Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fabrication of fully transparent nanowire transistors for transparent and flexible electronics

Abstract

The development of optically transparent and mechanically flexible electronic circuitry is an essential step in the effort to develop next-generation display technologies, including ‘see-through’ and conformable products. Nanowire transistors (NWTs) are of particular interest for future display devices because of their high carrier mobilities compared with bulk or thin-film transistors made from the same materials, the prospect of processing at low temperatures compatible with plastic substrates, as well as their optical transparency and inherent mechanical flexibility. Here we report fully transparent In2O3 and ZnO NWTs fabricated on both glass and flexible plastic substrates, exhibiting high-performance n-type transistor characteristics with 82% optical transparency. These NWTs should be attractive as pixel-switching and driving transistors in active-matrix organic light-emitting diode (AMOLED) displays. The transparency of the entire pixel area should significantly enhance aperture ratio efficiency in active-matrix arrays and thus substantially decrease power consumption.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fully transparent NWTs.
Figure 2: Characteristics of fully transparent In2O3 NWTs.
Figure 3: Characteristics of fully transparent In2O3 and ZnO NWTs.
Figure 4: Optical transmission spectra through entire NWT structures.
Figure 5: Fully transparent and flexible In2O3 NWTs.

Similar content being viewed by others

References

  1. Snell, A. J., Mackenzie, K. D., Spear, W. E., LeComber, P. G. & Hughes, A. J. Application of amorphous silicon field effect transistors in addressable liquid crystal display panels. Appl. Phys. Lett. 24, 357–362 (1981).

    CAS  Google Scholar 

  2. Madelung, O. (ed.) Technology and Applications of Amorphous Silicon (Springer, Berlin, 2000).

    Google Scholar 

  3. Ucjikoga, S. Low-temperature polycrystalline silicon thin-film transistor technologies for system-onglass displays. MRS Bull. 27, 881–886 (2002).

    Article  Google Scholar 

  4. Carcia, P. F., McLean, R. S., Reilly, M. H. & Nunes, G. Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Appl. Phys. Lett. 82, 1117–1119 (2003).

    Article  CAS  Google Scholar 

  5. Fortunato, E. et al. Recent advances in ZnO transparent thin film transistors. Thin Solid Films 487, 205–211 (2005).

    Article  CAS  Google Scholar 

  6. Hoffman, R. L., Norris, B. J. & Wager, J. F. ZnO-based transparent thin-film transistors. Appl. Phys. Lett. 82, 733–735 (2003).

    Article  CAS  Google Scholar 

  7. Nomura, K. et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300, 1269–1272 (2003).

    Article  CAS  Google Scholar 

  8. Presley, R. E. et al. Tin oxide transparent thin-film transistors. J. Phys. D. 37, 2810–2813 (2004).

    Article  CAS  Google Scholar 

  9. Wang, L. et al. High performance all transparent inorganic–organic hybrid thin-film transistors. Nature Mater. 5, 893–900 (2006).

    Article  CAS  Google Scholar 

  10. Hur, S.-H. Park, O. & Rogers, J.A. Extreme bendability of single-walled carbon nanotube networks transferred from high-temperature growth substrates to plastic and their use in thin-film transistors. Appl. Phys. Lett. 86, 243502 (2005).

    Article  Google Scholar 

  11. Takenobu, T. et al. High-performance transparent flexible transistors using carbon nanotube films. Appl. Phy. Lett. 88, 33511 (2006).

    Article  Google Scholar 

  12. Minami, T., Yamamoto, T., Toda, Y. & Miyata, T. Transparent conducting zinc-co-doped ITO films prepared by magnetron sputtering. Thin Solid Films 373, 189–194 (2000).

    Article  CAS  Google Scholar 

  13. Yaglioglu, B., Yeom, H.-Y. & Paine, D. C. Crystallization of amorphous In2O3-10 wt% ZnO thin films annealed in air. Appl. Phy. Lett. 86, 261908 (2005).

    Article  Google Scholar 

  14. Fortunato, E. et al. High mobility amorphous/nanocrystalline indium zinc oxide deposited at room temperature. Thin Solid Films 502, 104–107 (2006).

    Article  CAS  Google Scholar 

  15. Xiang, J. et al. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441, 489–493 (2006).

    Article  CAS  Google Scholar 

  16. Cui, Y., Zhong, Z., Wang, D., Wang, W. U. & Lieber, C. M. High performance silicon nanowire field effect transistors. Nano Lett. 3, 149–152 (2003).

    Article  CAS  Google Scholar 

  17. Cha, S. N. et al. High performance ZnO nanowire field effect transistor. Proc. ESSDERC 217–220 (2005).

  18. Kim, W. et al. Germanium nanowire field-effect transistors with SiO2 and high-κ HfO2 gate dielectrics. Appl. Phys. Lett. 87, 173101 (2005).

    Article  Google Scholar 

  19. Weiher, R. L. Electrical properties of single crystals of indium oxide. J. Appl. Phys. 33, 2834–2839 (1962).

    Article  CAS  Google Scholar 

  20. Li, Y., Meng, G. W., Zhang, L. D. & Phillipp, F. Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. Appl. Phys. Lett. 76, 2011–2013 (2000).

    Article  CAS  Google Scholar 

  21. Yao, B. D., Chan, Y. F. & Wang, N. Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl. Phys. Lett. 81, 757–759 (2002).

    Article  CAS  Google Scholar 

  22. Banerjee, D. et al. Large-quantity free-standing ZnO nanowires. Appl. Phys. Lett. 83, 2061–2063 (2003).

    Article  CAS  Google Scholar 

  23. Pan, Z. W., Dai, Z. R. & Wang, Z. L. Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001).

    Article  CAS  Google Scholar 

  24. Wan, Q., Yu, K., Wang, T. H. & Lin, C. L. Low-field electron emission from tetrapod-like ZnO nanostructures synthesized by rapid evaporation. Appl. Phys. Lett. 83, 2253–2255 (2003).

    Article  CAS  Google Scholar 

  25. Ju, S., Janes, D. B., Lu, G., Facchetti, A. & Marks, T. J. Effects of bias stress on ZnO nanowire field-effect transistors fabricated with organic gate nanodielectrics. Appl. Phys. Lett. 89, 193506 (2006).

    Article  Google Scholar 

  26. Li, C. et al. Diameter-controlled growth of single-crystalline In2O3 nanowires and their electronic properties. Adv. Mater. 15, 143–145 (2003).

    Article  CAS  Google Scholar 

  27. Banerjee, D. et al. Synthesis and photoluminescence studies on ZnO nanowires. Nanotechnology 15, 404–409 (2004).

    Article  CAS  Google Scholar 

  28. Lin, H. C., Ye, P. D. & Wilk, G. D. Leakage current and breakdown electric-field studies on ultrathin atomic-layer-deposited Al2O3 on GaAs. Appl. Phys. Lett. 87, 182904 (2005).

    Article  Google Scholar 

  29. Lang, O. et al. Thin film growth and band lineup of In2O3 on the layered semiconductor InSe. J. Appl. Phys. 86, 5687–5691 (1999).

    Article  CAS  Google Scholar 

  30. Gassenbauer, Y. et al. Surface states, surface potentials, and segregation at surfaces of tin-doped In2O3 . Phys. Rev. B 73, 245312 (2006).

    Article  Google Scholar 

  31. Goldberger, J., Sirbuly, D., Law, M. & Yang, P. ZnO nanowire transistors. J. Phys. Chem. B 109, 9–14 (2005).

    Google Scholar 

  32. Martins, R. et al. Zinc oxide as an ozone sensor. J. Appl. Phys. 96, 1398–1408 (2004).

    Article  CAS  Google Scholar 

  33. Jiang, X., Wong, F. L., Fung, M. K. & Lee, S. T. Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices. Appl. Phys. Lett. 83, 1875–1877 (2003).

    Article  CAS  Google Scholar 

  34. Kim, S. Y., Lee, J.-L., Kim, K.-B. & Tak, Y.-H. Effect of ultraviolet-ozone treatment of indium-tin-oxide on electrical properties of organic light emitting diodes. J. Appl. Phys. 95, 2560–2563 (2004).

    Article  CAS  Google Scholar 

  35. Liu, F. et al. One-dimensional transport of In2O3 nanowires. Appl. Phys. Lett. 86, 213101 (2005).

    Article  Google Scholar 

  36. Chang, P.-C. et al. High-performance ZnO nanowire field effect transistors. Appl. Phys. Lett. 89, 133113 (2006).

    Article  Google Scholar 

  37. Zhang, D. et al. Electronic transport studies of single-crystalline In2O3 nanowires. Appl. Phys. Lett. 82, 112–114 (2003).

    Article  CAS  Google Scholar 

  38. Cha, S. N. et al. High-performance ZnO nanowire field effect transistor using self-aligned nanogap gate electrodes. Appl. Phys. Lett. 89, 263102 (2006).

    Article  Google Scholar 

  39. Moon, T.-H. et al. Chemical surface passivation of HfO2 films in a ZnO nanowire transistor. Nanotechnology 17, 2116–2121 (2006).

    Article  CAS  Google Scholar 

  40. Ju, S. et al. Low operating voltage single ZnO nanowire field-effect transistors enabled by self-assembled organic gate nanodielectrics. Nano Lett. 5, 2281–2286 (2005).

    Article  CAS  Google Scholar 

  41. Ju, S. H. et al. High performance 2.2″ QCIF full color AMOLED displays based on electrophosphorescence. SID 02 DIGEST 37.3, 1096–1099 (2002).

    Article  Google Scholar 

  42. Rao, S., Huang, L., Setyawan, W. & Hong, S. Nanotube electronics: Large-scale assembly of carbon nanotubes. Nature 425, 36–37 (2003).

    Article  CAS  Google Scholar 

  43. Wu, Y., Xiang, J., Yang, C., Lu, W. & Lieber, C. M. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430, 61–65 (2004).

    Article  CAS  Google Scholar 

  44. Joseph, V. R. et al. Electronic connection to the interior of a mesoporous insulator with nanowires of crystalline RuO2 . Nature 406, 169–172 (2000).

    Article  Google Scholar 

  45. Huang, Y., Duan, X., Wei, Q. & Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 (2001).

    Article  CAS  Google Scholar 

  46. Kuykendall, T. et al. Crystallographic alignment of high-density gallium nitride nanowire arrays. Nature Mater. 3, 524–528 (2004).

    Article  CAS  Google Scholar 

  47. Duan, X. et al. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 425, 274–278 (2003).

    Article  CAS  Google Scholar 

  48. Menard, E., Lee, K. J., Khang, D. Y., Nuzzo, R. G. & Rogers, J. A. A printable form of silicon for high performance thin film transistors on plastic substrates. Appl. Phys. Lett. 84, 5398–5400 (2004).

    Article  CAS  Google Scholar 

  49. Ju, S. et al. n-Type field-effect transistors using multiple Mg-doped ZnO nanorods. IEEE Trans. Nanotech. (in the press).

  50. Wang, D. et al. Germanium nanowire field-effect transistors with SiO2 and high-κ HfO2 gate dielectrics. Appl. Phys. Lett. 83, 2432–2434 (2003).

    Article  CAS  Google Scholar 

  51. Vashaee, D. et al. Electrostatics of nanowire transistors with triangular cross sections. J. Appl. Phys. 99, 54310 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Samsung SDI for providing substrate materials and measuring the ITO work function. This work was supported in part by the NASA Institute for Nanoelectronics and Computing under grant NCC-2-1363 and the Northwestern University MRSEC under grant DMR-0520513.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work and all discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Tobin J. Marks or David B. Janes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ju, S., Facchetti, A., Xuan, Y. et al. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nature Nanotech 2, 378–384 (2007). https://doi.org/10.1038/nnano.2007.151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing