation. Science 317, 780–783 (2007).

    Article  Google Scholar 

  5. Blick, R. H., Qin, H., Kim, H.-S. & Marsland, R. A nanomechanical computer: exploring new avenues of computing. New J. Phys. 9, 241 (2007).

    Article  Google Scholar 

  6. Mahboob, I. & Yamaguchi, H. Bit storage and bit flip operations in an electromechanical oscillator. Nature Nanotech. 3, 275–279 (2008).

    Article  Google Scholar 

  7. Schwab, K. C., Hendriksen, E. A., Worlock, J. M. & Roukes, M. L. Measurement of the quantum of thermal conductance. Nature 404, 974–977 (2000).

    Article  Google Scholar 

  8. LaHaye, M. D., Buu, O., Camarota, B. & Schwab, K. C. Approaching the quantum limit of a nanomechanical resonator. Science 304, 74–77 (2004).

    Article  Google Scholar 

  9. Knobel, R. G. & Cleland, A. N. Nanometre-scale displacement sensing using a single electron transistor. Nature 424, 291–293 (2003).

    Article  Google Scholar 

  10. Zalalutdinov, M. K. et al. Two-dimensional array of coupled nanomechanical resonators. Appl. Phys. Lett. 88, 143504 (2006).

    Article  Google Scholar 

  11. Kovalev, A. A., Bauer, G. E. W. & Brataas, A. Nanomechanical magnetization reversal. Phys. Rev. Lett. 94, 167201 (2005).

    Article  Google Scholar 

  12. Rugar, D., Mamin, H. J., Erlandsson, R., Stern, J. E. & Terris, B. D. Force microscope using a fiber-optic displacement sensor. Rev. Sci. Instrum. 59, 2337–2340 (1988).

    Article  Google Scholar 

  13. Carr, D. W., Sekaric, L. & Craighead, H. G. Measurement of nanomechanical resonant structures in single-crystal silicon. J. Vac. Sci. Technol. B 16, 3821–3824 (1998).

    Article  Google Scholar 

  14. Belov, M. et al. Mechanical resonance of clamped silicon nanowires measured by optical interferometry. J. Appl. Phys. 103, 074304 (2008).

    Article  Google Scholar 

  15. Hiebert, W. K., Stankiewicz, A. & Freeman, M. R. Direct observation of magnetic relaxation in a small permalloy disk by time-resolved scanning Kerr microscopy. Phys. Rev. Lett. 79, 1134–1137 (1997).

    Article  Google Scholar 

  16. Del Fatti, N., Voisin, C., Christofilos, D., Vallee, F. & Flytzanis, C. Acoustic vibration of metal films and nanoparticles. J. Phys. Chem. A 104, 4321–4326 (2000).

    Article  Google Scholar 

  17. Huang, X. M. H., Zorman, C. A., Mehregany, M. & Roukes, M. L. Nanodevice motion at microwave frequencies. Nature 421, 496 (2003).

    Article  Google Scholar 

  18. Peng, H. B., Chang, C. W., Aloni, S., Yuzvinsky, T. D. & Zettl, A. Ultrahigh frequency nanotube resonators. Phys. Rev. Lett. 97, 087203 (2006).

    Article  Google Scholar 

  19. Gaidarzhy, A., Imboden, M., Mohanty, P., Rankin, J. & Sheldon, B. W. High quality factor gigahertz frequency nanomechanical diamond resonators. Appl. Phys. Lett. 91, 203503 (2007).

    Article  Google Scholar 

  20. Agache, V., Legrand, B., Collard, D., Buchaillot, L. & Fujita, H. Fabrication and characterization of 1.1 GHz blade nanoelectromechanical resonator. Appl. Phys. Lett. 86, 213104 (2005).

    Article  Google Scholar 

  21. Li, M., Tang, H. X. & Roukes, M. L. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nature Nanotech. 2, 114–120 (2007).

    Article  Google Scholar 

  22. Dohn, S., Svendsen, W., Boisen, A. & Hansen, O. Mass and position determination of attached particles on cantilever based mass sensors. Rev. Sci. Instrum. 78, 103303 (2007).

    Article  Google Scholar 

  23. Sampathkumar, A., Murray, T. W. & Ekinci, K. L. Photothermal operation of high frequency nanoelectromechanical systems, Appl. Phys. Lett. 88, 223104 (2006).

    Article  Google Scholar 

  24. Cleland, A. N. Foundations of Nanomechanics: from Solid-State Theory to Device Applications (Springer-Verlag, 2003).

    Book  Google Scholar 

  25. Bergaud, C., Nicu, L. & Martinez, A. Multi-mode air damping analysis of composite cantilever beams. Jpn J. Appl. Phys. 38, 6521–6525 (1999).

    Article  Google Scholar 

  26. Sader, J. E., Larson, I., Mulvaney, P. & White, L. R. Method for the calibration of atomic force microscope cantilevers. Rev. Sci. Instrum. 66, 3789–3798 (1995).

    Article  Google Scholar 

  27. Wortman, J. J & Evans, R. A. Young's modulus, shear modulus, and Poisson's ratio in silicon and germanium. J. Appl. Phys. 36, 153–156 (1965).

    Article  Google Scholar 

  28. Crawford, T. M., Kabos, P. & Silva, T. J. Coherent control of precessional dynamics in thin film permalloy. Appl. Phys. Lett. 76, 2113–2115 (2000).

    Article  Google Scholar 

  29. Gerrits, Th. et al. Ultrafast precessional magnetization reversal by picosecond magnetic field pulse shaping. Nature 418, 509–512 (2002).

    Article  Google Scholar 

  30. Schumacher, H. W. et al. Phase coherent precessional magnetization reversal in microscopic spin valve elements. Phys. Rev. Lett. 90, 017201 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council, Canada, the Canadian Institute for Advanced Research, the informatics Circle of Research Excellence, Canada Research Chairs, and the National Institute for Nanotechnology. The samples were fabricated at the Nanofab of the University of Alberta and SEM imaging was performed at the Electron Microscopy facilities of the National Institute for Nanotechnology. N. Liu acknowledges the support of the Avadh Bhatia Postdoctoral Fellowship. We thank S. Masamanidis and M. Roukes for the discussions that inspired this work, and Y. Ning for assistance in the early stages of the project.

Author information

Authors and Affiliations

Authors

Contributions

M.F., W.H. and G.M. conceived and designed the experiments. F.G., A.F. and J.M. built the apparatus. M.B., N.L., V.S. and T.C. performed the micro- and nanofabrication. N.L., F.G., J.L. and J.M. performed the experiments. N.L., F.G., W.H. and M.F. co-wrote the paper.

Corresponding author

Correspondence to M. R. Freeman.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1612 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, N., Giesen, F., Belov, M. et al. Time-domain control of ultrahigh-frequency nanomechanical systems. Nature Nanotech 3, 715–719 (2008). https://doi.org/10.1038/nnano.2008.319

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.319

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing