Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanoprecipitation-assisted ion current oscillations

Abstract

Nanoscale pores exhibit transport properties that are not seen in micrometre-scale pores, such as increased ionic concentrations inside the pore relative to the bulk solution, ionic selectivity and ionic rectification. These nanoscale effects are all caused by the presence of permanent surface charges on the walls of the pore. Here we report a new phenomenon in which the addition of small amounts of divalent cations to a buffered monovalent ionic solution results in an oscillating ionic current through a conical nanopore. This behaviour is caused by the transient formation and redissolution of nanoprecipitates, which temporarily block the ionic current through the pore. The frequency and character of ionic current instabilities are regulated by the potential across the membrane and the chemistry of the precipitate. We discuss how oscillating nanopores could be used as model systems for studying nonlinear electrochemical processes and the early stages of crystallization in sub-femtolitre volumes. Such nanopore systems might also form the basis for a stochastic sensor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanoprecipitation of calcium hydrogen phosphate (CaHPO4) in a single conical nanopore.
Figure 2: Ion current oscillations through a single conical nanopore induced by CaHPO4 nanoprecipitates.
Figure 3: Nanoprecipitation of cobalt hydrogen phosphate (CoHPO4) in a single nanopore.
Figure 4: Nanoprecipitation of magnesium hydroxide (Mg(OH)2) in a single nanopore.
Figure 5: Scheme of the transient formation of the nanoprecipitates.
Figure 6: Influence of biomolecules on the signature of the ion current oscillations recorded in 0.1 M KCl, 0.2 mM CoCl2 and 2 mM pH 8 phosphate buffer.

Similar content being viewed by others

References

  1. Ashcroft, F. M. Ion Channels and Disease (Academic Press, New York, 1999).

    Google Scholar 

  2. Eisenberg, R. S. Atomic biology, electrostatics and ionic channels. In New Developments and Theoretical Studies of Proteins Vol. 7 (ed. Elber, R.) Ch. 5, 269–357, Advanced Series in Physical Chemistry (World Scientific, Philadelphia, 1996).

    Chapter  Google Scholar 

  3. Eisenberg, R. S. Ionic channels as natural nanodevices. J. Comp. Electr. 1, 331–334 (2002).

    Article  CAS  Google Scholar 

  4. Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93, 13770–13773 (1996).

    Article  CAS  Google Scholar 

  5. Bayley, H. & Martin, C. R. Resistive-pulse sensing—from microbes to molecules. Chem. Rev. 100, 2575–2594 (2000).

    Article  CAS  Google Scholar 

  6. Dekker, C. Solid-state nanopores. Nature Nanotech. 2, 209–215 (2007).

    Article  CAS  Google Scholar 

  7. Uram, J. D., Ke, K., Hunt, A. J. & Mayer, M. Submicrometer pore-based characterization and quantification of antibody–virus interactions. Small 2, 967–972 (2006).

    Article  CAS  Google Scholar 

  8. Iqbal, S. M., Akin, D. & Bashir, R. Solid-state nanopore channels with DNA selectivity. Nature Nanotech. 2, 243–248 (2007).

    Article  CAS  Google Scholar 

  9. Berezhkovskii, A. M., Hummer, G. & Bezrukov, S. M. Identity of distributions of direct uphill and downhill translocation times for particles traversing membrane channels. Phys. Rev. Lett. 97, 020601 (2006).

    Article  Google Scholar 

  10. Muthukumar, M. Polymer escape through a nanopore. J. Chem. Phys. 118, 5174–5184 (2003).

    Article  CAS  Google Scholar 

  11. Keyser, U. F. et al. Direct force measurements on DNA in a solid-state nanopore. Nature Phys. 2, 473–477 (2006).

    Article  CAS  Google Scholar 

  12. Stein, D., Kruithof, M. & Dekker, C. Surface-charge-governed ion transport in nanofluidic channels. Phys. Rev. Lett. 93, 035901 (2004).

    Article  Google Scholar 

  13. Israelachvili, J. Intermolecular and Surface Forces 2nd edn (Academic Press, London, 1991).

    Google Scholar 

  14. Daiguji, H., Yang, P. & Majumdar, A. Ion transport in nanofluidic channels. Nano Lett. 4, 137–142 (2004).

    Article  CAS  Google Scholar 

  15. Vlassiouk, I. & Siwy, Z. Nanofluidic diode. Nano Lett. 7, 552–556 (2007).

    Article  CAS  Google Scholar 

  16. Karnik, R., Duan, C., Castelino, K., Daiguji, H. & Majumdar, A. Rectification of ionic current in a nanofluidic diode. Nano Lett. 7, 547–551 (2007).

    Article  CAS  Google Scholar 

  17. Karnik, R. et al. Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett. 5, 943–948 (2005).

    Article  CAS  Google Scholar 

  18. Eisenberg, R. S. Computing the field in proteins and channels. J. Membrane Biol. 150, 1–25 (1996).

    Article  CAS  Google Scholar 

  19. Fleischer, R. L., Price, P. B. & Walker, R. M. Nuclear Tracks in Solids. Principles and Applications (Univ. of California Press, Berkeley, 1975).

    Google Scholar 

  20. Apel A., Korchev Y. E., Siwy Z., Spohr R. & Yoshida M. Diode-like single-ion track membrane prepared by electro-stopping. Nucl. Instrum. Methods Phys. Res. B 184, 337–346 (2001).

    Article  CAS  Google Scholar 

  21. Siwy, Z., Powell, M. R., Kalman, E., Astumian, R. D. & Eisenberg, R. S. Negative incremental resistance induced by calcium in asymmetric nanopores. Nano Lett. 6, 473–477 (2006).

    Article  CAS  Google Scholar 

  22. Siwy, Z. et al. Calcium-induced voltage gating in single conical nanopores. Nano Lett. 6, 1729–1734 (2006).

    Article  CAS  Google Scholar 

  23. Dean, J. A. Lange's Handbook of Chemistry 15th edn (McGraw-Hill, New York, 1999).

    Google Scholar 

  24. Cervera, J., Schiedt, B. & Ramirez, P. A Poisson/Nernst–Planck model for ionic transport through synthetic conical nanopores. Europhys. Lett. 71, 35–41 (2005).

    Article  CAS  Google Scholar 

  25. Siwy Z. & Fulinski A. Fabrication of a synthetic nanopore ion-pump. Phys. Rev. Lett. 89, 198103 (2002).

    Article  CAS  Google Scholar 

  26. Ciavatti, L. The Specific Interaction Theory in equilibrium analysis. Some empirical rules for estimating interaction coefficients of metal ion complexes. Anali di Chimica by Societa Chimica Italiana 80, 255–263 (1990).

    Google Scholar 

  27. Ciavatti, L. The Specific Interaction Theory in evaluating ionic equilibria. Anali di Chimica by Societa Chimica Italiana 80, 551–567 (1980)

    Google Scholar 

  28. Nonner, W. & Eisenberg, R. S. Ion permeation and glutamate residues linked by Poisson–Nernst–Planck theory in L-type calcium channels. Biophys. J. 75, 1287–1305 (1998).

    Article  CAS  Google Scholar 

  29. Constantin, D. & Siwy, Z. Poisson–Nernst–Planck model of ion current rectification through a nanofluidic diode. Phys. Rev. E 76, 041202 (2007).

    Article  Google Scholar 

  30. Krischer, K., Mazouz, N. & Grauel, P. Fronts, waves, and stationary patterns in electrochemical systems. Angew. Chem. Int. Edn 40, 850–859 (2001).

    Article  CAS  Google Scholar 

  31. Kurin-Csörgei, K., Epstein, I. R. & Orban, M. Systematic design of chemical oscillators using complexation and precipitation equilibria. Nature 433, 139–142 (2005).

    Article  Google Scholar 

  32. Epstein I. R. & Pojman, J. A. Introduction to Nonlinear Chemical Dynamics. Oscillations, Waves, Patterns and Chaos (Oxford Univ. Press, New York, 1998).

    Google Scholar 

  33. Bayley, H. & Cremer, P. S. Stochastic sensors inspired by biology. Nature 413, 226–230 (2001).

    Article  CAS  Google Scholar 

  34. Brindley, G. W. & Kao, C-C. Structural and IR relations among brucite-like divalent metal hydroxides. Phys. Chem. Minerals 10, 187–191 (1984).

    Article  CAS  Google Scholar 

  35. Dickens, B., Bowen, J. S. & Brown, W. E. A refinement of the crystal structure of CaHPO4 (synthetic monetite). Acta Cryst. B28, 797–806 (1971).

    Google Scholar 

  36. Krishna, R. & Wesselingh, J. A. The Maxwell–Stefan approach to mass transfer. Chem. Eng. Sci. 52, 861–911 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Irradiation with swift heavy ions was performed at the Gesellschaft für Schwerionenforschung (GSI), Darmstadt, Germany. We thank the Alfred P. Sloan Foundation, the IM-SURE undergraduate programme, the Institute for Surface and Interface Science and the Institute for Complex Adaptive Matter for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Z.S., R.S.E. and I.V. conceived the experiments. M.R.P., M.S. and I.V. performed the experiments. D.C. analysed the data and was in charge of calculations. M.R.P. and Z.S. wrote the manuscript. R.S. co-wrote the manuscript. O.S. and C.C.M. analysed the data, discussed the results, explained the transient character of precipitation formation, and co-wrote the manuscript.

Corresponding author

Correspondence to Zuzanna S. Siwy.

Supplementary information

Supplementary Information

Supplementary figures S1–S12 (PDF 718 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Powell, M., Sullivan, M., Vlassiouk, I. et al. Nanoprecipitation-assisted ion current oscillations. Nature Nanotech 3, 51–57 (2008). https://doi.org/10.1038/nnano.2007.420

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.420

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing